
ICS 321 Spring 2011

SQL in a Server Environment

Asst. Prof. Lipyeow Lim

Information & Computer Science Department

University of Hawaii at Manoa

3/30/2011 1Lipyeow Lim -- University of Hawaii at Manoa

Internet

Three Tier Architecture

• Commonly used in large internet enterprises

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 2

Database Server

Application Server

Webserver

Eg. Apache/Tomcat
Connects clients to database

systems

Eg. IBM Websphere Application
Server, Jboss, SAP Netweaver, etc.

Performs business logic like
shopping cart, checkout etc

Eg. IBM DB2, Oracle, MS SQL Server
Runs DBMS, performs queries and

updates from app server

SQL Environment
• Schemas : tables, views,

assertions, triggers
– CREATE SCHEMA <schema name>
– Your login id is your default

schema
– SET SCHEMA <schema>
– A fully qualified table name is

<schema>.<table>

• Catalogs : collection of schemas
– Corresponds to “databases” in

DB2

• Clusters : collection of catalogs
– Corresponds to “database

instance” in DB2

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 3

Schema

Schema

Catalog

Schema

Schema

Catalog

Cluster

SQL Environment

Client-Server Model

• CONNECT TO <server> AS
<connection name>
AUTHORIZATION

• DISCONNECT/CONNECT
RESET/TERMINATE

• Session – SQL operations
performed while a
connection is active

• Programming API
– Generic SQL Interface
– Embedded SQL in a host

language
– True Modules. Eg. Stored

procedures.

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 4

SQL-ServerSQL-Client Connection

Session

SQL-agent
Module

Application
Program

Can be on same machine or
different machines

SQL & Other Programming Languages

Two extremes of the integration spectrum:

• Highly integrated eg. Microsoft linq
– Compiler checking of database operations

• Loosely integrated eg. ODBC & JDBC
– Provides a way to call SQL from host language

– Host language compiler doesn’t understand database
operations.

• Requirements:
– Perform DB operations from host language

– DB operations need to access variables in host
language

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 5

Networking Basics

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 6

Internet

MAC address

IP address

Port number

Higher level
protocols

MAC address

IP address

Port number

Higher level
protocols

Each network “card”
has a unique MAC
address.

IP address
assigned by
network provider:
static or DHCP

Client Application DBMS Server

Port number
usually fixed by
application type

Eg. http URLs,
DNS

DBMS servers use
their own
protocols (eg.
DRDA)

Servers use static
IP address + DNS
name

Servers use a port
that is known by
its clients

Remote Client Access
• Applications run on a machine

that is separate from the DB
server

• DBMS “thin” client
– Libraries to link your app to
– App needs to know how to talk

to DBMS server via network

• DBMS “full” client layer
– Need to pre-configure the thick

client layer to talk to DBMS
server

– Your app talks to a DBMS client
layer as if it is talking to the
server

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 7

Server

DBMS

App

DB Libs

App
DB

Client

What information is
needed for 2 machines to

talk over a network ?

Configuring DBMS Client Layer
• Tell the client where to find the server

db2 CATALOG TCPIP NODE mydbsrv
REMOTE 123.3.4.12 SERVER 50001

• Tell the client where to find the server

db2 CATALOG DATABASE bookdb AS
mybookdb AT NODE mydbsrv

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 8

Give a name for
this node

Specify the IP
address/hostnam
e and the port
number of the DB
server machine

Specify the name
of the database
on the server

Give a local alias
for the database

Specify the name of the
node that is associated
with this database

Embedded SQL in C Programs

• DBMS-specific
Preprocessor
translates special
macros to DB-
specific function calls

• Pre-processor needs
access to DBMS
instance for
validation.

• Executable needs to
be bound to a
specific database in a
DBMS in order to
execute

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 9

.sqc

DBMS-specific PrecompilerDBMS-specific Precompiler

.c

C CompilerC Compiler

C LinkerC Linker

DBMS specific DBMS-specific
Binder

.bnd

.o
DBMS-DBMS-
specific
libraries

.exe

Database

package

Connecting SQL & Host Language

• Need a way for host language to get data from
SQL environment

• Need a way to pass values from host language
to SQL environment

• Shared variables

– DECLARE SECTION

– In SQL, refer using

:Salary, :EmployeeNo

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 10

EXEC SQL BEGIN DECLARE SECTION;

char EmployeeNo[7];

char LastName[16];

double Salary;

short SalaryNI;

EXEC SQL END DECLARE SECTION;

An Example of Embedded SQL C Program
#include <stdio.h>

#include <string.h>

#include <sql.h>

int main()

{

// Include The SQLCA Data Structure Variable

EXEC SQL INCLUDE SQLCA;

// Define The SQL Host Variables Needed

EXEC SQL BEGIN DECLARE SECTION;

char EmployeeNo[7];

char LastName[16];

double Salary;

short SalaryNI;

EXEC SQL END DECLARE SECTION;

// Connect To The Appropriate Database

EXEC SQL CONNECT TO SAMPLE USER
db2admin USING ibmdb2;

// Declare A Static Cursor

EXEC SQL DECLARE C1 CURSOR FOR

SELECT EMPNO, LASTNAME, DOUBLE(SALARY)

FROM EMPLOYEE

WHERE JOB = 'DESIGNER';

// Open The Cursor

EXEC SQL OPEN C1;

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 11

An Example of Embedded SQL C Program
// If The Cursor Was Opened Successfully,

while (sqlca.sqlcode == SQL_RC_OK)

{

EXEC SQL FETCH C1 INTO :EmployeeNo,

:LastName, :Salary, :SalaryNI;

// Display The Record Retrieved

if (sqlca.sqlcode == SQL_RC_OK)

{

printf("%-8s %-16s ", EmployeeNo,

LastName);

if (SalaryNI >= 0)

printf("%lf\n", Salary);

else

printf("Unknown\n");

}

}

// Close The Open Cursor

EXEC SQL CLOSE C1;

// Commit The Transaction

EXEC SQL COMMIT;

// Terminate The Database Connection

EXEC SQL DISCONNECT CURRENT;

// Return Control To The Operating System

return(0);

}

• A cursor is an iterator for
looping through a relation
instance.

• Why is a cursor construct
necessary ?

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 12

Updates

• SQL syntax except
where clause
require current of
<cursor>

EXEC SQL BEGIN DECLARE
SECTION;

int certNo , worth ;
char execName[31],

execName[31],
execAddr [256],
SQLSTATE [6];

EXEC SQL END DECLARE
SECTION;

EXEC SQL DECLARE execCursor CURSOR FOR
MovieExec;

EXEC SQL OPEN execCursor
while (1) {

EXEC SQL FETCH FROM execCursor INTO
:execName, :execAddr, :certNo, :worth;

if (NO_MORE_ TUPLES) break;
if (worth < 1000)

EXEC SQL DELETE FROM MovieExec
WHERE CURRENT OF execCursor;

else
EXEC SQL UPDATE MovieExec

SET netWorth=2*netWorth
WHERE CURRENT OF execCursor;

}
EXEC SQL CLOSE execCursor

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 13

Static vs Dynamic SQL

• Static SQL refers to SQL
queries that are
completely specified at
compile time. Eg.

// Declare A Static Cursor

EXEC SQL DECLARE C1 CURSOR FOR

SELECT EMPNO, LASTNAME,
DOUBLE(SALARY)

FROM EMPLOYEE

WHERE JOB = 'DESIGNER';

• Dynamic SQL refers to
SQL queries that are
note completely
specified at compile
time. Eg.

strcpy(SQLStmt, “SELECT * FROM
EMPLOYEE WHERE JOB=");

strcat(SQLStmt, argv[1]);

EXEC SQL PREPARE SQL_STMT FROM
:SQLStmt;

EXEC SQL EXECUTE SQL_STMT;

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 14

Alternative to Embedded SQL
• What if we want to compile an

application without the need for a
DBMS-specific pre-compiler ?

• Use a library of database calls
– Standardized (non-DBMS-specific) API

– Pass SQL-strings from host language
and presents result sets in a language
friendly way

– Eg. ODBC for C/C++ and JDBC for Java

– DBMS-neutral
• A driver traps the calls and translates

them into DBMS-specific code

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 15

Application

DBMS-specific Driver

ODBC/JDBC API

DBMS

network

ODBC/JDBC Architecture

• Application
– Initiates connections
– Submits SQL statements
– Terminates connections

• Driver Manager
– Loads the right JDBC driver

• Driver
– Connects to the data source,
– Transmit requests,
– Returns results and error codes

• Data Source
– DBMS

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 16

Application

Driver Manager

Driver

Data Source

4 Types of Drivers
• Type I: Bridge

– Translate SQL commands to non-native API
– eg. JDBC-ODBC bridge. JDBC is translated to ODBC to access an

ODBC compliant data source.

• Type II: Direct Translation to native API via non-Java driver
– Translates SQL to native API of data source.
– Needs DBMS-specific library on each client.

• Type III: Network bridge
– SQL stmts sent to a middleware server that talks to the data

source. Hence small JDBC driver at each client

• Type IV: Direct Translation to native API via Java driver
– Converts JDBC calls to network protocol used by DBMS.
– Needs DBMS-specific Java driver at each client.

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 17

High Level Steps

1. Load the ODBC/JDBC driver

2. Connect to the data source

3. [optional] Prepare the SQL
statements

4. Execute the SQL statements

5. Iterate over the resultset

6. Close the connection

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 18

Getting Data to/fro Host Language

• No declaration of shared variables

• Variables in host language is bound to columns of
a SQL cursor

• ODBC
– SQLBindCol – gets data from SQL environment to host

variables.

– SQLBindParameter – gets data from host variables to
SQL environment

• JDBC
– ResultSet class

– PreparedStatement class

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 19

Prepare Statement or Not ?

• Executing without preparing statement
– After DBMS receives SQL statement,

• The SQL is compiled,
• An execution plan is chosen by the optimizer,
• The execution plan is evaluated by the DBMS engine
• The results are returned

• conn.prepareStatement
– Compiles and picks an execution plan

• pstmt.executeUpdate
– Evaluates the execution plan with the parameters and gets the

results

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 20

String sql=“SELECT * FROM books WHERE price < ?”;
PreparedStatement pstmt = conn.prepareStatement(sql);
Pstmt.setFloat(1, usermaxprice);
Pstmt.executeUpdate();

cf. Static vs
Dynamic

SQL

ResultSet

• Iterate over the
results of a SQL
statement -- cf.
cursor

• Note that types of
column values do
not need to be
known at compile
time

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 21

ResultSet rs = stmt.executeQuery(sqlstr);
while(rs.next()){

col1val = rs.getString(1); …
}

SQL Type Java Class accessor

BIT Boolean getBoolean

CHAR,
VARCHAR

String getString

DOUBLE,
FLOAT

Double getDouble

INTEGER Integer getInt

REAL Double getFloat

DATE Java.sql.Date getDate

TIME Java.sql.Time getTime

TIMESTAMP Java.sql.TimeStamp getTimestamp

RowSet
• When inserting lots of data, calling an execute

statement for each row can be inefficient
– A message is sent for each execute

• Many APIs provide a rowset implementation
– A set of rows is maintained in-memory on the client
– A single execute will then insert the set of rows in a

single message

• Pros: high performance
• Cons: data can be lost if client crashes.
• Analogous rowset for reads (ie. ResultSet) also

available

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 22

Stored Procedures
• What ?

– A procedure that is called and executed via a single SQL
statement

– Executed in the same process space of the DBMS server

– Can be programmed in SQL, C, java etc

– The procedure is stored within the DBMS

• Advantages:
– Encapsulate application logic while staying close to the

data

– Re-use of application logic by different users

– Avoid tuple-at-a-time return of records through cursors

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 23

SQL Stored Procedures
CREATE PROCEDURE ShowNumReservations

SELECT S.sid, S.sname, COUNT(*)
FROM Sailors S, Reserves R
WHERE S.sid = R.sid
GROUP BY S.sid, S.sname

• Parameters modes: IN, OUT, INOUT
CREATE PROCEDURE IncreaseRating (IN sailor_sid

INTEGER, IN increase INTEGER)
UPDATE Sailors

SET rating = rating + increase
WHERE sid = sailor_sid

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 24

Java Stored Procedures

CREATE PROCEDURE TopSailors (

IN num INTEGER)

LANGUAGE JAVA

EXTERNAL NAME
“file:///c:/storedProcs/rank.jar”

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 25

Calling Stored Procedures
• SQL: CALL IncreaseRating(101, 2);

• Embedded SQL in C:
EXEC SQL BEGIN DECLARE SECTION
int sid; int rating;
EXEC SQL END DECLARE SECTION
EXEC SQL CALL IncreaseRating(:sid, :rating);

• JDBC
CallableStatement cstmt = conn.prepareCall(“{call Show Sailors});
ResultSet rs=cstmt.executeQuery();

• ODBC
SQLCHAR *stmt = (SQLCHAR *)"CALL ShowSailors";
cliRC = SQLPrepare(hstmt, stmt, SQL_NTS);
cliRC = SQLExecute(hstmt);

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 26

User Defined Functions (UDFs)

• Extend and add to the support provided by
SQL built-in functions

• Three types of UDFs

– Scalar: returns a single-valued answer. Eg. Built-
ing SUBSTR()

– Column: returns a single-valued answer from a
column of values. Eg. AVG()

– Table: returns a table. Invoked in the FROM
clause.

• Programable in SQL, C, JAVA.

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 27

Scalar UDFs
• Returns the tangent of a value

CREATE FUNCTION TAN (X DOUBLE)
RETURNS DOUBLE
LANGUAGE SQL
CONTAINS SQL
RETURN SIN(X)/COS(X)

• Reverses a string

CREATE FUNCTION REVERSE(INSTR
VARCHAR(4000))
RETURNS VARCHAR(4000)
CONTAINS SQL

BEGIN ATOMIC
DECLARE REVSTR, RESTSTR

VARCHAR(4000) DEFAULT '';
DECLARE LEN INT;
IF INSTR IS NULL THEN

RETURN NULL;
END IF;
SET (RESTSTR, LEN) = (INSTR,

LENGTH(INSTR));
WHILE LEN > 0 DO

SET (REVSTR, RESTSTR, LEN)
= (SUBSTR(RESTSTR, 1, 1) CONCAT
REVSTR, SUBSTR(RESTSTR, 2, LEN
- 1), LEN - 1);
END WHILE;
RETURN REVSTR;

END

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 28

Table UDFs
• returns the employees in a specified department number.
CREATE FUNCTION DEPTEMPLOYEES (DEPTNO CHAR(3))

RETURNS TABLE (
EMPNO CHAR(6),
LASTNAME VARCHAR(15),
FIRSTNAME VARCHAR(12))

LANGUAGE SQL
READS SQL DATA
RETURN

SELECT EMPNO, LASTNAME, FIRSTNME
FROM EMPLOYEE
WHERE EMPLOYEE.WORKDEPT

= DEPTEMPLOYEES.DEPTNO

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 29

Java UDFs
CREATE FUNCTION tableUDF (DOUBLE)
RETURNS TABLE (

name VARCHAR(20),
job VARCHAR(20),
salary DOUBLE)

EXTERNAL NAME
'MYJAR1:UDFsrv!tableUDF‘

LANGUAGE JAVA
PARAMETER STYLE DB2GENERAL
NOT DETERMINISTIC
FENCED
NO SQL
NO EXTERNAL ACTION
SCRATCHPAD 10
FINAL CALL
DISALLOW PARALLEL
NO DBINFO@

import COM.ibm.db2.app.UDF;

public void tableUDF(
double inSalaryFactor,
String outName,
String outJob,
double outNewSalary)
throws Exception

{
int intRow = 0;
…

} // tableUDF } // UDFsrv class

3/30/2011 Lipyeow Lim -- University of Hawaii at Manoa 30

