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Data Warehouse

Data Warehousing

• Integrated data spanning long time periods, 
often augmented with summary information. 

• Several terabytes common.

• Interactive response times expected for   
complex queries; ad-hoc updates uncommon.
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Warehousing Issues
• Semantic Integration: When getting data from 

multiple sources, must eliminate mismatches, 
e.g., different currencies, schemas.

• Heterogeneous Sources: Must access data from a 
variety of source formats and repositories.
– Replication capabilities can be exploited here.

• Load, Refresh, Purge: Must load data, 
periodically refresh it, and purge too-old data.

• Metadata Management: Must keep track of 
source, loading time, and other information for 
all data in the warehouse.
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Multidimensional Data Model

• Collection of 
numeric measures,
which depend on a 
set of dimensions.

– E.g., measure Sales, 
dimensions     
Product (key: pid), 
Location (locid),      
and Time (timeid).
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MOLAP vs ROLAP
• Multidimensional data can be stored 

physically in a (disk-resident, persistent) array; 
called MOLAP systems.  Alternatively, can 
store as a relation; called ROLAP systems.

• The main relation, which relates dimensions 
to a measure, is called the fact table.  Each 
dimension can have additional attributes and 
an associated dimension table.
– E.g., Products(pid, pname, category, price)

– Fact tables are much larger than dimensional 
tables.
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Dimension Hierarchies
• For each dimension, the set of values can be 

organized in a hierarchy:
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Conceptual Design of Data Warehouses

• Fact table in BCNF; dimension tables un-normalized.
– Dimension tables are small; updates/inserts/deletes are 

rare. So, anomalies less important than query 
performance.

• This kind of schema is very common in OLAP 
applications, and is called a star schema; computing 
the join of all these relations is called a star join.  
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Example: Star Schema
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Example: Snowflake Schema
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Example: Constellation
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OLAP Queries
• Influenced by SQL and by spreadsheets.

• A common operation is to aggregate a 
measure over one or more dimensions.

– Find total sales.

– Find total sales for each city, or for each state.

– Find top five products ranked by total sales.

• Roll-up: Aggregating at different levels of  a 
dimension hierarchy.  

– E.g., Given total sales by city, we can roll-up to get 
sales by state.
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More OLAP Queries
• Drill-down: The inverse of roll-up.  

– E.g., Given total sales by state, can 
drill-down to get total sales by city.

– E.g., Can also drill-down on different 
dimension to get total sales by 
product for each state.

• Pivoting: Aggregation on selected 
dimensions.
– E.g., Pivoting on Location and Time 

yields this cross-tabulation:

• Slicing and Dicing:  Equality and 
range selections on one or more 
dimensions.
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Comparison with SQL Queries
• The cross-tabulation obtained by pivoting can 

also be computed using a collection of  
SQLqueries:
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SELECT SUM(S.sales)
FROM  Sales S, Times T, Locations L
WHERE  S.timeid=T.timeid AND S.locid=L.locid
GROUP BY T.year, L.state

SELECT SUM(S.sales)
FROM  Sales S, Times T
WHERE  S.timeid=T.timeid
GROUP BY T.year

SELECT SUM(S.sales)
FROM  Sales S, Location L
WHERE  S.locid=L.locid
GROUP BY L.state

Year\
State

WI CA Total

1995 63 81 144

1996 38 107 145

1997 75 35 110

Total 176 223 339



The CUBE Operator
• Generalizing the previous 

example, if there are k 
dimensions, we have 2^k 
possible SQL GROUP BY queries 
that can be generated 
through pivoting on a subset 
of dimensions.

• CUBE pid, locid, timeid BY 
SUM Sales
– Equivalent to rolling up Sales 

on all eight subsets of the set 
{pid, locid, timeid}; each roll-
up corresponds to an SQL 
query of the form:
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SELECT SUM(S.sales)
FROM  Sales S
GROUP BY grouping-list

Lots of work on optimizing the 
CUBE operator
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Querying Sequences in SQL:1999

• Trend analysis is difficult to do in SQL-92:
– Find the % change in monthly sales

– Find the top 5 product by total sales

– Find the trailing n-day moving average of sales

– The first two queries can be expressed with 
difficulty, but the third cannot even be expressed 
in SQL-92 if n is a parameter of the query.

• The WINDOW clause in SQL:1999 allows us to 
write such queries over a table viewed as a 
sequence (implicitly, based on user-specified 
sort keys)
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The WINDOW Clause

• Let the result of the FROM and WHERE clauses be “Temp”.
• (Conceptually) Temp is partitioned according to the PARTITION BY clause.  

– Similar to GROUP BY, but the answer has one row for each row in a partition, not one 
row per partition!

• Each partition is sorted according to the ORDER BY clause.
• For each row in a partition, the WINDOW clause creates a “window” of nearby 

(preceding or succeeding) tuples.
– Can be value-based, as in example, using RANGE
– Can be based on number of rows to include in the window, using ROWS clause

• The aggregate function is evaluated for each row in the partition using the 
corresponding window.
– New aggregate functions that are useful with windowing include RANK (position of a 

row within its partition) and its variants DENSE_RANK, PERCENT_RANK, CUME_DIST.
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SELECT L.state, T.month, AVG(S.sales) OVER W AS movavg

FROM  Sales S, Times T, Locations L

WHERE S.timeid=T.timeid AND S.locid=L.locid

WINDOW W AS (PARTITION BY L.state

ORDER BY T.month

RANGE BETWEEN INTERVAL `1’ MONTH PRECEDING

AND INTERVAL `1’ MONTH FOLLOWING)



Top K Queries
• If you want to find the 10 (or so) cheapest 

cars, it would be nice if the DB could avoid 
computing the costs of all cars before sorting 
to determine the 10 cheapest.
– Idea: Guess at a cost c such that the 10 cheapest 

all cost less than c, and that not too many more 
cost less.  Then add the selection cost<c and 
evaluate the query.
• If the guess is right, great, we avoid computation for 

cars that cost more than c.

• If the guess is wrong, need to reset the selection and 
recompute the original query.
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Example: Top K Queries

• FETCH FIRST 10 ROWS ONLY is not in SQL99

• Cut-off value c is chosen by optimizer
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SELECT P.pid, P.pname, S.sales

FROM Sales S, Products P

WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3

ORDER BY S.sales DESC

FETCH FIRST 10 ROWS ONLY

SELECT P.pid, P.pname, S.sales

FROM Sales S, Products P

WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3 

AND S.sales > c

ORDER BY S.sales DESC



Online Aggregation
• Consider an aggregate query, e.g., finding the 

average sales by state. Can we provide the 
user with some information before the exact 
average is computed for all states?
– Can show the current “running average” for each 

state as the computation proceeds.

– Even better, if we use statistical techniques and 
sample tuples to aggregate instead of simply 
scanning the aggregated table, we can provide 
bounds such as “the average for Wisconsin is 
2000102 with 95% probability.
• Should also use nonblocking algorithms!
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