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The Problem
• Atomicity

– What happens when 
transactions abort 
(“rollback”) ?

• Durability
– What if DBMS crashes ?

• Desired behavior
– What is the state before 

crash ?

– What is the state after 
restart ?
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Stealing Frames & Forcing Pages
• Steal: steal bufferpool frames from 

uncommited transactions
– T1 updates row r

– T2 needs to fetch a page

– bufferpool is full and page containing r 
is chosen for eviction

– Write page containing r back to disk 
(optimistic)

– What happens if T1 aborts ?

• Force: force modified pages back to 
disk when a transaction commits.
– If no-force is used, what happens after a 

crash ?
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Write-Ahead Logging

• Keep a log (aka trail, journal) of updates 
executed by DBMS on disk.

• The Write-Ahead Logging Protocol:

Must force the log record for an update 
before the corresponding data page gets to 
disk.

Must write all log records for a Xact
before commit.

• Recover using ARIES algorithm
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The Log
• Each log record has a unique Log 

Sequence Number (LSN).
– LSNs always increasing.

• Each data page contains a
pageLSN.
– The LSN of the most recent log 

record for an update to that page.

• System keeps track of flushedLSN.
– The max LSN flushed so far.

• WAL: Before a page is written,
– pageLSN flushedLSN
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Log Records

Possible log record types:

• Update

• Commit

• Abort

• End (signifies end of commit or abort)

• Compensation Log Records (CLRs)
– for UNDO actions
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LSN prevLSN XID type pageID length offset before after

Update records only



Other Log-Related State

• Transaction Table:
– transaction manager

– One entry per active Xact.

– Contains XID, status 
(running/commited/aborte
d), and lastLSN.

• Dirty Page Table:
– buffer manager

– One entry per dirty page in 
buffer pool.

– Contains recLSN -- the LSN 
of the log record which 
first caused the page to be 
dirty
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XID Status lastLSN ... pageID recLSN frame ...
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Transaction Table dirty page table



Transaction Abort/Rollback
• No crash. Transaction 

aborted explicitly.

• UNDO updates using 
Log.
– Get lastLSN of Xact

from Xact table.

– Can follow chain of log 
records backward via 
the prevLSN field.

– Before starting UNDO, 
write an Abort log 
record.
• For recovering from 

crash during UNDO!
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XID Status lastLSN

T1 prog

pageID recLSN

P1 110

LSN prevLSN XID type pageID ...

110 0 T1 upd P1 ...

120 110 T1 upd P2 ...

130 120 T1 upd P1 ...

P2 120

110

120

130



Abort : Nitty Gritty

• To perform UNDO, must have a lock on data!

– No problem!

• Before restoring old value of a page, write a CLR:

– You continue logging while you UNDO!!

– CLR has one extra field: undonextLSN

• Points to the next LSN to undo (i.e. the prevLSN of the 
record we’re currently undoing).

– CLRs never Undone (but they might be Redone when 
repeating history: guarantees Atomicity!)

• At end of UNDO, write an “end” log record.
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Checkpointing
• Periodically, the DBMS creates a checkpoint, in 

order to minimize the time taken to recover in 
the event of a system crash.  Write to log:
– begin_checkpoint record:  Indicates when chkpt

began.
– end_checkpoint record:  Contains current Xact table 

and dirty page table.  This is a `fuzzy checkpoint’:
• Other Xacts continue to run; so these tables accurate only as 

of the time of the begin_checkpoint record.
• No attempt to force dirty pages to disk; effectiveness of 

checkpoint limited by oldest unwritten change to a dirty 
page. (So it’s a good idea to periodically flush dirty pages to 
disk!)

– Store LSN of chkpt record in a safe place (master 
record).
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What’s Stored Where
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DB on Disk
Data Pages with 

pageLSN
master record

Log
LogRec(LSN, 
prevLSN,XID,ty
pe,pageID len, 
offset, before, 
after)

RAM
flushedLSN, Xact Table (XID, lastLSN, status)

Dirty Page Table (pageID, recLSN)



ARIES Recovery Algorithm

• Start from a checkpoint
(found via master
record).

• Three phases.  Need to:
– Analyze : Figure out 

which Xacts committed 
since checkpoint, which 
failed.

– REDO all actions.
 (repeat history)

– UNDO effects of failed 
Xacts
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Analysis Phase

• Reconstruct state at checkpoint.

– via end_checkpoint record.

• Scan log forward from checkpoint.

– End record: Remove Xact from Xact table.

– Other records: Add Xact to Xact table, set 
lastLSN=LSN, change Xact status on commit.

– Update record: If P not in Dirty Page Table,

• Add P to D.P.T., set its recLSN=LSN.
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REDO Phase
• We repeat History to reconstruct state at crash:

– Reapply all updates (even of aborted Xacts!), redo 
CLRs.

• Scan forward from log rec containing smallest 
recLSN in D.P.T. For each CLR or update log rec LSN, 
REDO the action unless:  
– Affected page is not in the Dirty Page Table, or
– Affected page is in D.P.T., but has recLSN > LSN, or
– pageLSN (in DB) LSN.

• To REDO an action:
– Reapply logged action.
– Set pageLSN to LSN.  No additional logging!
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UNDO Phase

ToUndo={ l | l a lastLSN of a “loser” Xact}

Repeat:

– Choose largest LSN among ToUndo.

– If this LSN is a CLR and undonextLSN==NULL

• Write an End record for this Xact.

– If this LSN is a CLR, and undonextLSN != NULL

• Add undonextLSN to ToUndo

– Else this LSN is an update.  Undo the update, write 
a CLR, add prevLSN to ToUndo.

Until ToUndo is empty.
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Example: Crash Recovery
• One transaction.
• Checkpoint has empty 

Xact & dirty page 
tables.

• Analysis Phase:
– rebuilds Xact table & 

dirty page

• REDO
– sync on disk data 

pages up to crash

• UNDO
– rollback all 

uncommitted 
transactions at time of 
crash
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Transaction Table

dirty page table

XID Status lastLSN

pageID recLSN

LSN prevLSN XID type pageID ...

110 0 T1 upd P1 ...

120 110 T1 upd P2 ...

130 120 T1 upd P1 ...

100 90 0 end checkpoint

90 0 0 begin checkpoint

flushedLSN


