
ICS 421 Spring 2010

Data Warehousing 3

Asst. Prof. Lipyeow Lim

Information & Computer Science Department

University of Hawaii at Manoa

4/1/2010 1Lipyeow Lim -- University of Hawaii at Manoa

Implementation Issues

• Recall requirements of a data warehouse:

– Read only (updates via ETL)

– Ad hoc queries

– Interactive response times

• How do we support fast response times ?

– Indexing, new indexes

– Pre-compute results aka materialization

– Views

4/1/2010 Lipyeow Lim -- University of Hawaii at Manoa 2

Bitmap Indexes

• What are the possible QEPs for this query ?

• What if there are indexes on gender and rating ?

• How does bitmap indexes help ?

• Why bitmap indexes and not B+ trees ?

4/1/2010 Lipyeow Lim -- University of Hawaii at Manoa 3

CustID Name Gender Rating

112 Joe M 3

115 Ram M 5

119 Sue F 5

117 Woo M 4

How many male
customers have a

rating of 5?

SELECT COUNT(*)
FROM Customer
WHERE
Gender=‘M’ AND
Rating=5

M F

1 0

1 0

0 1

1 0

1 2 3 4 5

0 0 1 0 0

0 0 0 0 1

0 0 0 0 1

0 0 0 1 0

Bitmap Index
for Gender

Bitmap Index
for Rating

Join Indexes

• How do we speed up joins with dimension tables ?
• A join index stores the RIDs of all the join tuples:

– [RID(Sales), RID(Products), RID(Times), RID(Locations)]

• Variant: if many join queries have predicates on state
– [Value(Location.state). RID(Sales), RID(Products),

RID(Times), RID(Locations)]
– B+ tree with Location.state as key and the tuple of RIDs as

the data entry.

4/1/2010 Lipyeow Lim -- University of Hawaii at Manoa 4

timeID Date Week Month Quater Year

Pid Timeid Locid Sales

Pid Pname Category Price Locid City State Country

Times

Sales (Fact Table)

Products

Locations

SELECT S.Sales, T.*, P.*, L.*
FROM Sales S, Times T,
Products P, Locations L
WHERE S.pid=P.pid AND
S.Timeid=T.timeID AND
S.locid=L.locid AND
L.State=‘HI’

Bitmap Join Index (Oracle)

• Create a bitmap index where
– One bitvector per L.state
– Each bitvector encodes RIDs of Sales

• Index ANDing of multiple of these bitmap join
indexes are efficient!

• What is the difference with a regular bitmap
index ?

4/1/2010 Lipyeow Lim -- University of Hawaii at Manoa 5

SELECT S.Sales

FROM Sales S, Locations L

WHERE S.locid=L.locid

AND L.State=„HI‟

CREATE BITMAP INDEX

myidx

ON Sales(st.state)

FROM Sales S, Locations L

WHERE S.locid=L.locid

Views (Evaluate on Demand)

• A view is conceptually the same as a relation, but
we store a definition, rather than a set of tuples.

• Views can be dropped using the DROP VIEW
command.
 How to handle DROP TABLE if there’s a view on the

table?
• DROP TABLE command has options to let the

user specify this.

4/1/2010 6Lipyeow Lim -- University of Hawaii at Manoa

CREATE VIEW RegionalSales(category,sales,state)

AS

SELECT P.category, S.sales, L.state

FROM Products P, Sales S, Locations L

WHERE P.pid=S.pid AND S.locid=L.locid

Query Rewriting using Views

4/1/2010 Lipyeow Lim -- University of Hawaii at Manoa 7

CREATE VIEW RegionalSales(category,sales,state)

AS

SELECT P.category, S.sales, L.state

FROM Products P, Sales S, Locations L

WHERE P.pid=S.pid AND S.locid=L.locid

View
Definition

SELECT R.category, R.state, SUM(R.sales)

FROM RegionalSales as R

GROUP BY R.category, R.state
Query

SELECT R.category, R.state, SUM(R.sales)

FROM (SELECT P.category, S.sales, L.state

FROM Products P, Sales S, Locations L

WHERE P.pid=S.pid AND S.locid=L.locid

) as R

GROUP BY R.category, R.state

Re-written
Query

View Materialization
(Precomputation)

• Suppose we precompute RegionalSales and
store it with a clustered B+ tree index on
[category,state,sales].

– Then, previous query can be answered by an
index-only scan.

4/1/2010 Lipyeow Lim -- University of Hawaii at Manoa 8

SELECT R.state, SUM(R.sales)

FROM RegionalSales R

WHERE R.category=“Laptop”

GROUP BY R.state

SELECT R.state, SUM(R.sales)

FROM RegionalSales R

WHERE R. state=“Wisconsin”

GROUP BY R.category

Materialized Views

• A view whose tuples are stored in the database is
said to be materialized.
– Provides fast access, like a (very high-level) cache.

– Need to maintain the view as the underlying tables
change.

– Ideally, we want incremental view maintenance
algorithms.

• Close relationship to data warehousing, OLAP,
(asynchronously) maintaining distributed
databases, checking integrity constraints, and
evaluating rules and triggers.

4/1/2010 Lipyeow Lim -- University of Hawaii at Manoa 9

Issues in View Materialization

• What views should we materialize, and what
indexes should we build on the precomputed
results?

• Given a query and a set of materialized views,
can we use the materialized views to answer
the query?

• How frequently should we refresh
materialized views to make them consistent
with the underlying tables? (And how can we
do this incrementally?)

4/1/2010 Lipyeow Lim -- University of Hawaii at Manoa 10

View Maintenance
• Two steps:

– Propagate: Compute changes to view when data changes.

– Refresh: Apply changes to the materialized view table.

• Maintenance policy: Controls when we do refresh.

– Immediate: As part of the transaction that modifies the
underlying data tables. (+ Materialized view is always
consistent; - updates are slowed)

– Deferred: Some time later, in a separate transaction. (-
View becomes inconsistent; + can scale to maintain many
views without slowing updates)

4/1/2010 Lipyeow Lim -- University of Hawaii at Manoa 11

Deferred Maintenance

• Three flavors:

– Lazy: Delay refresh until next query on view; then
refresh before answering the query.

– Periodic (Snapshot): Refresh periodically. Queries
possibly answered using outdated version of view
tuples. Widely used, especially for asynchronous
replication in distributed databases, and for
warehouse applications.

– Event-based: E.g., Refresh after a fixed number of
updates to underlying data tables.

4/1/2010 Lipyeow Lim -- University of Hawaii at Manoa 12

Inc. View Maintenance: Inserts

• What information is available?
– Only materialized view available:

• Add p5 if it isn’t there.

– Parts table is available:
• If there isn’t already a parts tuple p5 with cost >1000, add p5

to view.
• May not be available if the view is in a data warehouse!

– If we know pno is key for parts:
• Can infer that p5 is not already in view, must insert it.

4/1/2010 Lipyeow Lim -- University of Hawaii at Manoa 13

expensive_parts(pno)

:- parts(pno, cost), cost > 1000

CREATE VIEW

expensive_parts(pno)

AS

SELECT pno

FROM parts

WHERE cost > 1000

Suppose parts(p5,5000) is inserted

Inc. View Maintenance: Deletes

• What information is available?
– Only materialized view available:

• If p1 is in view, no way to tell whether to delete it. (Why?)

• If count(#derivations) is maintained for each view tuple, can
tell whether to delete p1 (decrement count and delete if =
0).

– Parts table is available:
• If there is no other tuple p1 with cost >1000 in parts, delete

p1 from view.

– If we know pno is key for parts:
• Can infer that p1 is currently in view, and must be deleted.

4/1/2010 Lipyeow Lim -- University of Hawaii at Manoa 14

expensive_parts(pno)

:- parts(pno, cost), cost > 1000

Suppose parts(p1,3000) is
delerted

Inc. Maintenance Algorithm: Inserts

• Step 0: For each tuple in the materialized view, store a
“derivation count”.

• Step 1: Rewrite this rule using Seminaive rewriting, set
“delta_old” relations for Rel1 and Rel2 to be the inserted
tuples.

• Step 2: Compute the “delta_new” relations for the view
relation.
– Important: Don’t remove duplicates! For each new tuple, maintain a

“derivation count”.

• Step 3: Refresh the stored view by doing “multiset union” of
the new and old view tuples. (I.e., update the derivation
counts of existing tuples, and add the new tuples that weren’t
in the view earlier.)

4/1/2010 Lipyeow Lim -- University of Hawaii at Manoa 15

View(X,Y) :- Rel1(X,Z), Rel2(Z,Y)

Inc. Maintenance Algorithm: Deletes

• Steps 0 - 2: As for inserts.

• Step 3: Refresh the stored view by doing “multiset
difference ” of the new and old view tuples.
– To update the derivation counts of existing tuples, we must

now subtract the derivation counts of the new tuples from
the counts of existing tuples.

• The “counting” algorithm can be generalized to views
defined by multiple rules. In fact, it can be
generalized to SQL queries with duplicate semantics,
negation, and aggregation.

4/1/2010 Lipyeow Lim -- University of Hawaii at Manoa 16

View(X,Y) :- Rel1(X,Z), Rel2(Z,Y)

Maintaining Warehouse Views

Main twist: The views are in the data warehouse, and the source
tables are somewhere else (operational DBMS, legacy sources, …).

1) Warehouse is notified whenever source tables are updated. (e.g.,
when a tuple is added to r2)

2) Warehouse may need additional information about source tables
to process the update (e.g., what is in r1 currently?)

3) The source responds with the additional info, and the warehouse
incrementally refreshes the view.

4/1/2010 Lipyeow Lim -- University of Hawaii at Manoa 17

Data Warehouse
DB

DB

DB

Extract, Transform, Load, Refresh

Metadata

view(sno) :- r1(sno, pno), r2(pno, cost)

What happens if source is updated

between Steps 1 and 3?

Example: Warehouse View Maintenance

• Initially, we have r1(1,2), r2 empty
• insert r2(2,3) at source; notify warehouse
• Warehouse asks ?r1(sno,2)

– Checking to find sno’s to insert into view

• insert r1(4,2) at source; notify warehouse
• Warehouse asks ?r2(2,cost)

– Checking to see if we need to increment count for view(4)

• Source gets first warehouse query, and returns sno=1,
sno=4; these values go into view (with derivation counts of
1 each)

• Source gets second query, and says Yes, so count for 4 is
incremented in the view
– But this is wrong! Correct count for view(4) is 1.

4/1/2010 Lipyeow Lim -- University of Hawaii at Manoa 18

view(sno) :- r1(sno, pno), r2(pno, cost)

Warehouse View Maintenance Approaches

• Alternative 1: Evaluate view from scratch

– On every source update, or periodically

• Alternative 2: Maintain a copy of each source
table at warehouse

• Alternative 3: More fancy algorithms

– Generate queries to the source that take into
account the anomalies due to earlier conflicting
updates.

4/1/2010 Lipyeow Lim -- University of Hawaii at Manoa 19

