
ICS 421 Spring 2010 Parallel & Distributed Databases

Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa

Why Parallel Data Access ?

Multi-Petabyte Databases

How large is a petabyte?

Parallel DBMS

- eBay's main Teradata data warehouse (DW):
 - > 2 petabytes of user data
 - 10s of 1000s of users
 - Millions of queries per day
 - 72 nodes
 - >140 GB/sec of I/O, or 2 GB/node/sec
- eBay's Greenplum DW
 - 6 1/2 petabytes of user data
 - 96 nodes
 - 200 MB/node/sec of I/O
- Walmart 2.5 petabytes
- Bank of America 1.5 petabytes

- Some parallel DBMSs besides the usual Oracle-IBM-MS trio:
 - Teradata
 - Netezza
 - Vertica
 - DATAllegro
 - Greenplum
 - Aster Data
 - Infobright

. . .

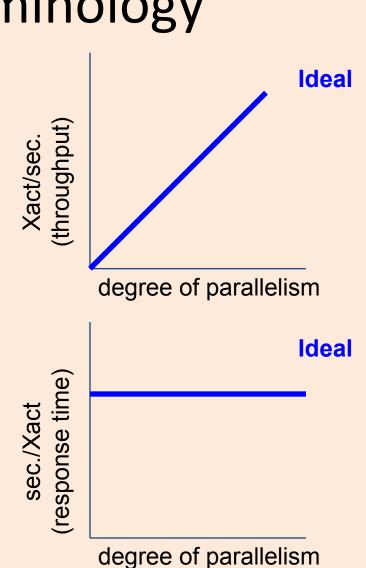
Kognitio, Kickfire,
Dataupia, ParAccel, Exasol,

Parallelism

Pipeline parallelism

 many machines each doing one step in a multi-step process.

Partition parallelism

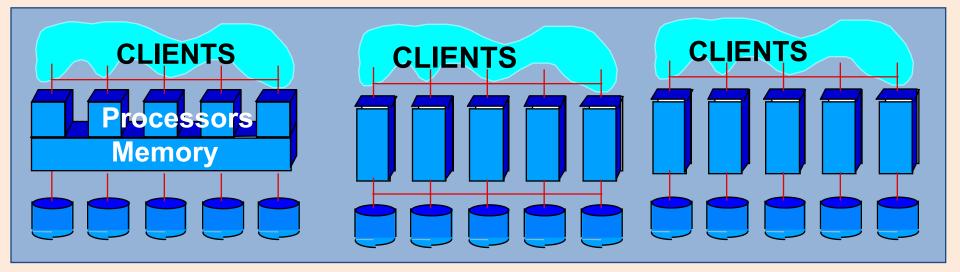

 many machines doing the same thing to different pieces of data.

Parallelism is natural to DBMS processing

Node 1	Node 2	Node 3	Processing Query 1
Q1:step1	Q1:step2	Q1:step3	Node 1
Q2:step1	Q2:step2	Q2:step3	
Q3:step1	Q3:step2	Q3:step3	Node 2
Q4:step1	Q4:step2		
Q5:step1			Node 3

Parallelism Terminology

- Speed-up
 - Same job + more resources= less time
- Scale-up
 - Bigger job + more resouces
 - = same time
- Transaction scale-up
 - More clients + more resources = same time



Parallel Architecture : Share What?

Shared Memory (SMP)

Shared Disk

Shared Nothing (network)

Easy to program Expensive to build Difficult to scaleup Hard to program Cheap to build Easy to scaleup

Sequent, SGI, Sun

VMScluster, Sysplex Tandem

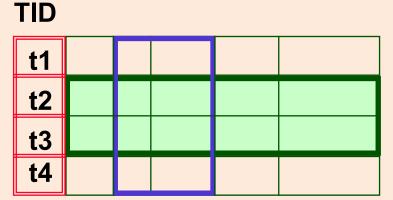
Tandem, Teradata, SP2

Different Types of DBMS Parallelism

- Intra-operator parallelism
 - get all machines working to compute a given operation (scan, sort, join)
- Inter-operator parallelism
 - each operator may run concurrently on a different site (exploits pipelining)
- Inter-query parallelism
 - different queries run on different sites
- We'll focus on intra-query parallelism

Parallel vs Distributed DBMS

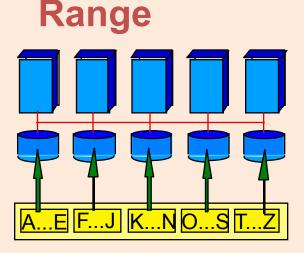
- A <u>parallel</u> database system
 - Improve performance via parallelization of various operations such as loading data, building indexes, evaluating queries
- A <u>distributed</u> database system
 - Data is physically stored across several (geographical) sites
 - Each site is managed by an independent DBMS
 - Distribution governed by factors like local ownership & increased availability
- The boundaries of these traditional definitions are blurring.

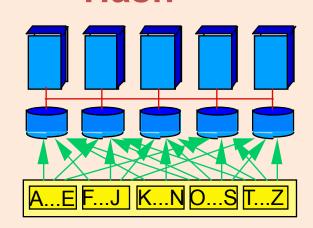

Types of Distributed DBMS

- Homogeneous: Every site runs same type of DBMS.
 - Parallel DBMSs are usually homogeneous
- Heterogeneous: Different sites run different DBMSs (different RDBMSs or even nonrelational DBMSs).

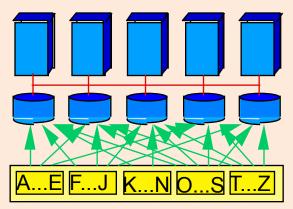
Data Partitioning & Fragmentation

- Parallel DB
 - Data partitioning
- Distributed DB
 - Fragmentation




- Same basic problem : How do we break up the data (tables) and spread them amongst the "nodes"
 - Horizontal vs Vertical
 - Range vs Hash
 - Replication
- DB user's view should be one single table.

Automatic Data Partitioning


Hash

Partitioning a table:

Round Robin

Good for equijoins, range queries group-by Good for equijoins

Good to spread load

- Shared disk and memory less sensitive to partitioning,
- Shared nothing benefits from "good" partitioning