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Introduction 
•  Image classification is the task of taking an input image and outputting a 

class or a probability of classes that best describes the image 
•  For humans, this task is one of the first skills we learn and it comes naturally 

and effortlessly as adults 

•  Being able to quickly recognize patterns, generalize from prior knowledge, 
and adapt to different image environments are difficult tasks for machines 
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Introduction 

What we see vs. What computers see 
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MNIST Dataset (http://yann.lecun.com/exdb/mnist/) 

• 60,000 training examples 

• 10,000 test examples 

• Rank of best Classifiers  
and Errors 

• Currently Best Accuracy:  

•  Ciresan et al. CVPR 2012 ! 99.77% 

Introduction 
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MNIST Dataset 

Introduction 
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CIFAR-10 Dataset (https://www.cs.toronto.edu/~kriz/cifar.html) 

• Consists of 60,000 32x32 color images in 10 classes, with 6,000 images 

per class. There are 50,000 training images and 10,000 test images.  

Introduction 
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Color Images 

Introduction 
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Color Images 

Introduction 
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Image Classification (previous Deep Learning) 

• Hand-Craft Features 

• Texture Features: Histogram based, Entropy, Haralick features (Co-

occurrence matrix), Gray-level run length metrics, Local Binary Pattern, 

Fractal, etc. 

• Morphological Features: Hu's moments, Shape features, 

Granulometry, Bending Energy, Roundness ratio, etc.  

Introduction 
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Deep Learning (DL) 

"Deep Learning is a new area of Machine Learning, which has been 

introduced with the objective of moving Machine Learning closer to 

one of its original goals: Artificial Intelligence.”      http://deeplearning.net/ 

• Key Concepts of Deep Neural Networks 
•  Deep-learning networks are distinguished from the more common single-hidden-

layer neural networks by their depth 

•  More than three layers (including input and output) qualifies as “deep” learning 

•  In deep-learning networks, each layer of nodes trains on a distinct set of 

features based on the previous layer’s output 

•  The further you advance into the neural net, the more complex the features 

your nodes can recognize, since they aggregate and recombine features from 

the previous layer 
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Deep Learning (DL) 

Different DL Models: 

• Deep Neural Network 

• Deep Boltzmann Machine 

• Restricted Boltzmann Machine 

• Deep Belief Networks 

• Deep Autoencoders 

• Recurrent Neural Networks  

• Convolutional Neural Networks 
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Convolutional Neural Networks (CNNs) 
•  CNNs take a biological inspiration from the visual cortex 

•  The visual cortex has small regions of cells that are sensitive to 

specific regions of the visual field 

•  For example, some neurons fired 

when exposed to vertical edges 

and some when shown horizontal 

or diagonal edges 

•  Having the neuronal cells in the 

visual cortex looking for specific 

characteristics is the basis behind 

CNNs 
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Convolutional Neural Networks (CNNs) 

Network Architecture 
• Convolutional Layer, Pooling Layer, Fully Connected Layer 
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Convolutional Neural Networks (CNNs) 

Convolution Operator 

• The 3×3 matrix (K) is called a ‘filter‘ or ‘kernel’ or ‘feature detector’ 

and the matrix formed by sliding the filter over the image and 

computing the dot product is called the ‘Convolved Feature’ or 

‘Activation Map’ or the ‘Feature Map‘. 

Input Image (I) Filter (K) 

x = 
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Convolutional Neural Networks (CNNs) 
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Convolutional Neural Networks (CNNs) 
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Convolutional Neural Networks (CNNs) 

Convolution Operator 

• Different filters will produce 

different Feature Maps for the 

same input image. For example: 

Input Image 
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Convolutional Neural Networks (CNNs) 
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Convolutional Neural Networks (CNNs) 
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Convolutional Neural Networks (CNNs) 

Convolutional Layer  
• In practice, a CNN learns the values of these filters on its own during 

the training process 

• Although we still need to specify parameters such as number of 

filters, filter size, padding, and stride before the training process 
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Convolutional Neural Networks (CNNs) 

Activation Layer (ReLU) 
• An additional operation called Rectified Linear Unit (ReLU) has been 

used after every Convolution operation 

• Basically, ReLU is an element wise operation (applied per pixel) and 

replaces all negative pixel values in the feature map by zero 

• The purpose of ReLU is to introduce non-linearity to the network 
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Convolutional Neural Networks (CNNs) 

Activation Layer (ReLU) 

• Other non linear functions such as tanh or sigmoid can also be 

used instead of ReLU, but ReLU has been found to perform better in 

most situations. 
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Convolutional Neural Networks (CNNs) 

Pooling Layer 

• Pooling layer downsamples the volume spatially, independently in 

each depth slice of the input 

• The most common downsampling operation is max, giving rise to max 

pooling, here shown with a stride of 2 
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Convolutional Neural Networks (CNNs) 

Fully Connected Layer 

• Neurons in a fully connected layer have full connections to all 

activations in the previous layer, as seen in regular neural networks 
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Convolutional Neural Networks (CNNs) 

Architectures 
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Convolutional Neural Networks (CNNs) 

Example: Input >> [ [ Conv >> ReLU ] * 2 >> Pool ] * 3 >> FC 
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Convolutional Neural Networks (CNNs) 

In summary: 
• A CNN is in the simplest case a list of Layers that transform the 

image volume into an output volume (e.g. class scores) 

• There are a few distinct types of Layers 

(e.g. CONV/RELU/POOL/FC are by far the most popular) 

• Each Layer may or may not have parameters 

(e.g. CONV/FC do, RELU/POOL don’t) 

• Each Layer may or may not have additional hyperparameters 

(e.g. CONV/FC/POOL do, RELU doesn’t) 
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Successful CNN architectures 

LeNet-5 
• This architecture is an excellent “first architecture” for a CNN 
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Successful CNN architectures 

AlexNet 
• Famous for winning the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) in 2012 
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Successful CNN architectures 

VGGNet 
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Successful CNN architectures 

AlexNet vs. VGGNet (16 and 19) 



Slide 35 

Agenda 
Introduction 
• What we see vs. What computers see (MNIST and CIFAR Datasets) 
• Hand-Crafted Features for Image Classification 

Deep Learning 
• Convolutional Neural Networks (CNNs) 

•  Architecture (Convolutional, Pooling, and Fully Connected Layers) 
•  Successful CNN Architectures 

Training 
• Backpropagation 
• Overfitting, Regularization and Dropout 

Experiments 

Transfer Learning 

Complex Networks 



Slide 36 

Training 

Backpropagation 

• Algorithm to calculate all weights and biases 

• Cost Function 

• Minimize gradient of the cost function 

•  This is the mathematical equivalent of a dL/

dW where W are the weights at a particular 

layer 
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Training 

Backpropagation 

• Weight Updates 

• Learning Rate 

•  Parameter chosen by the programmer 

•  A high learning rate means that bigger steps are 

taken in the weight updates 

•  However, a learning rate that is too high could 

result in jumps that are too large and not precise 

enough to reach the optimal point 
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Training 

Overfitting 

• Our model might have learned the training set (along with any noise present 

within it) perfectly, but it has failed to capture the underlying process that 

generated it 

•  On CNNs, overfitting may occur if we 

don't have sufficiently training 

examples, then a small group of 

neurons might become responsible for 

doing most of the processing and other 

neurons becoming redundant 
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Training 

Regularization 
• Rather than reducing the number of parameters, for CNNs we impose 

constraints on the model parameters during training to keep them from learning 

the noise in the training data 

• Dropout: This has the effect of forcing the neural network to cope 

with failures, and not to rely on existence of a particular neuron (or set of 

neurons) – relying more on a consensus of several neurons within a layer 
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Experiments 
Malaria Recognition 
• Training Dataset: 

• Adapted AlexNet: 
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Experiments 
Malaria Recognition 
• Feature Maps Learned: 

• Thin Blood Smear Analysis Framework: 
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Experiments 
Malaria Recognition 
• Results: 
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Experiments 
Plant Recognition 

• Dataset ! Plants in Natural Images (natural background) 

• Step 1: Segmentation 

•  Using MIT Scene Parsing, pre-trained model (ADE20K dataset) 
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Experiments 
Plant Recognition 

• MIT Scene Parsing ! Stacked CNNs 
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Experiments 
Plant Recognition 

• Initial Results: 
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Experiments 
Plant Recognition 

• Initial Results: 
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Transfer Learning 
•  Most pre-trained models used the ImageNet Dataset 

(1 Million of images and 1,000 Classes) 
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Complex Networks 
Deconvolutional Neural Networks (DCNN) 
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Complex Networks 
GoogLeNet  (ILSVRC 2014 winner) 
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Complex Networks 
GoogLeNet 
• Inception Modules 
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Complex Networks 
GoogLeNet 
• Inception Modules (Network inside a network) 



Slide 55 

Complex Networks 
ResNet  (ILSVRC 2015 winner) 
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Complex Networks 
ResNet   
• Residual Block 
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Complex Networks 
CUImage (Fast Region-based CNN)  
• ILSVRC 2016 winner 
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Complex Networks 
SENet & SE-ResNet (Squeeze-and-Excitation)  
• ILSVRC 2017 winner 
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That’s all folks!!! Thank you! 



Slide 61 

Annex I 
CNN useful links: 

• http://cs231n.github.io/convolutional-networks/ 

• https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-

Guide-To-Understanding-Convolutional-Neural-Networks/ 

• https://cambridgespark.com/content/tutorials/convolutional-neural-networks-

with-keras/index.html#fnref1 

• https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ 

• https://docs.gimp.org/en/plug-in-convmatrix.html 


