
ICS 321 Spring 2011

Overview of Transaction Processing

Asst. Prof. Lipyeow Lim

Information & Computer Science Department

University of Hawaii at Manoa

03/28/2011 1Lipyeow Lim -- University of Hawaii at Manoa

Transactions in SQL
• After connection to a database, a transaction is

automatically started
– Different connections -> different transactions

• Within a connection, a transaction is ended by
– COMMIT or COMMIT WORK
– ROLLBACK (= “abort”)

• DBMS can also initiate rollback and return an error.
• SAVEPOINT <savepoint name>
• ROLLBACK TO SAVEPOINT <savepoint name>

– Locks obtained after savepoint can be released after
rollback to that savepoint

• Using savepoints vs sequence of transactions
– Transaction rollback is to last transaction only

03/28/2011 Lipyeow Lim -- University of Hawaii at Manoa 2

Isolation levels in SQL
• SQL supports 4 isolation levels

03/28/2011 Lipyeow Lim -- University of Hawaii at Manoa 3

SQL Isolation Levels DB2 Isolation Levels Dirty read Unrepeat
able Read

Phantom

READ
UNCOMMITTED

UNCOMMITTED READ
(UR)

Maybe Maybe Maybe

READ COMMITTED CURSOR STABILITY *
(CS)

No Maybe Maybe

REPEATABLE READ READ STABILITY (RS) No No Maybe

SERIALIZABLE REPEATABLE READ (RR) No No No

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

SELECT *

FROM Reserves

WHERE SID=100

WITH UR

Anomaly: Dirty Reads
• T1 reads uncommitted data from T2 which may abort

03/28/2011 Lipyeow Lim -- University of Hawaii at Manoa 4

T1 T2

A=A+100

A=1.06*A
Commit

B=B-100

Abort

A = 20

A = 120

A = 127.2

With T2 aborted
correct value of A =

21.2

Anomaly: Unrepeatable Reads
• T1 sees two different values of A, because updates are

committed from another transaction (T2)

03/28/2011 Lipyeow Lim -- University of Hawaii at Manoa 5

T1 T2

Print A

A=1.06*A
Commit

Print A
A = 100

Commit

A = 20

A = 20

A = 21.2

A = 21.2
T1 sees two different

values of A even
though T1 did not

change A!

Anomaly: Phantom Reads
• Multiple reads from the same transaction sees

different set of tuples

03/28/2011 Lipyeow Lim -- University of Hawaii at Manoa 6

T1 T2

Find all ics321
students

Enroll student D
into ics321
Commit

Find all ics321
students

Commit

{A,B,C}

Insert D

{A,B,C,D}

T1 sees two different results
of the query even though T1

did not change the table!

Lock-based Concurrency Control
• Strict Two-phase Locking (Strict 2PL) Protocol:

– Each Xact must obtain a S (shared) lock on object
before reading, and an X (exclusive) lock on object
before writing.

– All locks held by a transaction are released when the
transaction completes
• (Non-strict) 2PL Variant: Release locks anytime, but cannot

acquire locks after releasing any lock.
– If an Xact holds an X lock on an object, no other Xact

can get a lock (S or X) on that object.
• Strict 2PL allows only serializable schedules.

– Additionally, it simplifies transaction aborts
– (Non-strict) 2PL also allows only serializable

schedules, but involves more complex abort
processing

03/28/2011 Lipyeow Lim -- University of Hawaii at Manoa 7

Example (Strict 2PL)

• Consider the dirty read schedule

03/28/2011 Lipyeow Lim -- University of Hawaii at Manoa 8

T1 T2

X(A)
R(A)
W(A)

X(B)
R(B)
W(B)
Abort

X(A)
R(A)
W(A)
Commit

T1 T2

A=A+100

A=1.06*A
Commit

B=B-100

Abort

A = 20

A = 120

Dirty read on A!

With Strict 2PL, T2 can
only access A when T1

aborts

A = 127.2

Example (Non-Strict 2PL)

• Consider the dirty read schedule

03/28/2011 Lipyeow Lim -- University of Hawaii at Manoa 9

T1 T2

X(A)
R(A)
W(A)
RX(A)

X(A)
R(A)
W(A)
Commit

X(B)
R(B)
W(B)
Abort

T1 T2

A=A+100

A=1.06*A
Commit

B=B-100

Abort

A = 20

A = 120

Dirty read on A!

With non-strict 2PL, T2 can still
read uncommitted data if T1

aborts!

A = 127.2

Deadlocks
• Cycle of transactions

waiting for locks to be
released

• DBMS has to either prevent
or resolve deadlocks

• Common approach:

– Detect via timeout

– Resolve by aborting
transactions

03/28/2011 Lipyeow Lim -- University of Hawaii at Manoa 10

T1 T2

Req X(A)
Gets X(A)
…
Req X(B)

Req X(B)
Gets X(B)
….

Req X(A)

Aborting a Transaction
• If a transaction T1 is aborted, all its actions have to be

undone.
– Not only that, if T2 reads an object last written by T1, T2

must be aborted as well!

• Most systems avoid such cascading aborts by releasing
a transaction’s locks only at commit time.
– If T1 writes an object, T2 can read this only after T1

commits.

• In order to undo the actions of an aborted transaction,
the DBMS maintains a log in which every write is
recorded.
– This mechanism is also used to recover from system

crashes: all active Xacts at the time of the crash are
aborted when the system comes back up

03/28/2011 Lipyeow Lim -- University of Hawaii at Manoa 11

Lock Granularity

• What should the DBMS
lock ?

– Row ?

– Page ?

– A Table ?

03/28/2011 Lipyeow Lim -- University of Hawaii at Manoa 12

UPDATE Sailors

SET rating=0

WHERE rating>9

UPDATE Boats

SET color=‘red’

WHERE bid=13

SELECT *

FROM Sailors

SELECT *

FROM Sailors

WHERE rating < 2

UPDATE Boats

SET color=‘blue’

WHERE bid=100

Crash Recovery

• Transaction Manager: DBMS component that
controls execution (eg. managing locks).

• Recovery Manager: DBMS component for
ensuring

– Atomicity: undo actions of transactions that do
not commit

– Durability: committed transactions survive system
crashed and media failures

• Assume atomic writes to disk.

03/28/2011 Lipyeow Lim -- University of Hawaii at Manoa 13

The Log
• The following actions are recorded in the log:

– Ti writes an object: the old value and the new value.
• Log record must go to disk before the changed page! (Write

Ahead Log property)

– Ti commits/aborts: a log record indicating this action.

• Log records are chained together by Xact id, so
it’s easy to undo a specific Xact.

• Log is often duplexed and archived on stable
storage.

• All log related activities (and in fact, all CC related
activities such as lock/unlock, dealing with
deadlocks etc.) are handled transparently by the
DBMS.

03/28/2011 Lipyeow Lim -- University of Hawaii at Manoa 14

Recovering from a Crash
• There are 3 phases in the Aries recovery

algorithm:
– Analysis: Scan the log forward (from the most recent

checkpoint) to identify all Xacts that were active, and
all dirty pages in the buffer pool at the time of the
crash.

– Redo: Redoes all updates to dirty pages in the buffer
pool, as needed, to ensure that all logged updates are
in fact carried out and written to disk.

– Undo: The writes of all Xacts that were active at the
crash are undone (by restoring the before value of the
update, which is in the log record for the update),
working backwards in the log. (Some care must be
taken to handle the case of a crash occurring during
the recovery process!)

03/28/2011 Lipyeow Lim -- University of Hawaii at Manoa 15

