ICS 624 Spring 2011

Entity Resolution with Evolving Rules Preface to Steven Whang's slides

Asst. Prof. Lipyeow Lim
Information \& Computer Science Department
University of Hawaii at Manoa

Sharon Adler

Born on July 5, 1942

Sharon Adler 2nd

Senior Manager at IBM Research
Providence, Rhode Island Area Computer Software

Current
 - RSM Emeritus - retired at IBM Research

- Chair - XSLT WG at W3C
- Chair - XSLT WG at W3C
- Mother at XML \& SGML Community

Connections
Public Profile

Past

Activities and Interests

Other | The Peninsula Bangkok, XML Prague, Barack Obama, The |
| :--- |
| GEICO Gecko, Lori's Jewels, Wisconsin Colleges, Samantha's |
| Skin Spa, I'm not yelling....I'm Jewish....That's how we talk...., |
| Added 4.6 billion USD to the Veterans Administration budget |
| to recruit and retain more mental health professionals |

Basic Information

Sex
Female

Are these two pages referring to the same person ?

Email scaenator@gmail.com

Entity Resolution (ER)

- comparison shopping
- mailing lists
- classified ads
- customer files
- counter-terrorism

Name		Address	Credit Card	Phone
Sharon		RI	123122	303-123-9989
	r2	Name	Affiliation	Phone
		Sharon	IBM	303-123-9989
Are these two records referring to the same entity?				

Entity Resolution Problem Statement

- Given a table of records (about some entities), partition the records according to the "entities" that they refer to.
$\left.\left.\begin{array}{|l|l|l|l|}\hline \text { Name } & \text { Address } & \text { Credit Card } & \text { Phone } \\ \hline \text { Sharon } & \text { RI } & 123122 & 303-123-9989 \\ \hline \text { Sharon } & \text { NY } & 122223 & 303-123-9989 \\ \hline \text { John } & \text { NY } & 333222 & 212-222-4433 \\ \hline \text { John } & \text { NJ } & 222333 & 212-222-4433\end{array}\right\} \quad\right\} \quad$ Entity: Sharon

ER Rules

Name	Address	Credit Card	Phone	
Sharon	RI	123122	$303-123-9989$	
Sharon	NY	122223	$303-123-9989$	
John	NY	333222	$212-222-4433$	
John	NJ	222333	$212-222-4433$	

- ER Rules: ER algorithm that computes the mapping of records to entities ("partition")
- Match-based: boolean rules like
- "if the name in the two records are the same, then they belong to the same partition"
- Distance-based: uses a distance function

Sorted Neighborhood (SN)

Avoids comparing all $O\left(n^{2}\right)$ pairs of records by:

- Sorting records based on some column(s)
- Comparing all pairs of records in a sliding window
- Merging connected components into entities

Name	Address	Credit Card	Phone
Sharon	RI	123122	$303-123-9989$
Sharon	NY	122223	$303-123-9989$
John	NY	333222	$212-222-4433$
John	NJ	222333	$212-222-4433$

Sort Find pairs

HC_{B} : Hierarchical Clustering Boolean

- Similar to bottom-up hierarchical agglomerative clustering
- Merge two clusters if a boolean comparison rule B returns true.
- Apply rule B on one chosen tuple in each of the two clusters

Name	Address	Credit Card	Phone	$B(r 1, r 2)=$ true if
Sharon	RI	123122	303-123-9989	r1.name=r2.name
Sharon	NY	122223	303-123-9989	
John	NY	333222	212-222-4433	
John	NJ	222333	212-222-4433	

$\mathrm{HC}_{\mathrm{BR}}$: Hierarchical Clustering Boolean

- Same as HC_{B} except in how comparison is evaluated.
- Apply rule B on all pairs of tuples in each of the two clusters
- Merge clusters if B is true on at least one pair

Name	Address	Credit Card	Phone	$B(r 1, r 2)=\text { true if }$
Sharon	RI	123122	303-123-9989	r1.name=r2.name
Sharon	NY	122223	303-123-9989	
John	NY	333222	212-222-4433	
John	NJ	222333	212-222-4433	

ME: Monge-Elkan Clustering

- Sort records according to some column(s)
- Initialize an empty fixed length queue of clusters
- Scan through sorted records and match each record to clusters in queue
- If record matches existing cluster, move cluster to front
- Else make record into a new cluster at front of queue
- If queue is full, last cluster is dropped

Name	Address	Credit Card	Phone	Sort	Queue
Sharon	RI	123122	303-123-9989	\square	Sharon
Sharon	NY	122223	303-123-9989		
John	NY	333222	212-222-4433		
John	NJ	222333	212-222-4433	$\sqrt{ } \sqrt{3}$	

Distance-based ER Algorithms

- Similar to bottom-up hierarchical agglomerative clustering with different variations on how distance is computed from two clusters
- $H_{C S}$ Single-link : smallest possible distance between two records from the two clusters
- $\mathrm{HC}_{\mathrm{DC}}$ Complete-link : largest possible distance between two records from the two clusters

Evolving Rules

