
ICS 421 Spring 2010

Data Warehousing 2

Asst. Prof. Lipyeow Lim

Information & Computer Science Department

University of Hawaii at Manoa

3/30/2010 1Lipyeow Lim -- University of Hawaii at Manoa

Data Warehouse

Data Warehousing

• Integrated data spanning long time periods,
often augmented with summary information.

• Several terabytes common.

• Interactive response times expected for
complex queries; ad-hoc updates uncommon.

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 2

Operational DBs

External Data

Sources

DB
DB

DB

ETL process periodicly

(nightly, weekly) loads

new data into data

warehouse
OLAPDATA

MINING

Extract, Transform, Load, Refresh

Metadata

Warehousing Issues
• Semantic Integration: When getting data from

multiple sources, must eliminate mismatches,
e.g., different currencies, schemas.

• Heterogeneous Sources: Must access data from a
variety of source formats and repositories.
– Replication capabilities can be exploited here.

• Load, Refresh, Purge: Must load data,
periodically refresh it, and purge too-old data.

• Metadata Management: Must keep track of
source, loading time, and other information for
all data in the warehouse.

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 3

Multidimensional Data Model

• Collection of
numeric measures,
which depend on a
set of dimensions.

– E.g., measure Sales,
dimensions
Product (key: pid),
Location (locid),
and Time (timeid).

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 4

Product

Time

Location

14

13

12

11

t-4 t-3 t-2 t-1
L1

L2
L3

MOLAP vs ROLAP
• Multidimensional data can be stored

physically in a (disk-resident, persistent) array;
called MOLAP systems. Alternatively, can
store as a relation; called ROLAP systems.

• The main relation, which relates dimensions
to a measure, is called the fact table. Each
dimension can have additional attributes and
an associated dimension table.
– E.g., Products(pid, pname, category, price)

– Fact tables are much larger than dimensional
tables.

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 5

Dimension Hierarchies
• For each dimension, the set of values can be

organized in a hierarchy:

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 6

all

Europe North_America

MexicoCanadaSpainGermany

Vancouver

M. WindL. Chan

...

......

... ...

...

all

region

office

country

TorontoFrankfurtcity

Conceptual Design of Data Warehouses

• Fact table in BCNF; dimension tables un-normalized.
– Dimension tables are small; updates/inserts/deletes are

rare. So, anomalies less important than query
performance.

• This kind of schema is very common in OLAP
applications, and is called a star schema; computing
the join of all these relations is called a star join.

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 7

timeID Date Week Month Quater Year

Pid Timeid Locid Sales

Pid Pname Category Price Locid City State Country

Times

Sales (Fact Table)

Products

Locations

Example: Star Schema

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 8

time_key

day

day_of_the_week

month

quarter

year

time

location_key

street

city

province_or_street

country

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales

Measures

item_key

item_name

brand

type

supplier_type

item

branch_key

branch_name

branch_type

branch

A fact table in the middle connected
to a set of dimension tables

Example: Snowflake Schema

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 9

time_key

day

day_of_the_week

month

quarter

year

time

location_key

street

city_key

location

Sales Fact Table

Measures

item_key

item_name

brand

type

supplier_key

item

branch_key

branch_name

branch_type

branch

supplier_key

supplier_type

supplier

city_key

city

province_or_street

country

city

some dimensional hierarchy is normalized into a set of smaller
dimension tables, forming a shape similar to snowflake

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales

Example: Constellation

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 10

time_key

day

day_of_the_week

month

quarter

year

time

location_key

street

city

province_or_street

country

location

Sales Fact Table

Measures

item_key

item_name

brand

type

supplier_type

item

branch_key

branch_name

branch_type

branch

Shipping Fact Table

time_key

item_key

shipper_key

from_location

to_location

dollars_cost

units_shipped

shipper_key

shipper_name

location_key

shipper_type

shipper

galaxy schema or fact constellation : Multiple fact tables
share dimension tables

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales

OLAP Queries
• Influenced by SQL and by spreadsheets.

• A common operation is to aggregate a
measure over one or more dimensions.

– Find total sales.

– Find total sales for each city, or for each state.

– Find top five products ranked by total sales.

• Roll-up: Aggregating at different levels of a
dimension hierarchy.

– E.g., Given total sales by city, we can roll-up to get
sales by state.

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 11

More OLAP Queries
• Drill-down: The inverse of roll-up.

– E.g., Given total sales by state, can
drill-down to get total sales by city.

– E.g., Can also drill-down on different
dimension to get total sales by
product for each state.

• Pivoting: Aggregation on selected
dimensions.
– E.g., Pivoting on Location and Time

yields this cross-tabulation:

• Slicing and Dicing: Equality and
range selections on one or more
dimensions.

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 12

Year\
State

WI CA Total

1995 63 81 144

1996 38 107 145

1997 75 35 110

Total 176 223 339

Year

Quarter

Month

Week

Comparison with SQL Queries
• The cross-tabulation obtained by pivoting can

also be computed using a collection of
SQLqueries:

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 13

SELECT SUM(S.sales)
FROM Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND S.locid=L.locid
GROUP BY T.year, L.state

SELECT SUM(S.sales)
FROM Sales S, Times T
WHERE S.timeid=T.timeid
GROUP BY T.year

SELECT SUM(S.sales)
FROM Sales S, Location L
WHERE S.locid=L.locid
GROUP BY L.state

Year\
State

WI CA Total

1995 63 81 144

1996 38 107 145

1997 75 35 110

Total 176 223 339

The CUBE Operator
• Generalizing the previous

example, if there are k
dimensions, we have 2^k
possible SQL GROUP BY queries
that can be generated
through pivoting on a subset
of dimensions.

• CUBE pid, locid, timeid BY
SUM Sales
– Equivalent to rolling up Sales

on all eight subsets of the set
{pid, locid, timeid}; each roll-
up corresponds to an SQL
query of the form:

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 14

SELECT SUM(S.sales)
FROM Sales S
GROUP BY grouping-list

Lots of work on optimizing the
CUBE operator

Pid
Locid

Pid
Timeid Locid

Timeid

Pid
Timeid

Locid

All

Pid,Locid,Timeid

Querying Sequences in SQL:1999

• Trend analysis is difficult to do in SQL-92:
– Find the % change in monthly sales

– Find the top 5 product by total sales

– Find the trailing n-day moving average of sales

– The first two queries can be expressed with
difficulty, but the third cannot even be expressed
in SQL-92 if n is a parameter of the query.

• The WINDOW clause in SQL:1999 allows us to
write such queries over a table viewed as a
sequence (implicitly, based on user-specified
sort keys)

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 15

The WINDOW Clause

• Let the result of the FROM and WHERE clauses be “Temp”.
• (Conceptually) Temp is partitioned according to the PARTITION BY clause.

– Similar to GROUP BY, but the answer has one row for each row in a partition, not one
row per partition!

• Each partition is sorted according to the ORDER BY clause.
• For each row in a partition, the WINDOW clause creates a “window” of nearby

(preceding or succeeding) tuples.
– Can be value-based, as in example, using RANGE
– Can be based on number of rows to include in the window, using ROWS clause

• The aggregate function is evaluated for each row in the partition using the
corresponding window.
– New aggregate functions that are useful with windowing include RANK (position of a

row within its partition) and its variants DENSE_RANK, PERCENT_RANK, CUME_DIST.

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 16

SELECT L.state, T.month, AVG(S.sales) OVER W AS movavg

FROM Sales S, Times T, Locations L

WHERE S.timeid=T.timeid AND S.locid=L.locid

WINDOW W AS (PARTITION BY L.state

ORDER BY T.month

RANGE BETWEEN INTERVAL `1’ MONTH PRECEDING

AND INTERVAL `1’ MONTH FOLLOWING)

Top K Queries
• If you want to find the 10 (or so) cheapest

cars, it would be nice if the DB could avoid
computing the costs of all cars before sorting
to determine the 10 cheapest.
– Idea: Guess at a cost c such that the 10 cheapest

all cost less than c, and that not too many more
cost less. Then add the selection cost<c and
evaluate the query.
• If the guess is right, great, we avoid computation for

cars that cost more than c.

• If the guess is wrong, need to reset the selection and
recompute the original query.

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 17

Example: Top K Queries

• FETCH FIRST 10 ROWS ONLY is not in SQL99

• Cut-off value c is chosen by optimizer

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 18

SELECT P.pid, P.pname, S.sales

FROM Sales S, Products P

WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3

ORDER BY S.sales DESC

FETCH FIRST 10 ROWS ONLY

SELECT P.pid, P.pname, S.sales

FROM Sales S, Products P

WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3

AND S.sales > c

ORDER BY S.sales DESC

Online Aggregation
• Consider an aggregate query, e.g., finding the

average sales by state. Can we provide the
user with some information before the exact
average is computed for all states?
– Can show the current “running average” for each

state as the computation proceeds.

– Even better, if we use statistical techniques and
sample tuples to aggregate instead of simply
scanning the aggregated table, we can provide
bounds such as “the average for Wisconsin is
2000102 with 95% probability.
• Should also use nonblocking algorithms!

3/30/2010 Lipyeow Lim -- University of Hawaii at Manoa 19

