ICS 321 Spring 2011
The Database Language SQL (i)

Asst. Prof. Lipyeow Lim
Information & Computer Science Department

University of Hawaii at Manoa

2/23/2011 Lipyeow Lim -- University of Hawaii at Manoa

Example Relations
* Sailors(W sid | bid [day |

sid: integer, 22 101 10/10/96

sname: string, 58 103 11/12/96
rating: integer,

age: real) S1 @mm-

o Boats(22 Dustin 45.0
bid: integer, 31 Lubber 8 55.5
bname: string, 58 Rusty 10 35.0

color: string) mmm
B1

* Reserves(
Interlake Blue

sid: integer, " |
bid: string, 102 Interlake Re
day: date) 103 Clipper green

104 Marine Red

2/23/2011 Lipyeow Lim -- University of Hawaii at Manoa

Basic SQL Query

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

relation-list A list of relation names (possibly with a
range-variable after each name).

target-list A list of attributes of relations in relation-list

qualification Comparisons (Attr op const or Attrl op
Attr2, where op is one of <, >, £, 2, =, #) combined
using AND, OR and NOT.

DISTINCT is an optional keyword indicating that the
answer should not contain duplicates. Default is that
duplicates are not eliminated!

Example Q1

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

Without range variables

SELECT sname

FROM Sailors, Reserves

WHERE Sailors.sid=Reserves.sid
AND bid=103

 Range variables really needed only if the same
relation appears twice in the FROM clause.

* Good style to always use range variables

Conceptual Evaluation Strategy

 Semantics of an SQL query defined in terms of
the following conceptual evaluation strategy:

1. Compute the cross-product of relation-list.

2. Discard resulting tuples if they fail gualifications.
3. Delete attributes that are not in target-list.

4. If isTineT is specified, eliminate duplicate rows.

* This strategy is probably the least efficient way
to compute a query! An optimizer will find
more efficient strategies to compute the same
answers.

Example Q1: conceptual evaluation

SELECT S.sname Conceptual Evaluation Steps:
FROM Sailors S. Reserves R 1. Compute cross-product

. _ _ 2. Discard disqualified
WHERE S.sid=R.sid AND bid=103 tuples

Delete unwanted

mmm-mm attributes

Dustin 7 10/10/96 4 If DisTINCT is specified,
eliminate duplicate rows.

22 Dustin 7 45 58 103 11/12/96

31 Lubber 8 55,5 22 101 10/10/96

31 Lubber 8 55.5 58 103 11/12/96

58 Rusty 10 35.0 22 101 10/10/96
58 Rusty 10 35.0 58 103 11/12/96

mmm-mm sname _

Rusty 10 35.0 58 103 11/12/96 Rusty

2/23/2011 Lipyeow Lim -- University of Hawaii at Manoa 6

Q2: Find sailors who've reserved at

least one boat
(8l sid | bid [day

22 101 10/10/96
58 103 11/12/96

S{ll sid | sname | rating | age
22 Dustin 7 45.0
31 Lubber 8 55.5

58 Rusty 10 35.0

* Would adding DISTINCT to this query make a difference?

 What is the effect of replacing S.sid by S.sname in the
SELECT clause? Would adding DISTINCT to this variant of
the query make a difference?

2/23/2011 Lipyeow Lim -- University of Hawaii at Manoa 7

Q3: Find the colors of boats reserved

2/23/2011

by Lubber

8l sid | bid |dav

22 101 10/10/96
58 103 11/12/96

Sl sid | sname | rating | age _

22 Dustin 7
31 Lubber 8
58 Rusty 10

;P bid | bname | color _

101
102
103
104

Lipyeow Lim -- University of Hawaii at Manoa

Interlake
Interlake
Clipper

Marine

45.0
55.5
35.0

Blue
Red
green
Red

8

Expressions

 WHERE-qualification can contain expressions

 SELECT-list can also contain arithmetic or string
expressions over the column names

 Example: compute a new age adjusted” rating
for each sailor whose rating satisfies a special
formula

SELECT S1.sname, YW sid | sname | rating | age |
S1.rating * S1.age / 100 22 Dustin 7 45.0
AS NewRating 31 Lubber 8 55.5
FROM Sailors S1 58 Rusty 10 350
WHERE S1.rating-5.0> S1.age/
12.0

NULLSs

SELECT S1.sname, L sid | sname | rating | age |
FROM Sailors S1 22 Dustin NULL 45.0
WHERE S1.rating—5.0>0 31 Lubber 8 55.5

58 Rusty 10 35.0

* The result of any arithmetic operator +,-,/,x
involving a NULL is always NULL

* The result of any comparison operator like
=,>,< is always UNKNOWN

2/23/2011 Lipyeow Lim -- University of Hawaii at Manoa 10

The “UNKNOWN” truth-value
X Y

<

m m M ccc H4 4 4
m c 4 mc 4 m c -
M c A cc 4 4 4 -+
- 4 4 c c c m m T

e If TRUE =1, False =0, UNKNOWN=0.5
— AND : min, OR : max, NOT : 1-v

2/23/2011 Lipyeow Lim -- University of Hawaii at Manoa

11

Strings & Pattern Matching

e String comparisons via the comparisons operators (<,
> =, etc), but take note of collations

— i.e. determines the ordering. Lexicographic, languages etc
e SQL supports pattern matching via the LIKE operator

and wildcards

— %"’ : zero or more arbitrary chars

’)

— " ranyone char

SELECT S1.sname, S1.rating
FROM Sailors S1
WHERE S1.sname LIKE 'L_%’

Sl sid | sname | rating | age

22 Dustin 7 45.0
31 Lubber 8 55.5
58 Rusty 10 35.0

Date, Time, Timestamp

SELECT R*
FROM Reserves R
WHERE R.day = DA'[E ‘2010-10102’

‘ Cast \ ‘Date stri>gj

* Dates and time constants are specified using
strings and “cast” into the date/time
datatypes using functions.

TIME '15:00:02.5°
TIMESTAMP ‘2010-10-02 15:00:02°

Ordering the Output

SELECT S1.sname, S1.rating [l sid | sname | rating | age

FROM Sailors S1 22 Dustin 7 45.0

ORDER BY S1.rating DESC 31 Lubber 8 55.5
58 Rusty 10 35.0

e ORDER BY clause sorts the 'sname | rating

result of the SQL query Rusty 10
according to the given Ll | &
COIUmn(S). Dustin 7

2/23/2011 Lipyeow Lim -- University of Hawaii at Manoa 14

