ICS 421 Spring 2010 Normal Forms

Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa

Two More Rules

Firstname	<u>Lastname</u>	DOB	Address	Telephone
John	Smith	Sep 9 1979	Honolulu,HI	808-343-0809

Union

- If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
- Eg. FLD \rightarrow A and FLD \rightarrow T, then FLD \rightarrow AT

Decomposition

- If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
- Eg. FLD \rightarrow AT , then FLD $\rightarrow\,$ A and FLD $\rightarrow\,$ T

Trivial FDs

- Right side is a subset of Left side
- Eg. F \rightarrow F, FLD \rightarrow FD

Closure

- Implication: An FD f is implied by a set of FDs F
 if f holds whenever all FDs in F hold.
 - f=A \rightarrow C is implied by F={ A \rightarrow B, B \rightarrow C} (using Armstrong's transitivity)
- Closure F⁺ : the set of all FDs implied by F
 - <u>Algorithm</u>:
 - start with F⁺ = F
 - keep adding new implied FDs to F⁺ by applying the 5 rules (Armstrong's Axioms + union + decomposition)
 - Stop when F⁺ does not change anymore.

Example: Closure

Firstname	<u>Lastname</u>	DOB	Street	CityState	Zipcode	Telephone
John	Smith	Sep 9 1979	1680 East West Rd.	Honolulu,HI	96822	808-343- 0809

- Given FLD is the primary key and $\mathrm{C} \rightarrow \mathrm{Z}$
- Find the closure:
 - Start with { FLD \rightarrow FLDSCZT, C \rightarrow Z }
 - − Applying reflexivity, { FLD \rightarrow F, FLD \rightarrow L, FLD \rightarrow D, FLD \rightarrow FL, FLD \rightarrow LD, FLD \rightarrow DF, FLDSCZT \rightarrow FLD, ...}
 - Applying augmentation, { FLDS \rightarrow FS, FLDS \rightarrow LS, ...}
 - Applying transitivity ...
 - Applying union ...
 - Applying decomposition ...
 - Repeat until F⁺ does not change

Attribute Closure

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- Typically, we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs *F*. An efficient check:
 - Compute <u>attribute closure</u> of X (denoted X⁺) wrt F:
 - Set of all attributes A such that $X \rightarrow A$ is in F^+
 - There is a linear time algorithm to compute this.
 - Check if Y is in X⁺
- Does $F = \{A \rightarrow B, B \rightarrow C, C D \rightarrow E\}$ imply $A \rightarrow E$?

– i.e, is $A \rightarrow E$ in the closure F^+ ? Equivalently, is E in A^+ ?

Normal Forms

- Helps with the question: do we need to refine the schema ?
- If a relation is in a certain *normal form* (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized. This can be used to help us decide whether decomposing the relation will help.
- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No FDs hold: There is no redundancy here.
 - Given A → B: Several tuples could have the same A value, and if so, they'll all have the same B value!

Boyce-Codd Normal Form (BCNF)

- Let R denote a relation, X a set of attributes from R, A an attribute from R, and F the set of FDs that hold over R.
- R is in **<u>BCNF</u>** if for all $X \rightarrow A$ in F⁺,
- A ∈ X (trivial FD) or
 A ∈ X (trivial FD) or
 X is a superkey
 The only non-trivial FDs that hold are key constraints
 - Negation: R is not in BCNF if there exists an X
 → A in F⁺, such that A ∉ X (non-trivial FD) AND
 X is not a key

Examples: BCNF

• Are the following in BCNF ?

<u>Firstname</u>	<u>Lastname</u>	DOB	Address	Telephone			
John	Smith	Sep 9 1979	Honolulu,HI	808-343-0809			
$F= \{ FLD \rightarrow FLDAT \}$							

<u>Firstname</u>	<u>Lastname</u>	DOB	Street	CityState	Zipcode	Telephone
John	Smith	Sep 9 1979	1680 East West Rd.	Honolulu,HI	96822	808-343- 0809

 $\mathsf{F=} \{ \mathsf{FLD} \rightarrow \mathsf{FLDSCZT}, \mathsf{C} \rightarrow \mathsf{Z} \}$

Third Normal Form (3NF)

- Let R denote a relation, X a set of attributes from R, A an attribute from R, and F the set of FDs that hold over R.
- R is in <u>**3NF</u>** if for all $X \rightarrow A$ in F⁺,</u>
 - $\mathsf{A} \in \mathsf{X}$ (trivial FD) or
 - X is a superkey or
 - A is part of some key
- Negation: R is not in 3NF if there exists an X → A in F⁺, such that A ∉ X (non-trivial FD) AND X is not a key AND A is not part of some key
- If R is in BCNF, obviously in 3NF.
- If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no ``good" decomp, or performance considerations).

Example: 3NF

• Which of the following is in 3NF and which in BCNF?

<u>Firstname</u>	Lastname	DOB	Address	Telephone
John	Smith	Sep 9 1979	Honolulu,HI	808-343-0809

$\mathsf{F=} \{ \mathsf{FLD} \to \mathsf{FLDAT} \}$

<u>Firstname</u>	<u>Lastname</u>	DOB	Street	CityState	Zipcode	Telephone
John	Smith	Sep 9 1979	1680 East West Rd.	Honolulu,HI	96822	808-343- 0809

 $\mathsf{F=} \{ \mathsf{FLD} \rightarrow \mathsf{FLDSCZT}, \mathsf{C} \rightarrow \mathsf{Z} \}$

Student	Course	Instructor
Smith	OS	Mark

 $\mathsf{F=} \{ \: \mathsf{SC} \to \mathsf{I}, \: \mathsf{I} {\to} \mathsf{C} \: \}$

Decompositions

- Reduces redundancies and anomalies, but could have the following potential problems:
 - Some queries become more expensive.
 - Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
 - Checking some dependencies may require joining the instances of the decomposed relations.
- Two desirable properties:
 - Lossless-join decomposition
 - Dependency-preserving decomposition

Lossless-join Decomposition

 Decomposition of R into X and Y is <u>lossless-join</u> w.r.t. a set of FDs F if, for every instance r that satisfies F:

 $\pi_{X}(r) \text{ join } \pi_{Y}(r) = r$

- In general one direction $\pi_{\chi}(r)$ join $\pi_{\gamma}(r) \supseteq r$ is always true, but the other may not hold.
- Definition extended to decomposition into 3 or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless! <u>(Avoids Problem</u> (2).)

Conditions for Lossless Join

- The decomposition of R into X and Y is losslessjoin wrt F if and only if the closure of F contains:
 - $X \cap Y \rightarrow X$, or
 - $X \cap Y \to Y$
- In particular, the decomposition of R into UV and R - V is losslessjoin if U → V holds over R.

Dependency-preserving Decomposition

<u>Student</u>	<u>Course</u>	Instructor		<u>Student</u>	Instructor		Course	Instructor	
Smith	OS	Mark	\rightarrow	Smith	Mark		OS	Mark	
$F=\{SC\toI,I\toC\}$				Checking	$SC \rightarrow I red$	qı	uires a jo	pin!	

- Dependency preserving decomposition (Intuitive):
 - If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on Y and on Z, then all FDs that were given to hold on R must also hold. <u>(Avoids</u> <u>Problem (3).)</u>
- <u>Projection of set of FDs F</u>: If R is decomposed into X, ... projection of F onto X (denoted F_X) is the set of FDs U \rightarrow V in F⁺ (*closure of F*) such that U, V are in X.

Dependency-preserving Decomp. (Cont)

- Decomposition of R into X and Y is <u>dependency</u> <u>preserving</u> if (F_X union F_Y) + = F +
 - i.e., if we consider only dependencies in the closure F⁺ that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in F⁺.
- Important to consider F⁺, not F, in this definition:
 - ABC, $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$, decomposed into AB and BC.
 - Is this dependency preserving? Is $C \rightarrow A$ preserved?????
- Dependency preserving does not imply lossless join:
 - ABC, $A \rightarrow B$, decomposed into AB and BC.
- And vice-versa! (Example?)

Decomposition into BCNF

- Consider relation R with FDs F. How do we decompose R into a set of small relations that are in BCNF ?
- Algorithm:
 - If X \rightarrow Y violates BCNF, decompose R into R-Y and XY
 - Repeat until all relations are in BCNF.
- Example: CSJDPQV, key C, JP \rightarrow C, SD \rightarrow P, J \rightarrow S
 - To deal with J→S, decompose CSJDPQV into JS and CJDPQV
 - To deal with SD \rightarrow P, decompose into SDP, CSJDQV
- Order in which we deal with the violating FD can lead to different relations!

BCNF & Dependency Preservation

• BCNF decomposition is lossless join, but there may not be a dependency preserving decomposition into BCNF

– e.g., CSZ, CS \rightarrow Z, Z \rightarrow C

- Can't decompose while preserving 1st FD; not in BCNF.
- Similarly, decomposition of CSJDQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs JP C, SD→P and J→S).
 - However, it is a lossless join decomposition.
 - In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
 - JPC tuples stored only for checking FD! (*Redundancy!*)

Decomposition into 3NF

- Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier).
- How can we ensure dependency preservation ?
 - If $X \rightarrow Y$ is not preserved, add relation XY.
 - Problem is that XY may violate 3NF! e.g., consider the addition of CJP to `preserve' JP→C. What if we also have J→C ?
- Refinement: Instead of the given set of FDs F, use a *minimal cover for F*.

Minimum Cover for a Set of FDs

- *Minimal cover* G for a set of FDs F:
 - Closure of F = closure of G.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.
- Intuitively, every FD in G is needed, and ``as small as possible'' in order to get the same closure as F.
- e.g., A → B, ABCD → E, EF→GH, ACDF → EG has the following minimal cover:
 - A \rightarrow B, ACD \rightarrow E, EF \rightarrow G and EF \rightarrow H

Computing the Minimal Cover

- Algorithm
 - Put the FDs into standard form X → A. RHS is a single attribute.
 - Minimize the LHS of each FD. For each FD, check if we can delete an attribute from LHS while preserving F⁺.
 - 3. Delete redundant FDs.
- Minimal covers are not unique. Different order of computation can give different covers.
- e.g., A → B, ABCD → E, EF→GH, ACDF → EG has the following minimal cover:

– A \rightarrow B, ACD \rightarrow E, EF \rightarrow G and EF \rightarrow H

Summary of Schema Refinement

- If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic
- If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
 - Must consider whether all FDs are preserved. If a lossless-join, dependency preserving decomposition into BCNF is not possible (or unsuitable, given typical queries), should consider decomposition into 3NF.
 - Decompositions should be carried out and/or reexamined while keeping *performance requirements* in mind.