ICS 421 Spring 2010
Indexing (1)

Asst. Prof. Lipyeow Lim
Information & Computer Science Department
University of Hawaii at Manoa

02/18/2010 Lipyeow Lim -- University of Hawaii at Manoa

How to speed up queries?

Array of Sailor Tuples/Records

(LD CTE (D (D D)

File of Record for Sailors

02/18/2010 Lipyeow Lim -- University of Hawaii at Manoa

Binary Search Trees

4 N\

| »55&

e (Eg g
Z / / /S /]

18120121 |21 26|27 |28|30|31|34|37|41| 45

* Given search value
— if value < node.value, then follow left pointer
— Else follow right pointer

* How do generalize each index node to an index page ?
« How do we generalize this to search pages of records ?

02/18/2010 Lipyeow Lim -- University of Hawaii at Manoa

Indexes

e What do we store in the index nodes ? Let k
be the key value for an index entry:

1. Data record with key value k
2. <k, rid of data record with key value k>
3. <k, list of rids of data records with key value k>

 What kind of queries does the index support?
— Range
— Point (or equality)

Indexed Sequential Access Method (ISAM)

index entry
[|
Ilao K 1 |P 1 K 2 |P 2 <> o <o K m F;, m
Non-leaf ‘l
Pages \17 s ‘17
= T\ AR A A
Pages D D " A -7
Overflow ------- > /,/’
page

Primary pages

Static (m+1)-way Search Tree

ISAM: Example

Insert new

40)
record with

age 98

20 | | 33 51| |63 \/

age j| 10 | 15 20 | 27 33 | 37 40 | 46 51

rating

sSname

sid

» Store data record at the leaf pages
* Do we still need the file of record ?

02/18/2010 Lipyeow Lim -- University of Hawaii at Manoa 6

ISAM Facts

File creation: Leaf (data) pages allocated sequentially,
sorted by search key; then index pages allocated, then
space for overflow pages.

Index entries: <search key value, page id>; they
‘direct’ search for data entries, which are in leaf pages.

Search: Start at root; use key comparisons to go to
leaf. Cost=0O(log N) ; F = # entries/index pg, N = # |leaf
PgS

Insert: Find leaf data entry belongs to, and put it there.
If full, allocate and put in overflow page

Delete: Find and remove from leaf; if empty overflow
page, de-allocate.

Static tree structure: inserts/deletes affect only leaf
pages.

B+ Tree Index

* Insert/delete at log - N cost;
keep tree height-balanced.
(F = fanout, N = # leaf pages) B+ Tree

Index
Entries

e Minimum 50% occupancy index

(except for root). Each node

containsd <= m <= 2d

entries. The parameter d is
Data Entries/Leaf Pages
called the order of the tree. (“Sequence Set’)

e Supports equality and range-
searches efficiently.

02/18/2010 Lipyeow Lim -- University of Hawaii at Manoa 8

3

5

7

B+ Tree: Search Example

e

> - = = ’\
14 | 16 19|20 | 22 241 27 | 29 33134 | 38| 39

* Leaf entries store <key,rid> pairs
* What is the order ?

e Search for: age=5, age=15, age>=24

02/18/2010

Lipyeow Lim -- University of Hawaii at Manoa

Inserting a new data entry

Find correct leaf L.

Put data entry onto L.
— If L has enough space, done!

— Else, must split L (into L and a new node L2)
* Redistribute entries evenly, copy up middle key.
* Insert index entry pointing to L2 into parent of L.

This can happen recursively

— To split index node, redistribute entries evenly, but
push up middle key. (Contrast with leaf splits.)

Splits “grow” tree; root split increases height.
— Tree growth: gets wider or one level taller at top.

Example: Insert 8*

/

17

17 pushed up

: into parent node

14

16

513 24 | 30
13 17 24 | | 30
19120 | 22 24 | 27| 29 33134 |38| 39

2

5

5 copied up to

\ parent node
£\

3

5

7

8

02/18/2010

Lipyeow Lim -- University of Hawaii at Manoa

11

Deleting a data entry
Start at root, find leaf L where entry belongs.

Remove the entry.
— If Lis at least half-full, done!

— If L has only d-1 entries,

* Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

* If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing
to L or sibling) from parent of L.

Merge could propagate to root, decreasing
height.

Miscellaneous

* How do we handle data with duplicates ?

— Overflow buckets

— Make rid part of the key
— Each data entry stores <key, list of rids>

e Clustered vs Unclustered indexes

Ind tri
CLUSTERED direct search for UNCLUSTERED
data entries
Data entries 2 Data entries < <
/A 1\ NN (Index File) SN AN~ X
L oatatie) /LN [N T e

Data Records

Data Records

02/18/2010 Lipyeow Lim -- University of Hawaii at Manoa

13

Bulk Loading a B+ Tree

If we have a large collection of records, and we
want to create a B+ tree on some field, doing so
by repeatedly inserting records is very slow.

Bulk Loading can be done much more efficiently.

Initialization: Sort all data entries, insert pointer
to first (leaf) page in a new (root) page.

Rok) i
Sorted pages of data entries; not yet in B+ tree

e

3* [4* ||| 6% 9* | [10*|11*| |12*13% [20%22*| |23*|31*| |35*[36™| |38*|41*| |44*

Bulk Loading (cont.)

* Index entries for R}, 10[[20
leaf pages always / \
entered into v Data entry pages
right-most index °] 12, 1 21 %], not yet in B+ tree

page just above j / l / J \
leaf level. When —Za ¥ ;s 7 x V¥ p;x 7 1

. . . 3% 4*| [6% 9*([10%11% (121131 |20%22% |23%317 [35%36%|(|387141% |44
this fills up, it

splits. (Split may
go up right-most

path to the root.) e e <L

* Much faster than - ~ bata entry pages
repeated inserts, L —F not yet in B+ tree
especially when S\ I
one considers | 2] 123] 38

locking! ~ v/ ~ ,\l ,\/,\l ,\/ \\

3*| 4*%| | 6% 9*| |10%11* | 129137 |20%22% |23%317 |35%36*| |38741% (44"

Creating Indexes
Most DBMS (eg. DB2) supports only B+ tree indexes:

CREATE INDEX myldx ON mytable(coll, col3)
CREATE UNIQUE INDEX myUnigldx ON mytable(col2, col5)
CREATE INDEX myldx ON mytable(col1, col3) CLUSTER

If a primary key is specified in the CREATE TABLE statement,
an (unclustered) index is automatically created for the PK.
To create a clustered PK index:

— Create table without PK constraint

— Create index on PK with cluster option

— Alter table to add PK constraint

To get rid of unused indexes: DROP INDEX myldx;

