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Introduction

» Image classification is the task of taking an input image and outputting a

class or a probability of classes that best describes the image

« For humans, this task is one of the first skills we learn and it comes naturally
and effortlessly as adults
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- Being able to quickly recognize patterns, generalize from prior knowledge,
and adapt to different image environments are difficult tasks for machines



Introduction

What we see vs. What computers see
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Introduction

MNIST Dataset (

N

label = 0 label = 4 label =1 =

*60,000 training examples

label =9

*10,000 test examples

*Rank of best Classifiers
and Errors

*Currently Best Accuracy:

» Ciresan et al. CVPR 2012 = 99.77%
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Introduction
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Introduction

CIFAR-10 Dataset (httos://www.cs.toronto.edu/~kriz/cifar.html)

*Consists of 60,000 32x32 color images in 10 classes, with 6,000 images

per class. There are 50,000 training images and 10,000 test images.
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Introduction

Color Images
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Introduction

Color Images —

v

HBLUE
GREEN

RED

N Columns

Single Pixel
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Introduction

Image Classification (previous Deep Learning)

Hand-Craft Features

*Texture Features: Histogram based, Entropy, Haralick features (Co-
occurrence matrix), Gray-level run length metrics, Local Binary Pattern,

Fractal, etc.

*Morphological Features: Hu's moments, Shape features,

Granulometry, Bending Energy, Roundness ratio, etc.
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Deep Learning (DL)

"Deep Learning is a new area of Machine Learning, which has been
introduced with the objective of moving Machine Learning closer to

one of its original goals: Atrtificial Intelligence.” http.//deeplearning.net/

*Key Concepts of Deep Neural Networks
- Deep-learning networks are distinguished from the more common single-hidden-
layer neural networks by their depth

- More than three layers (including input and output) qualifies as “deep” learning

* In deep-learning networks, each layer of nodes trains on a distinct set of

features based on the previous layer’s output

- The further you advance into the neural net, the more complex the features
your nodes can recognize, since they aggregate and recombine features from

the previous layer



Deep Learning (DL)
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Different DL Models:

*Deep Neural Network

*Deep Boltzmann Machine
*Restricted Boltzmann Machine
*Deep Belief Networks

*Deep Autoencoders
*Recurrent Neural Networks
*Convolutional Neural Networks
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Convolutional Neural Networks (CNNs)

* CNNs take a biological inspiration from the visual cortex

« The visual cortex has small regions of cells that are sensitive to

specific regions of the visual field Vsuslarea
» For example, some neurons fired -
b p */ X
when exposed to vertical edges S S /. A
and some when shown horizontal ~ ~ )\__?-:7;.;' —:
or diagonal edges coQEE. ' YO
g g Visual //' 7 » ‘ ) -}
- Having the neuronal cellsinthe ™ %, |

— ) \ ‘ “ T~ , 777 ‘
visual cortex looking for specific 77

characteristics is the basis behind

CNNs
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Convolutional Neural Networks (CNNs)

Network Architecture
*Convolutional Layer, Pooling Layer, Fully Connected Layer

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected
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Convolutional Neural Networks (CNNs)

Convolution Operator ZZK T
ij r+i—1l,y—j—1
=1 j=
1 1(1 0|0 ]‘I: ]m l:0 0
t'111"X 02 Oolxllxﬁlo 4
001 1|1 0/1]0 = R
0o/ o/1/1]0 0 0.0 41111
0o/1]1]0]0 0/|0/1/1|0
0(1|/1|0|0
Input Image (1) Filter (K) Image (FiontvONEd
eature

*The 3x3 matrix (K) is called a “filter’ or ‘kernel’ or ‘feature detector’
and the matrix formed by sliding the filter over the image and
computing the dot product is called the ‘Convolved Feature’ or

‘Activation Map’ or the ‘Feature Map".



Convolutional Neural Networks (CNNs)
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Visualization of the Pixel representation of the receptive Pixel representation of filter

receptive field field

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(20*30)+(50*30) = 6600 (A large number!)




Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks (CNNs)

Operation Filter Convolved
Convolution Operator [g ; g}
Identity
0 0 0
Different filters will produce
1 0 -1
different Feature Maps for the !_(13 ‘1’]
same input image. For example: P
Edge detection [ 1 -4 1 ]
0 1 0
-1 -1 -1
-1 8 -1
-1 =1 -1
0 -1 0
Sharpen -1 5 -1
0 -1 0
Box blur 1 2
Input Image S 9 1 i 1
aussian blur 1 Lo
::pproxlman::] ﬁ[z > zjl
155270




Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks (CNNs)

Convolutional Layer

*In practice, a CNN learns the values of these filters on its own during

the training process

*Although we still need to specify parameters such as number of

filters, filter size, padding, and stride before the training process




Convolutional Neural Networks (CNNs)

Activation Layer (RelLU)

*An additional operation called Rectified Linear Unit (ReLU) has been

used after every Convolution operation

Output = Max(zero, Input)

- 10 -5 5 10

*Basically, ReLU is an element wise operation (applied per pixel) and

replaces all negative pixel values in the feature map by zero

*The purpose of RelLU is to introduce non-linearity to the network



Convolutional Neural Networks (CNNs)

Activation Layer (RelLU)

Input Feature Map Rectified Feature Map

white ="positive values ' Only non-negative values
EReS T " BECeRIN SR N TR

*Other non linear functions such as tanh or sigmoid can also be
used instead of ReLU, but ReLU has been found to perform better in

most situations.



Convolutional Neural Networks (CNNs)

Pooling Layer

*Pooling layer downsamples the volume spatially, independently in

each depth slice of the input

224x224x64
112x112x64
pool il Single depth slice
= Jl1]1]2]4
max pool with 2x2 filters
5|16 |7 | 8 and stride 2 6| 8
l T 3 | 2 NG i 3
1 | 2 -
> e 112 .
224 downsampling y
112
224

*The most common downsampling operation is max, giving rise to max

pooling, here shown with a stride of 2



Convolutional Neural Networks (CNNs)

Fully Connected Layer

*Neurons in a fully connected layer have full connections to all

activations in the previous layer, as seen in regular neural networks
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Convolutional Neural Networks (CNNs)

Architectures

INPUT -> [[CONV -> RELUJ*N -> POOL?]*M -> [FC -> RELU]*K -> FC

where the * indicates repetition, and the POOL? indicates an optional pooling layer. Moreover, N >= @ (and
usually N <= 3), M >= @, K >= @ (and usually K < 3). For example, here are some common ConvNet
architectures you may see that follow this pattern:

e INPUT -> FC,implements a linear classifier. Here N = M = K = @ .

INPUT -> CONV -> RELU -> FC

INPUT -> [CONV -> RELU -> POOL]*2 -> FC -> RELU -> FC . Here we see that there is a single CONV
layer between every POOL layer.

INPUT -> [CONV -> RELU -> CONV -> RELU -> POOL]*3 -> [FC -> RELU]*2 -> FC Here we seetwo
CONV layers stacked before every POOL layer. This is generally a good idea for larger and deeper networks,
because multiple stacked CONV layers can develop more complex features of the input volume before the
destructive pooling operation.
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Convolutional Neural Networks (CNNs)

Example: Input>>[[ Conv >>RelLU]*2>>Pool]*3>>FC

EEUSREIU ELU RELU RELU RELU
CONV CONV
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g
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car

1
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truck

@ifplane

WA
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Convolutional Neural Networks (CNNs)

In summary:

A CNN is in the simplest case a list of Layers that transform the

image volume into an output volume (e.g. class scores)

*There are a few distinct types of Layers

(e.g. CONV/RELU/POOL/FC are by far the most popular)
Each Layer may or may not have parameters

(e.g. CONV/FC do, RELU/POOL don't)

Each Layer may or may not have additional hyperparameters

(e.g. CONV/FC/POOL do, RELU doesn't)
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Successful CNN architectures

LeNet-5
*This architecture is an excellent “first architecture” for a CNN
input conv1 pool1 conv2 pool2 hidden output
e

%m L&Vel 5 RESEARCH
answer: [?]

HEIE

CRIIREIR L1 aNae siew




Successful CNN architectures

AlexNet

*Famous for winning the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) in 2012

8
o




Successful CNN architectures

VGGNet

Tx512

x
2 1 4% 512
) = _l_' 1><l>1<_4096 {}xl{lXIOOO

@ convolution+ReLU

fj] max pooling
1 fully connected+RelLU

] softmax




Successful CNN architectures

AlexNet vs. VGGNet (16 and 19) S
FC 1000
[Softmax FC 4096
FC 1000 FC 4096
FC 2096 Podl
FC 4096 3x3 conv, 512
Pool 3x3 conv, 512
3x3 conv, 512 3x3 conv, 512
3x3 conv, 512 3x3 conv, 512

Pool

3x3 conv, 5

O
I

5x5 conv, 256 3x3 conv, 64 3x3 conv, 64

11x11 conv, 96 3x3 conv, 64 3x3 conv, 64

e e e e e b B
g Y e Tl e T el e Tttt T T T T Yy Y Y Y Y

Pool 3x3 conv, 512
| §gﬂm | 3x3 conv, 512 3x3 conv, 512
[C_fcioo__] 3x3 conv, 512 3x3 conv, 512
C—fcse ] 3x3 conv, 512 3x3 conv, 512
T | Pool Pool
l Pool | 3x3 conv, 256 3x3 conv, 25¢
L_3x3conv, 256 | 3x3 conv, 256 3x3 conv, 256
| 3x3conv. 384 | Pool Pool
| Pool | 3x3 conv, 128 3x3 conv, 128
| 3x3conv.384 | 3x3 conv, 128 3x3 conv. 128
| Pool J Pool Pool
| ]
| ]
| |

Input Input Input

AlexNet VGG16 VGG19
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Training

Backpropagation
*Algorithm to calculate all weights and biases

*Cost Function

Liotar = Y, 5(target — output)?

*Minimize gradient of the cost function
Error

« This is the mathematical equivalent of a dL/

dW where W are the weights at a particular

layer




Training

Backpropagation Fo—
*Weight Updates W= w: — ﬂ w;= Initia.l Weight
l dw n= Learning Rate

sLearning Rate
« Parameter chosen by the programmer

* A high learning rate means that bigger steps are

taken in the weight updates

Loss

* However, a learning rate that is too high could

result in jumps that are too large and not precise

enough to reach the optimal point Weights

Slide 37



Training

Overfitting

*Our model might have learned the training set (along with any noise present

within it) perfectly, but it has failed to capture the underlying process that

generated it Overfitting a sine function

« On CNNs, overfitting may occur if we

don't have sufficiently training ;

examples, then a small group of

E

neurons might become responsible for

doing most of the processing and other

o TRAINING SET

— TARGET
neurons becoming redundant 25  DEcREE.14 T
|
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Training

Regularization

*Rather than reducing the number of parameters, for CNNs we impose

constraints on the model parameters during training to keep them from learning

the noise in the training data

*Dropout: This has the effect of forcing the neural network to cope

with failures, and not to rely on existence of a particular neuron (or set of

neurons) — relying more on a consensus of several neurons within a layer
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Experiments

Malaria Recognition
*Training Dataset:

Adapted AlexNet:

Input | C1|  C2

| c3

4

j

»

Q000 - - -

50
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Experiments

Malaria Recognition
*Feature Maps Learned:

viIn R YY)
S AEA .F}" -
NEJZRIE. 'nl
mSORS a!o' !
PESERYLCOaA?
’;(“‘ °.“ \l...‘ 3

)L\l.ﬁafo.
Bl avros
.v.' )~.'0 .0 5
\u‘LP'Lb
St IV T
N LA Al AT
EDATH OV
L '.tJ." ;b

o f B
T T AT ¢

TeAme

-~
-
»
<
o
2
’

E* EDOMYAOT

)
o A"
N >
20 5%
M
“as
L
o5
'\50.

‘IO ARPEnY

r .'00

CiIC o

-

-
-

.

*Thin Blood Smear Analysis Framework:

I

] )

) . T
3 Prediction for
50x50 | each 50x50 3D Output Matrix
window ‘-

N
L

Y

==



Experiments

Malaria Recognition

*Results:
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Experiments

Plant Recognition
-Dataset = Plants in Natural Images (natural background)

*Step 1: Segmentation

* Using MIT Scene Parsing, pre-trained model (ADE20K dataset)




Experiments

Plant Recognition

*MIT Scene Parsing = Stacked CNNs

- W
— , 48x48x4096 - l
{7V _— Stuff Segmentation

; l Objectness Map

gy _ _ _‘b
1 96x96x256 i
384x384x3 48x48x4096 Object Score Map
- Object Stream Scene Segmentation
(Part Stream) R -
48x48x4096

Part Segmentation
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Experiments

Plant Recognition

|nitial Results:

Adansonia digitata
Bombacaceae




Experiments

Plant Recognition

|nitial Results:
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Transfer Learning

Early layers that learned

* Most pre-trained models used the ImageNet Dataset

(1 Million of images and 1,000 Classes)

Load pretrained network

low-level features Last layers that
learned task
(edges, blobs, colors) 3
specific features
—— —~—

1 million images
1000s classes

Replace final layers

New layers to learn

features specific

to your data set
—A—

Fewer classes
Learn faster

Train network

~ Training images

° Training options

VT

100s of images
10s of classes

Predict and
assess network accuracy

% Testimages
( Trained network ]

Deploy results

Probabllity
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Deconvolutional Neural Networks (DCNN)

Complex Networks

Deconvolution (2)

Unpooling

Deconvolution (2)

Unpooling

Convolution (3)
1. Convolution (3)

Pooling
Convolution (2)
Deconvolution (3)
Unpooling
Deconvolution (3)

Convolution (2)

Tas Lhkuue
LAY
L L L RS
natiiininnntananan
ITERLLAAARRRARNNLNNY

Slide 51




Complex Networks

GooglLeNet (ILSVRC 2014 winner)
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Complex Networks

GooglLeNet

*Inception Modules

?EEEEEE?K:,

Convolution
Pooling

Concat/Normalize
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Complex Networks

GooglLeNet

*Inception Modules (Network inside a network)

Filter
concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions A 4 4

ﬂuﬁons 1x1 convolutions 3x3 max pooling

Previous layer

Full Inception module
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Complex Networks

ResNet (ILSVRC 2015 winner)

output
size: 224

output
size: 112

output
size: 56

output
size: 28

VGG-19
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Complex Networks

ResNet
*Residual Block

weight layer
F(x) l relu

weight layer

F(x) +x

X
identity

Input

Convolution

Batch Norm

Convolution

Batch Norm

Addition

Output




Complex Networks

CUImage (Fast Region-based CNN)
*|LSVRC 2016 winner o classifier

propoy
Region Proposal Network,
'calurc maps




Complex Networks

SENet & SE-ResNet (Squeeze-and-Excitation)
*ILSVRC 2017 winner

Fm‘ (W)

U F,, ()~ [0 ——— W
/ Pe P \
H' F, H Fscate (57)
B — —_—
w' W
c’ C
l X X X X
Inception Inception W xHXC Residual dual WxHXC
[ X - Global pooling | 1x1xC
Global pooling 1X1XC xax
Inception Module < - c
c —
Ixixs ResNet Module ; '
r ReLU c
RelLU lxlx(\ - 1><1><7
v 7 FC .
1xX1xC
Slgmmd 1x1xC
Sigmoid 1X1XC
WxHxC
Scale W xHXC
WxHxC
X .

X
SE-Inception Module SE-ResNet Module



That’s all folks!!! Thank you!
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Annex |

CNN useful links:
http://cs231n.github.io/convolutional-networks/

https://adeshpande3.github.io/adeshpanded.github.io/A-Beginner%27s-

Guide-To-Understanding-Convolutional-Neural-Networks/

https://cambridgespark.com/content/tutorials/convolutional-neural-networks-

with-keras/index.html#fnref1
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

https://docs.gimp.org/en/plug-in-convmatrix.htmi
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