
ICS 421 Spring 2010 Data Mining 1

Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa

Definition

Data mining is the exploration and analysis of large quantities of data in order to discover

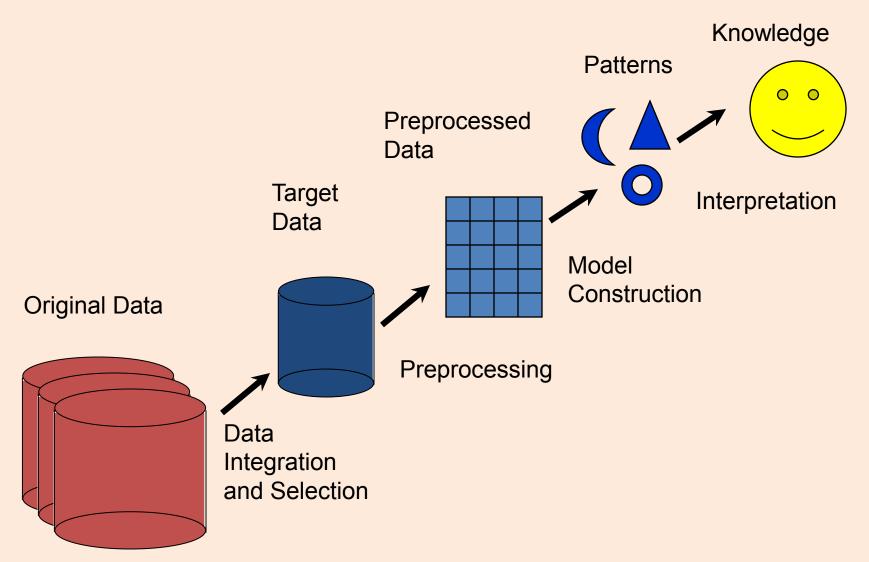
Why Use Data Mining Today?

Human analysis skills are inadequate:

- Volume and dimensionality of the data
- High data growth rate

Availability of:

- Data
- Storage
- Computational power
- Off-the-shelf software
- Expertise


Compelling Reason

Competitive pressure! "The secret of success is to know something that nobody else knows."

Aristotle Onassis

- Competition on service, not only on price (Banks, phone companies, hotel chains, rental car companies)
- Personalization, CRM
- The real-time enterprise
- "Systemic listening"
- Security, homeland defense

The Knowledge Discovery Process

Market Basket Analysis

- Consider shopping cart filled with several items
- Market basket analysis tries to answer the following questions:
 - Who makes purchases?
 - What do customers buy together?
 - In what order do customers purchase items?

Market Basket Analysis: Data

Given:

- A database of customer transactions
- Each transaction is a set of items
- Example: Transaction with TID 111 contains items {Pen, Ink, Milk, Juice}

TID	CID	Date	Item	Qty
111	201	5/1/99	Pen	2
111	201	5/1/99	Ink	1
111	201	5/1/99	Milk	3
111	201	5/1/99	Juice	6
112	105	6/3/99	Pen	1
112	105	6/3/99	Ink	1
112	105	6/3/99	Milk	1
113	201	5/10/99	Pen	1
113	201	5/10/99	Milk	1
114	201	6/1/99	Pen	2
114	201	6/1/99	Ink	2
114	201	6/1/99	Juice	4
114	201	6/1/99	Water	1

Market Basket Analysis: "Queries"

Co-occurrences

- 80% of all customers purchase items X, Y and Z together.
- Association rules

- 60% of all customers who purchase X and Y also buy Z.
- Sequential patterns
 - 60% of customers who first buy X also purchase Y within three weeks.

Frequent Itemsets

- An itemset (aka co-occurence) is a set of items
- The support of an itemset {A,B,...} is the fraction of transactions that contain {A,B,...}
 {X,Y} has support s if P(XY) = s
- Frequent itemsets are itemsets whose support is higher than a user specified minimum support *minsup*.
- The *a priori* property: Every subset of a frequent itemset is also a frequent itemset.

Frequent Itemset Examples

- {Pen, Ink, Milk}
 Support: 50%
- {Pen,Ink}
 Support: 75%
- {Ink, Milk}
 Support: 50%
- {Pen, Milk}
 - Support: 75%
- {Milk, Juice}
 support: ?

TID	CID	Date	Item	Qty
111	201	5/1/99	Pen	2
111	201	5/1/99	Ink	1
111	201	5/1/99	Milk	3
111	201	5/1/99	Juice	6
112	105	6/3/99	Pen	1
112	105	6/3/99	Ink	1
112	105	6/3/99	Milk	1
113	201	5/10/99	Pen	1
113	201	5/10/99	Milk	1
114	201	6/1/99	Pen	2
114	201	6/1/99	Ink	2
114	201	6/1/99	Juice	4
114	201	6/1/99	Water	1

Finding Frequent Itemsets

 Find all itemsets with support > 75%

TID	CID	Date	Item	Qty
111	201	5/1/99	Pen	2
111	201	5/1/99	Ink	1
111	201	5/1/99	Milk	3
111	201	5/1/99	Juice	6
112	105	6/3/99	Pen	1
112	105	6/3/99	Ink	1
112	105	6/3/99	Milk	1
113	201	5/10/99	Pen	1
113	201	5/10/99	Milk	1
114	201	6/1/99	Pen	2
114	201	6/1/99	Ink	2
114	201	6/1/99	Juice	4
114	201	6/1/99	Water	1

A Priori Algorithm

- Foreach item
 - Check if it is a frequent itemset
- k= 1
- Repeat
 - Foreach new frequent itemset I_k with k items
 - Generate all itemsets $\mathsf{I}_{\mathsf{k+1}}$ with $\mathsf{k+1}$ items, $\mathsf{I}_\mathsf{k} \subset \mathsf{I}_{\mathsf{k+1}}$
 - Scan all transactions once and check if the generated (k+1)-itemsets are frequent
 k=k+1
- Until no new frequent itemsets are identified

Association Rules

- Rules of the form: LHS => RHS
- Example: {Pen} => {Ink}

 "if pen is purchased in a transaction, it is likely that ink is also purchased in the same transaction"

• Confidence of a rule:

 $- X \rightarrow Y$ has confidence c if P(Y | X) = c

• Support of a rule:

 $- X \rightarrow Y$ has support s if P(XY) = s

Example

- {Pen} => {Milk}
 Support: 75%
 Confidence: 75%
- {Ink} => {Pen}
 - Support: 75%
 - Confidence: 100%
- {Milk}=>{Juice}
 - support: ?
 - Confidence: ?

TID	CID	Date	Item	Qty
111	201	5/1/99	Pen	2
111	201	5/1/99	Ink	1
111	201	5/1/99	Milk	3
111	201	5/1/99	Juice	6
112	105	6/3/99	Pen	1
112	105	6/3/99	Ink	1
112	105	6/3/99	Milk	1
113	201	5/10/99	Pen	1
113	201	5/10/99	Milk	1
114	201	6/1/99	Pen	2
114	201	6/1/99	Ink	2
114	201	6/1/99	Juice	4
114	201	6/1/99	Water	1

Finding Association Rules

 Can you find all association rules with support >= 50%?

TID	CID	Date	Item	Qty
111	201	5/1/99	Pen	2
111	201	5/1/99	Ink	1
111	201	5/1/99	Milk	3
111	201	5/1/99	Juice	6
112	105	6/3/99	Pen	1
112	105	6/3/99	Ink	1
112	105	6/3/99	Milk	1
113	201	5/10/99	Pen	1
113	201	5/10/99	Milk	1
114	201	6/1/99	Pen	2
114	201	6/1/99	Ink	2
114	201	6/1/99	Juice	4
114	201	6/1/99	Water	1

Association Rule Algorithm

Goal: find association rule with given support *minsup* and given confidence *minconf*

- Step 1: Find frequent itemsets with support *minsup*
- Step 2: Foreach frequent itemset,
 - Foreach possible split into LHS=>RHS
 - Compute the confidence as support(LHS,RHS)/support(LHS) and compare with minconf

Variations

- Association rules with isa hierarchies
 - Items in transactions can be grouped into subsumption hierarchies (like dimension hierarchies)
 - Items in itemsets can be any node in the hierarchy
 - Example:
 - Support({Ink,Juice}) = 50%
 - Support({Ink,Beverage}) = 75%
- Association rules on time slices
 - Eg. Find association rules on transactions occurring on the first of the month
 - Confidence and support within these "slices" will be different than over the entire data set.