
Megastore: Providing Scalable,
Highly Available Storage for

Interactive Services
J. Baker, C. Bond, J.C. Corbett, JJ Furman, A. Khorlin,

J. Larson, J-M Léon, Y. Li, A. Lloyd, V. Yushprakh
Google Inc.

Originally presented at CIDR 2011 by James Larson

Presented by George Lee

Monday, April 4, 2011

With Great Scale Comes Great
Responsibility

• A billion Internet users
• Small fraction is still huge
• Must please users
• Bad press is expensive - never lose data
• Support is expensive - minimize

confusion
• No unplanned downtime
• No planned downtime
• Low latency
• Must also please developers, admins

Monday, April 4, 2011

Monday, April 4, 2011

Monday, April 4, 2011

Monday, April 4, 2011

Megastore

• Started in 2006 for app development at
Google
• Service layered on:
• Bigtable (NoSQL scalable data store per

datacenter)
• Chubby (Config data, config locks)
• Turnkey scaling (apps, users)
• Developer-friendly features
• Wide-area synchronous replication
• partition by "Entity Group"

Monday, April 4, 2011

Monday, April 4, 2011

Monday, April 4, 2011

Monday, April 4, 2011

Entity Group Examples
Application Entity Groups Cross-EG Ops

Email User accounts none

Blogs Users, Blogs
Access control,
notifications,

global indexes

Mapping Local patches Patch-spanning
ops

Social Users, Groups
Messages,

relationships,
notifications

Resources Sites Shipments

Monday, April 4, 2011

Achieving Technical Goals

• Scale
• Bigtable within datacenters
• Easy to add Entity Groups (storage,

throughput)
• ACID Transactions

• Write-ahead log per Entity Group
• 2PC or Queues between Entity Groups

• Wide-Area Replication
• Paxos
• Tweaks for optimal latency

Monday, April 4, 2011

Two Phase Commit

• Commit request/Voting phase

• Coordinator sends query to commit

• Cohorts prepare and reply

• Commit/Completion phase

• Success: Commit and acknowledge

• Failure: Rollback and acknowledge

• Disadvantage: Blocking protocol

Monday, April 4, 2011

Basic Paxos

• Prepare and Promise

• Proposer selects proposal number N and
sends promise to acceptors

• Acceptors accept or deny the promise

• Accept! and Accepted

• Proposer sends out value

• Acceptors respond to proposer and learners

Monday, April 4, 2011

Message Flow: Basic
Paxos

 Client Proposer Acceptor Learner
 | | | | | | |
 X-------->| | | | | | Request
 | X--------->|->|->| | | Prepare(N)
 | |<---------X--X--X | | Promise(N,{Va,Vb,Vc})
 | X--------->|->|->| | | Accept!(N,Vn)
 | |<---------X--X--X------>|->| Accepted(N,Vn)
 |<---------------------------------X--X Response
 | | | | | | |

Monday, April 4, 2011

Paxos: Quorum-based
Consensus

"While some consensus algorithms, such as
Paxos, have started to find their way into [large-
scale distributed storage systems built over
failure-prone commodity components], their uses
are limited mostly to the maintenance of the
global configuration information in the system,
not for the actual data replication."

-- Lamport, Malkhi, and Zhou, May 2009

Monday, April 4, 2011

Paxos and Megastore

• In practice, basic Paxos is not used

• Master-based approach?

• Megastore’s tweaks

• Coordinators

• Local reads

• Read/write from any replica

• Replicate log entries on each write

Monday, April 4, 2011

Omissions

• These were noted in the talk:

• No current query language

• Apps must implement query plans

• Apps have fine-grained control of physical
placement

• Limited per-Entity Group update rate

Monday, April 4, 2011

Is Everybody Happy?
• Admins

• linear scaling, transparent rebalancing (Bigtable)
• instant transparent failover
• symmetric deployment

• Developers
• ACID transactions (read-modify-write)
• many features (indexes, backup, encryption, scaling)
• single-system image makes code simple
• little need to handle failures

• End Users
• fast up-to-date reads, acceptable write latency
• consistency

Monday, April 4, 2011

Take-Aways

• Constraints acceptable to most apps

• Entity Group partitioning

• High write latency

• Limited per-EG throughput

• In production use for over 4 years

• Available on Google App Engine as HRD
(High Replication Datastore)

Monday, April 4, 2011

Questions?

• Rate limitation on writes are insignificant?

• Why not lots of RDBMS?

• Why not NoSQL with “mini-databases”?

Monday, April 4, 2011

