
ICS 421 Spring 2010

Transactions & Concurrency Control (i)

Asst. Prof. Lipyeow Lim

Information & Computer Science Department

University of Hawaii at Manoa

3/2/2010 1Lipyeow Lim -- University of Hawaii at Manoa

ACID Properties
4 important properties of transactions
• Atomicity: all or nothing

– Users regard execution of a transaction as atomic
– No worries about incomplete transactions

• Consistency: a transaction must leave the
database in a good state
– Semantics of consistency is application dependent
– The user assumes responsibility

• Isolation: a transaction is isolated from the
effects of other concurrent transaction

• Durability: Effects of completed transactions
persists even if system crashes before all changes
are written out to disk

3/2/2010 Lipyeow Lim -- University of Hawaii at Manoa 2

Scheduling Transactions

• Serial schedule: Schedule that does not interleave
the actions of different transactions.

• Equivalent schedules: For any database state, the
effect (on the set of objects in the database) of
executing the first schedule is identical to the
effect of executing the second schedule.

• Serializable schedule: A schedule that is
equivalent to some serial execution of the
transactions.

(Note: If each transaction preserves consistency,
every serializable schedule preserves
consistency.)

3/2/2010 Lipyeow Lim -- University of Hawaii at Manoa 3

Example: Transactions & Schedules

3/2/2010 Lipyeow Lim -- University of Hawaii at Manoa 4

T1: BEGIN
A=A+100
B=B-100
END

T2: BEGIN
A=1.06*A
B=1.06*B
END

Transfer $100 from
B’s a/c to A’s a/c.

Credit interest to
both a/c

T1 T2

R(A)
A=A+100
W(A)

R(B)
B=B-100
W(B)

R(A)
A=1.06*A
W(A)

R(B)
B=1.06*B
W(B)

T1 T2

R(A)
A=A+100
W(A)

R(A)
A=1.06*A
W(A)

R(B)
B=B-100
W(B)

R(B)
B=1.06*B
W(B)

Conflict Serializability
• Two operations in a schedule conflict if

– They belong to different transactions AND

– They access the same item X AND

– At least one of them is a write

• Two schedules are conflict equivalent if the
order of any two conflicting operations is the
same in both schedules.

• A schedule is conflict serializable if it is
conflict equivalent to some serial schedule

3/2/2010 Lipyeow Lim -- University of Hawaii at Manoa 5

Example: Conflicts & Schedules

3/2/2010 Lipyeow Lim -- University of Hawaii at Manoa 6

T1 T2

R(A)
A=A+100
W(A)

R(B)
B=B-100
W(B)

R(A)
A=1.06*A
W(A)

R(B)
B=1.06*B
W(B)

T1 T2

R(A)
A=A+100
W(A)

R(A)
A=1.06*A
W(A)

R(B)
B=B-100
W(B)

R(B)
B=1.06*B
W(B)

T1 T2

R(A)
A=A+100
W(A)

R(A)
A=1.06*A
W(A)

R(B)
B=1.06*B
W(B)

R(B)
B=B-100
W(B)

Testing for Conflict Serializability

• Construct a dependency or serialization
Graph

– One node per transaction

– For each object X

• If Ti:W(X) followed by Tj:R(X) or Tj:W(X), then add edge
(Ti, Tj)

• If Ti:R(X) followed by Tj:W(X), then add edge (Ti,Tj)

• Theorem: Schedule is conflict serializable if
and only if its dependency graph is acyclic

3/2/2010 Lipyeow Lim -- University of Hawaii at Manoa 7

Example: Dependency Graphs

3/2/2010 Lipyeow Lim -- University of Hawaii at Manoa 8

T1 T2

R(A)
A=A+100
W(A)

R(A)
A=1.06*A
W(A)

R(B)
B=1.06*B
W(B)

R(B)
B=B-100
W(B)

T1 T2

A

B

T1 T2

R(A)
A=A+100
W(A)

R(A)
A=1.06*A
W(A)

R(B)
B=B-100
W(B)

R(B)
B=1.06*B
W(B)

T1 T2

A

B

Strict Two-Phase Locking
• Strict Two-phase Locking (Strict 2PL) Protocol:

– Each Xact must obtain a S (shared) lock on object
before reading, and an X (exclusive) lock on object
before writing.

– All locks held by a transaction are released when
the transaction completes

– If an Xact holds an X lock on an object, no other
Xact can get a lock (S or X) on that object.

• Strict 2PL allows only schedules whose
precedence graph is acyclic

3/2/2010 Lipyeow Lim -- University of Hawaii at Manoa 9

Example (Strict 2PL)

• Consider the dirty read schedule

3/2/2010 Lipyeow Lim -- University of Hawaii at Manoa 10

T1 T2

X(A)
R(A)
W(A)

X(B)
R(B)
W(B)
Abort

X(A)
R(A)
W(A)
Commit

T1 T2

A=A+100

A=1.06*A
Commit

B=B-100

Abort

A = 20

A = 120

Dirty read on A!

With Strict 2PL, T2 can
only access A when T1

aborts

A = 127.2

Two-Phase Locking (2PL)

• Two-Phase Locking Protocol

– Each Xact must obtain a S (shared) lock on object
before reading, and an X (exclusive) lock on object
before writing.

– A transaction can not request additional locks
once it releases any locks.

– If an Xact holds an X lock on an object, no other
Xact can get a lock (S or X) on that object.

3/2/2010 Lipyeow Lim -- University of Hawaii at Manoa 11

Example (Non-Strict 2PL)

• Consider the dirty read schedule

3/2/2010 Lipyeow Lim -- University of Hawaii at Manoa 12

T1 T2

X(A)
R(A)
W(A)
RX(A)

X(A)
R(A)
W(A)
Commit

X(B)
R(B)
W(B)
Abort

T1 T2

A=A+100

A=1.06*A
Commit

B=B-100

Abort

A = 20

A = 120

Dirty read on A!

With non-strict 2PL, T2 can still
read uncommitted data if T1

aborts!

A = 127.2

Lock Management

• Lock and unlock requests are handled by the
lock manager

• Lock table entry:
– Number of transactions currently holding a lock

– Type of lock held (shared or exclusive)

– Pointer to queue of lock requests

• Locking and unlocking have to be atomic
operations

• Lock upgrade: transaction that holds a shared
lock can be upgraded to hold an exclusive lock

3/2/2010 Lipyeow Lim -- University of Hawaii at Manoa 13

Deadlocks
• Cycle of transactions waiting for

locks to be released
– Create a waits-for graph:

• Nodes are transactions
• There is an edge from Ti to Tj if Ti is

waiting for Tj to release a lock

– Periodically check for cycles in the
waits-for graph

• DBMS has to either prevent or
resolve deadlocks

• Common approach:
– Detect via timeout
– Resolve by aborting transactions

3/2/2010 Lipyeow Lim -- University of Hawaii at Manoa 14

T1 T2

Req X(A)
Gets X(A)
…
Req X(B)

Req X(B)
Gets X(B)
….

Req X(A)

