
ICS 421 Spring 2010

Relational Algebra & SQL

Asst. Prof. Lipyeow Lim

Information & Computer Science Department

University of Hawaii at Manoa

1/26/2010 1Lipyeow Lim -- University of Hawaii at Manoa

Formal Relational Query Languages
• Query languages: Allow manipulation and retrieval of

data from a database.

• Two mathematical Query Languages form the basis for
“real” languages (e.g. SQL), and for implementation:
– Relational Algebra: More operational, very useful for

representing execution plans.

– Relational Calculus: Lets users describe what they want,
rather than how to compute it. (Non-operational,
declarative.)

• Query Languages != programming languages!
– QLs not expected to be “Turing complete”.

– QLs not intended to be used for complex calculations.

– QLs support easy, efficient access to large data sets.

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 2

Example Relational Instances

• “Sailors” and “Reserves”
relations for our examples.

• We’ll use positional or
named field notation,
assume that names of fields
in query results are
`inherited’ from names of
fields in query input
relations

sid bid day

22 101 10/10/96

58 103 11/12/96

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 3

sid sname rating age

22 Dustin 7 45.0

31 Lubber 8 55.5

58 Rusty 10 35.0

R1

S1

S2
sid sname rating age

28 Yuppy 9 35.0

31 Lubber 8 55.5

44 Guppy 5 35.0

58 Rusty 10 35.0

Relational Algebra

• Basic operations:
– Selection (ς) Selects a subset of rows from relation.

– Projection (π) Deletes unwanted columns from relation.

– Cross-product (×) Allows us to combine two relations.

– Set-difference (−) Tuples in reln. 1, but not in reln. 2.

– Union (U) Tuples in reln. 1 and in reln. 2.

• Additional operations:
– Intersection, join, division, renaming: Not essential, but

(very!) useful.

• Since each operation returns a relation, operations can
be composed! (Algebra is “closed”.)

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 4

Projection

• Deletes attributes that are not in
projection list.

• Schema of result contains exactly
the fields in the projection list, with
the same names that they had in
the (only) input relation.

• Projection operator has to
eliminate duplicates! (Why??)

• Note: real systems typically don’t
do duplicate elimination unless the
user explicitly asks for it. (Why
not?)

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 5

π sname, rating (S2)

sname rating

Yuppy 9

Lubber 8

Guppy 5

Rusty 10

π age (S2)

age

35.0

55.5

35.0

35.0

Selection
• Selects rows that satisfy

selection condition.
• No duplicates in result!

(Why?)
• Schema of result identical

to schema of (only) input
relation.

• Result relation can be the
input for another
relational algebra
operation! (Operator
composition.)

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 6

sid sname rating age

28 Yuppy 9 35.0

31 Lubber 8 55.5

44 Guppy 5 35.0

58 Rusty 10 35.0

sid sname rating age

28 Yuppy 9 35.0

31 Lubber 8 55.5

44 Guppy 5 35.0

58 Rusty 10 35.0

σ rating > 8 (S2)

π sname, rating (σrating>8 (S2))

Union, Intersection, Set-Difference
• All of these operations take

two input relations, which
must be union-compatible:
– Same number of fields.
– `Corresponding’ fields have

the same type.

• What is the schema of
result?

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 7

sid sname rating age

22 Dustin 7 45.0

31 Lubber 8 55.5

58 Rusty 10 35.0

S1 S2

sid sname rating age

28 Yuppy 9 35.0

31 Lubber 8 55.5

44 Guppy 5 35.0

58 Rusty 10 35.0

S1 U S2

sid sname rating age

22 Dustin 7 45.0

28 Yuppy 9 35.0

31 Lubber 8 55.5

44 Guppy 5 35.0

58 Rusty 10 35.0

Intersection & Set-Difference

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 8

sid sname rating age

22 Dustin 7 45.0

31 Lubber 8 55.5

58 Rusty 10 35.0

S1 S2

sid sname rating age

28 Yuppy 9 35.0

31 Lubber 8 55.5

44 Guppy 5 35.0

58 Rusty 10 35.0

S1 − S2

sid sname rating age

22 Dustin 7 45.0

S1 ∩ S2

sid sname rating age

31 Lubber 8 55.5

58 Rusty 10 35.0

Cross-Product
• Consider the cross product of S1 with R1
• Each row of S1 is paired with each row of R1.
• Result schema has one field per field of S1 and R1, with field

names `inherited’ if possible.
– Conflict: Both S1 and R1 have a field called sid.
– Rename to sid1 and sid2

sid sname rating age sid bid day

22 Dustin 7 45 22 101 10/10/96

22 Dustin 7 45 58 103 11/12/96

31 Lubber 8 55.5 22 101 10/10/96

31 Lubber 8 55.5 58 103 11/12/96

58 Rusty 10 35.0 22 101 10/10/96

58 Rusty 10 35.0 58 103 11/12/96

S1 × R1
sid bid day

22 101 10/10/96

58 103 11/12/96

sid sname rating age

22 Dustin 7 45.0

31 Lubber 8 55.5

58 Rusty 10 35.0

R1

S1

1/26/2010 9Lipyeow Lim -- University of Hawaii at Manoa

Renaming
• The expression:

ρ (C (1 → sid1, 5 → sid2), S1 × R1)
• Renames the result of the cross product of S1 and R1 to “C”
• Renames column 1 to sid1 and column 5 to sid2

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 10

sid1 sname rating age sid2 bid day

22 Dustin 7 45 22 101 10/10/96

22 Dustin 7 45 58 103 11/12/96

31 Lubber 8 55.5 22 101 10/10/96

31 Lubber 8 55.5 58 103 11/12/96

58 Rusty 10 35.0 22 101 10/10/96

58 Rusty 10 35.0 58 103 11/12/96

ρ (C (1 → sid1, 5 → sid2), S1 × R1)

Joins

• Condition Join:

• Result schema same as that of cross-product.

• Fewer tuples than cross-product, might be
able to compute more efficiently

• Sometimes called a theta-join.

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 11

)(SRcScR 

sid sname rating age sid bid day

22 Dustin 7 45 58 103 11/12/96

31 Lubber 8 55.5 58 103 11/12/96

S R
S sid R sid

1 1
1 1


. .

Equi-Joins & Natural Joins

• Equi-join: A special case of condition join
where the condition c contains only equalities.
– Result schema similar to cross-product, but only

one copy of fields for which equality is specified.

• Natural Join: Equi-join on all common fields.

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 12

sid sname rating age bid day

22 Dustin 7 45 101 10/10/96

58 Rusty 10 35.0 103 11/12/96

S R
sid

1 1

Q1: Find names of sailors who’ve
reserved boat #103

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 13

 sname bid
serves Sailors((Re))

103


 (, Re)Temp serves
bid

1
103

)1,2(SailorsTempTemp 

 sname Temp()2

 sname bid
serves Sailors((Re))

103


Solution 1:

Solution 2:

Solution 3:

Q2: Find names of sailors who’ve
reserved a red boat

• Information about boat color only available in
Boats; so need an extra join:

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 14

 sname color red
Boats serves Sailors((

' '
) Re)


 

   sname sid bid color red
Boats s Sailors(((

' '
) Re))


 

• A more efficient solution:

Q5: Find sailors who’ve reserved a red
or a green boat

• Can identify all red or green boats, then find
sailors who’ve reserved one of these boats:

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 15

 (, (
' ' ' '

))Tempboats
color red color green

Boats
  

 sname Tempboats serves Sailors(Re) 

• Can also define Tempboats using union! (How?)

• What happens if  is replaced by  in this query?

Q6: Find sailors who’ve reserved a red
and a green boat

• Previous approach won’t work! Must identify
sailors who’ve reserved red boats, sailors who’ve
reserved green boats, then find the intersection
(note that sid is a key for Sailors):

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 16

  (, ((
' '

) Re))Tempred
sid color red

Boats serves




 sname Tempred Tempgreen Sailors(()) 

  (, ((
' '

) Re))Tempgreen
sid color green

Boats serves




Basic SQL Query

• relation-list A list of relation names (possibly with a
range-variable after each name).

• target-list A list of attributes of relations in relation-list
• qualification Comparisons (Attr op const or Attr1 op

Attr2, where op is one of <, >, ≤, ≥, =, ≠) combined
using AND, OR and NOT.

• DISTINCT is an optional keyword indicating that the
answer should not contain duplicates. Default is that
duplicates are not eliminated!

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 17

SELECT [DISTINCT] target-list

FROM relation-list

WHERE qualification

Example Q1

• Range variables really needed only if the same
relation appears twice in the FROM clause.

• Good style to always use range variables

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 18

SELECT S.sname

FROM Sailors S, Reserves R

WHERE S.sid=R.sid AND bid=103

SELECT sname

FROM Sailors, Reserves

WHERE Sailors.sid=Reserves.sid

AND bid=103

Without range variables

Conceptual Evaluation Strategy

• Semantics of an SQL query defined in terms of
the following conceptual evaluation strategy:
1. Compute the cross-product of relation-list.

2. Discard resulting tuples if they fail qualifications.

3. Delete attributes that are not in target-list.

4. If DISTINCT is specified, eliminate duplicate rows.

• This strategy is probably the least efficient way
to compute a query! An optimizer will find
more efficient strategies to compute the same
answers.

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 19

Example Q1: conceptual evaluation
Conceptual Evaluation Steps:
1. Compute cross-product
2. Discard disqualified

tuples
3. Delete unwanted

attributes
4. If DISTINCT is specified,

eliminate duplicate rows.

1/26/2010 Lipyeow Lim -- University of Hawaii at Manoa 20

S.sid sname rating age R.sid bid day

22 Dustin 7 45 22 101 10/10/96

22 Dustin 7 45 58 103 11/12/96

31 Lubber 8 55.5 22 101 10/10/96

31 Lubber 8 55.5 58 103 11/12/96

58 Rusty 10 35.0 22 101 10/10/96

58 Rusty 10 35.0 58 103 11/12/96

SELECT S.sname

FROM Sailors S, Reserves R

WHERE S.sid=R.sid AND bid=103

S.sid sname rating age R.sid bid day

58 Rusty 10 35.0 58 103 11/12/96

sname

Rusty

