
ICS 421 Spring 2010

Indexing (2)

Asst. Prof. Lipyeow Lim

Information & Computer Science Department

University of Hawaii at Manoa

2/23/2010 1Lipyeow Lim -- University of Hawaii at Manoa

Hash Indexes
• As for any index, 3 alternatives for data entries

k*:
– Data record with key value k

– <k, rid of data record with search key value k>

– <k, list of rids of data records with search key k>

– Choice orthogonal to the indexing technique

• Hash-based indexes are best for equality
selections. Cannot support range searches.

• Static and dynamic hashing techniques exist;
trade-offs similar to ISAM vs. B+ trees.

2/23/2010 Lipyeow Lim -- University of Hawaii at Manoa 2

The Hashing Idea (i)

• What if we want to use an array of 7 slots ?
• Essential idea: get an array index/address directly

from the key field

2/23/2010 Lipyeow Lim -- University of Hawaii at Manoa 3

DOW
Number

DOW String

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

7 Sunday

String DOWstring[8] = { “invalid”,

“Monday”,

“Tuesday”,

“Wednesday”,

“Thursday”,

“Friday”,

“Saturday”,

“Sunday” };

Print (“Day 4 of the week is “ + DOWstring[4]);

How do we get the day of the week (DOW) string
from the DOW number ?

key data

The Hashing Idea (ii)

• What do we do if two strings map to the same
hash value ?

2/23/2010 Lipyeow Lim -- University of Hawaii at Manoa 4

DOW
Number

DOW String

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

7 Sunday

Int hashfn(string day) {

foreach i do sum += day[i]

return sum % 7; }

String DOWnum[7];

DOWnum[hashfn(“Monday”)] = 1;

DOWnum[hashfn(“Tuesday”)] = 2;

…

Print (“Monday is day “ +

DOWnum[hashfn(“Monday”)] + “ of the week);

How do we get the numeric day of the week (DOW)
from the DOW string ?

data Key

Hash Indexes in Databases
• Conceptually an array of pages or

buckets
• h(k) mod M = bucket ID for key k
• M is the number of buckets in array
• Data entries k*:

– Data record with key value k
– <k, rid of data record with search

key value k>
– <k, list of rids of data records with

search key k>
– Choice orthogonal to the indexing

technique

• Hash-based indexes are best for
equality selections. Cannot support
range searches.

2/23/2010 Lipyeow Lim -- University of Hawaii at Manoa 5

h

0Array

of Pages

1

2

3

4

5

6

7

key

Static Hashing
• Hash fn

– works on search key field of
record r.

– must distribute values over
range 0 ... M-1.

– h(key) = (a * key + b) usually
works well.

– a and b are constants; lots
known about how to tune h.

• Overflow buckets used when
primary buckets are full

2/23/2010 Lipyeow Lim -- University of Hawaii at Manoa 6

h

0Array

of pages

/buckets
1

2

3

4

5

6

7

key

Example : Static Hashing
• Search key is Sailors.age
• Hash fn h(k) = k mod 8
• Each bucket/page can hold 2 entries
• Insert data entries

– (8,r1)
– (9,r3)
– (15,r2)
– (7,r6)
– (23,r9)
– (31,r7)
– (39,r8)

2/23/2010 Lipyeow Lim -- University of Hawaii at Manoa 7

h

0Array

of pages

/buckets
1

2

3

4

5

6

7

key

(9,r3)

(8,r1)

(15,r2)

(7,r6)

(23,r9)

(31,r7)

(39,r8)

How many page IOs do i
need to find RIDs of
sailors aged 8?

How many page IOs do i
need to find RIDs of
sailors aged 31?

Extendible Hashing
• Situation: Bucket (primary page) becomes full.

Why not re-organize file by doubling # of
buckets?
– Reading and writing all pages is expensive!

– Idea: Use directory of pointers to buckets, double
of buckets by doubling the directory, splitting
just the bucket that overflowed!

– Directory much smaller than file, so doubling it is
much cheaper. Only one page of data entries is
split. No overflow page!

– Trick lies in how hash function is adjusted!

2/23/2010 Lipyeow Lim -- University of Hawaii at Manoa 8

Example : Extendible Hashing
• Directory is array of size 4.

• Each bucket holds 4 entries.

• To find bucket for r, take last
`global depth’ # bits of h(r);
we denote r by h(r).

– If h(r) = 5 = binary 101, it is
in bucket pointed to by 01.

• Insert: If bucket is full,
split it (allocate new page, re-
distribute).

• If necessary, double the
directory.

2/23/2010 Lipyeow Lim -- University of Hawaii at Manoa 9

4* 12* 32* 16*

1* 5* 21* 13*

10*

15* 7* 19*

A

directory

B

C

D

Global

depth

00

01

10

11

2

h(k) = k

Example : Insert key 20

2/23/2010 Lipyeow Lim -- University of Hawaii at Manoa 10

4* 12* 32* 16*

1* 5* 21* 13*

10*

15* 7* 19*

A

directory

B

C

D

Global

depth

00

01

10

11

2

h(k) = k

h(20) = 20 = 10100

Insert 20*

Split bucket A!

Double Directory!

directory

000

001

010

011

3

100

101

110

111

4* 12* 32* 16*

1* 5* 21* 13*

10*

15* 7* 19*

A

B

C

D

4* 12*20* A2

3

2

2

2

3

local

depth

Points to Note
• 20 = binary 10100. Last 2 bits (00) tell us r belongs in A

or A2. Last 3 bits needed to tell which.
– Global depth of directory: Max # of bits needed to tell

which bucket an entry belongs to.

– Local depth of a bucket: # of bits used to determine if an
entry belongs to this bucket.

• When does bucket split cause directory doubling?
– Before insert, local depth of bucket = global depth. Insert

causes local depth to become > global depth; directory is
doubled by copying it over and `fixing’ pointer to split
image page. (Use of least significant bits enables efficient
doubling via copying of directory!)

• If directory fits in memory, equality search answered
with one disk access; else two.

2/23/2010 Lipyeow Lim -- University of Hawaii at Manoa 11

Linear Hashing
• This is another dynamic hashing scheme, an

alternative to Extendible Hashing.

• LH handles the problem of long overflow chains
without using a directory, and handles duplicates.

• Idea: Use a family of hash functions h0, h1, h2, ...
– hi(key) = h(key) mod(2iN); N = initial # buckets

– h is some hash function (range is not 0 to N-1)

– If N = 2d0, for some d0, hi consists of applying h and
looking at the last di bits, where di = d0 + i.

– hi+1 doubles the range of hi (similar to directory
doubling)

2/23/2010 Lipyeow Lim -- University of Hawaii at Manoa 12

Example: Linear Hashing
• Insert: Find

bucket by applying
hLevel / hLevel+1:
– If bucket to insert

into is full:
– Add overflow

page and insert
data entry.

– (Maybe) Split
Next bucket and
increment Next.

• Since buckets are
split round-robin,
long overflow
chains don’t
develop!

2/23/2010 Lipyeow Lim -- University of Hawaii at Manoa 13

32* 44* 36*

9* 25* 5*

14* 18* 10* 30*

31* 35* 7* 11*

h0(k) = k mod 4

h1(k) = k mod 8

00

01

10

11

next 000

001

010

011

100

101

110

111

Insert 43*

Split bucket
pointed by

next!

44* 36*

next

43*

Primary

Buckets

Overflow

Buckets

Summary
• Hash-based indexes: best for equality searches,

cannot support range searches.

• Static Hashing can lead to long overflow chains.

• Extendible Hashing avoids overflow pages by
splitting a full bucket when a new data entry is to
be added to it. (Duplicates may require overflow
pages.)
– Directory to keep track of buckets, doubles

periodically.

– Can get large with skewed data; additional I/O if this
does not fit in main memory.

2/23/2010 Lipyeow Lim -- University of Hawaii at Manoa 14

Summary (Cont.)

• Linear Hashing avoids directory by splitting
buckets round-robin, and using overflow pages.
– Overflow pages not likely to be long.
– Duplicates handled easily.
– Space utilization could be lower than Extendible

Hashing, since splits not concentrated on `dense’ data
areas.

• Can tune criterion for triggering splits to trade-off slightly
longer chains for better space utilization.

• For hash-based indexes, a skewed data
distribution is one in which the hash values of
data entries are not uniformly distributed!

2/23/2010 Lipyeow Lim -- University of Hawaii at Manoa 15

