
ICS 421 Spring 2010

Transactions & Recovery

Asst. Prof. Lipyeow Lim

Information & Computer Science Department

University of Hawaii at Manoa

3/4/2010 1Lipyeow Lim -- University of Hawaii at Manoa

The Problem
• Atomicity

– What happens when
transactions abort
(“rollback”) ?

• Durability
– What if DBMS crashes ?

• Desired behavior
– What is the state before

crash ?

– What is the state after
restart ?

3/4/2010 Lipyeow Lim -- University of Hawaii at Manoa 2

time

T1

T2

T3

T4

T5

Crash

abort

Stealing Frames & Forcing Pages
• Steal: steal bufferpool frames from

uncommited transactions
– T1 updates row r

– T2 needs to fetch a page

– bufferpool is full and page containing r
is chosen for eviction

– Write page containing r back to disk
(optimistic)

– What happens if T1 aborts ?

• Force: force modified pages back to
disk when a transaction commits.
– If no-force is used, what happens after a

crash ?

3/4/2010 Lipyeow Lim -- University of Hawaii at Manoa 3
F

o
rc

e
N

o
 F

o
rc

e

No Steal Steal

trivial

desired

Write-Ahead Logging

• Keep a log (aka trail, journal) of updates
executed by DBMS on disk.

• The Write-Ahead Logging Protocol:

Must force the log record for an update
before the corresponding data page gets to
disk.

Must write all log records for a Xact
before commit.

• Recover using ARIES algorithm

3/4/2010 Lipyeow Lim -- University of Hawaii at Manoa 4

Atomicity

Durability

The Log
• Each log record has a unique Log

Sequence Number (LSN).
– LSNs always increasing.

• Each data page contains a
pageLSN.
– The LSN of the most recent log

record for an update to that page.

• System keeps track of flushedLSN.
– The max LSN flushed so far.

• WAL: Before a page is written,
– pageLSN flushedLSN

3/4/2010 Lipyeow Lim -- University of Hawaii at Manoa 5

Increasing

LSN

Log Tail

(in memory)

Log records

flushed to

disk

Log Records

Possible log record types:

• Update

• Commit

• Abort

• End (signifies end of commit or abort)

• Compensation Log Records (CLRs)
– for UNDO actions

3/4/2010 Lipyeow Lim -- University of Hawaii at Manoa 6

LSN prevLSN XID type pageID length offset before after

Update records only

Other Log-Related State

• Transaction Table:
– transaction manager

– One entry per active Xact.

– Contains XID, status
(running/commited/aborte
d), and lastLSN.

• Dirty Page Table:
– buffer manager

– One entry per dirty page in
buffer pool.

– Contains recLSN -- the LSN
of the log record which
first caused the page to be
dirty

3/4/2010 Lipyeow Lim -- University of Hawaii at Manoa 7

XID Status lastLSN ... pageID recLSN frame ...

in memory

Transaction Table dirty page table

Transaction Abort/Rollback
• No crash. Transaction

aborted explicitly.

• UNDO updates using
Log.
– Get lastLSN of Xact

from Xact table.

– Can follow chain of log
records backward via
the prevLSN field.

– Before starting UNDO,
write an Abort log
record.
• For recovering from

crash during UNDO!

3/4/2010 Lipyeow Lim -- University of Hawaii at Manoa 8

T1

R(P1)

W(P1)

W(P2)

W(P1)

Abort

Transaction Table

dirty page table

XID Status lastLSN

T1 prog

pageID recLSN

P1 110

LSN prevLSN XID type pageID ...

110 0 T1 upd P1 ...

120 110 T1 upd P2 ...

130 120 T1 upd P1 ...

P2 120

110

120

130

Abort : Nitty Gritty

• To perform UNDO, must have a lock on data!

– No problem!

• Before restoring old value of a page, write a CLR:

– You continue logging while you UNDO!!

– CLR has one extra field: undonextLSN

• Points to the next LSN to undo (i.e. the prevLSN of the
record we’re currently undoing).

– CLRs never Undone (but they might be Redone when
repeating history: guarantees Atomicity!)

• At end of UNDO, write an “end” log record.

3/4/2010 Lipyeow Lim -- University of Hawaii at Manoa 9

Checkpointing
• Periodically, the DBMS creates a checkpoint, in

order to minimize the time taken to recover in
the event of a system crash. Write to log:
– begin_checkpoint record: Indicates when chkpt

began.
– end_checkpoint record: Contains current Xact table

and dirty page table. This is a `fuzzy checkpoint’:
• Other Xacts continue to run; so these tables accurate only as

of the time of the begin_checkpoint record.
• No attempt to force dirty pages to disk; effectiveness of

checkpoint limited by oldest unwritten change to a dirty
page. (So it’s a good idea to periodically flush dirty pages to
disk!)

– Store LSN of chkpt record in a safe place (master
record).

3/4/2010 Lipyeow Lim -- University of Hawaii at Manoa 10

What’s Stored Where

3/4/2010 Lipyeow Lim -- University of Hawaii at Manoa 11

DB on Disk
Data Pages with

pageLSN
master record

Log
LogRec(LSN,
prevLSN,XID,ty
pe,pageID len,
offset, before,
after)

RAM
flushedLSN, Xact Table (XID, lastLSN, status)

Dirty Page Table (pageID, recLSN)

ARIES Recovery Algorithm

• Start from a checkpoint
(found via master
record).

• Three phases. Need to:
– Analyze : Figure out

which Xacts committed
since checkpoint, which
failed.

– REDO all actions.
 (repeat history)

– UNDO effects of failed
Xacts

3/4/2010 Lipyeow Lim -- University of Hawaii at Manoa 12

Oldest log
rec. of Xact
active at crash

Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

A R U

Analysis Phase

• Reconstruct state at checkpoint.

– via end_checkpoint record.

• Scan log forward from checkpoint.

– End record: Remove Xact from Xact table.

– Other records: Add Xact to Xact table, set
lastLSN=LSN, change Xact status on commit.

– Update record: If P not in Dirty Page Table,

• Add P to D.P.T., set its recLSN=LSN.

3/4/2010 Lipyeow Lim -- University of Hawaii at Manoa 13

REDO Phase
• We repeat History to reconstruct state at crash:

– Reapply all updates (even of aborted Xacts!), redo
CLRs.

• Scan forward from log rec containing smallest
recLSN in D.P.T. For each CLR or update log rec LSN,
REDO the action unless:
– Affected page is not in the Dirty Page Table, or
– Affected page is in D.P.T., but has recLSN > LSN, or
– pageLSN (in DB) LSN.

• To REDO an action:
– Reapply logged action.
– Set pageLSN to LSN. No additional logging!

3/4/2010 Lipyeow Lim -- University of Hawaii at Manoa 14

UNDO Phase

ToUndo={ l | l a lastLSN of a “loser” Xact}

Repeat:

– Choose largest LSN among ToUndo.

– If this LSN is a CLR and undonextLSN==NULL

• Write an End record for this Xact.

– If this LSN is a CLR, and undonextLSN != NULL

• Add undonextLSN to ToUndo

– Else this LSN is an update. Undo the update, write
a CLR, add prevLSN to ToUndo.

Until ToUndo is empty.
3/4/2010 Lipyeow Lim -- University of Hawaii at Manoa 15

Example: Crash Recovery
• One transaction.
• Checkpoint has empty

Xact & dirty page
tables.

• Analysis Phase:
– rebuilds Xact table &

dirty page

• REDO
– sync on disk data

pages up to crash

• UNDO
– rollback all

uncommitted
transactions at time of
crash

3/4/2010 Lipyeow Lim -- University of Hawaii at Manoa 16

T1

R(P1)

W(P1)

W(P2)

W(P1)

CRASH!

Transaction Table

dirty page table

XID Status lastLSN

pageID recLSN

LSN prevLSN XID type pageID ...

110 0 T1 upd P1 ...

120 110 T1 upd P2 ...

130 120 T1 upd P1 ...

100 90 0 end checkpoint

90 0 0 begin checkpoint

flushedLSN

