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Analysis of Heap File Storage 
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Operation Worst Case 
Analysis 

Scans B*(D + R*C) 

Point 
Query 

B*(D + R*C) 
 

Range 
Query 

B*(D + R*C) 
 

Insert 2*D + C 

Delete 2* B * (D + 
R*C) 

• Fetch all B pages from disk into memory 
• Process each record on each page 

• In the worst case, the desired record is  the 
last record on the last page 

• Since file is unsorted, the desired records can 
be anywhere in the file, so we have to scan the 
entire file. 

• Insert at the end of the file. 
• Read in the last page 
• Add record 
• Write the page back 

• Search for the record to be deleted 
• Delete the record 
• Move all subsequent records & pages forward. 



Analysis of Heap File Storage (Disk Only) 
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Operation Worst Case 
Analysis 

Scans B*D 

Point 
Query 

B*D 
 

Range 
Query 

B*D 
 

Insert 2*D 

Delete 2*B*D 

• Fetch all B pages from disk into memory 
• Process each record on each page 

• In the worst case, the desired record is  the 
last record on the last page 

• Since file is unsorted, the desired records can 
be anywhere in the file, so we have to scan the 
entire file. 

• Insert at the end of the file. 
• Read in the last page 
• Add record 
• Write the page back 

• Search for the record to be deleted 
• Delete the record 
• Move all subsequent records & pages forward. 



Deleting a Record 

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 4 

File 

Memory 

Record to be deleted 



Analysis of Sorted File Storage 
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Op Worst Case 
Analysis 

Scans B*(D + R*C) 

Point 
Query 

D log B + C log R 

Range 
Query 

D log B + C log R 
+  S/R*D + 
S*C 

Insert D log B + C log R 
+ 2*B*(D + R*C) 

Delete D log B + C log R 
+ 2*B*(D + R*C)  

• Fetch all B pages from disk into memory 
• Process each record on each page 

• Binary search for the desired page 
• Binary search for the desired record within 
the page 

• Let S be the number of records in the result   
• Binary search for the desired page and record 
• Fetch the next S records 

• Binary search to insertion point 
• In worst case, page has no extra space, so 
page is split 
• Move all subsequent pages back 

• Search for the record to be deleted 
• Delete the record 
• Move all subsequent pages forward 



Heap vs Sorted File 
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Op Heap Sorted 

Scans B*D B*D 

Point 
Query 

B*D 
 

D log B 

Range 
Query 

B*D 
 

D log B +  
S/R*D 

Insert 2*D D log B + 
2*B*D 

Delete 2*B*D D log B + 
2*B*D 



Indexes 
• An index on a file speeds up selections on the 

search key fields for the index. 
– Any subset of the fields of a relation can be the search 

key for an index on the relation. 
– Search key is not the same as key (minimal set of fields 

that uniquely identify a record in a relation). 

• An index contains a collection of data entries, and 
supports efficient retrieval of all data entries k* 
with a given key value k. 
– A data entry is usually in the form <key, rid> 
– Given data entry k*, we can find record with key k in 

at most one disk I/O.  (Details soon …) 
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B+ Tree Indexes 

• Leaf pages contain data entries, and are chained (prev & next) 

• A data entry typically contain a key value and a rid. 

• Non-leaf pages have index entries; only used to direct searches: 
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Non-leaf 

Pages 

Pages  

(Sorted by search key) 

Leaf 

P 0 K 1 P 1 K 2 P 2 K m P m 

index entry 



Example B+ Tree 

• Find 28*? 29*? All > 15* and < 30* 
• Insert/delete:  Find data entry in leaf, then 

change it. Need to adjust parent sometimes. 
– And change sometimes bubbles up the tree 
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2* 3* 

Root 

17 

30 

14* 16* 33* 34* 38* 39* 

13 5 

7* 5* 8* 22* 24* 

27 

27* 29* 

Entries <=  17 Entries >  17 

Note how data entries 

in leaf level are sorted 



Point Queries using B+ Trees 
• Use index to find 30* 

• Request tuple from buffer manager 

• If not in bufferpool, fetch page from 
disk  
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2* 3* 

Root 

17 

30 

14* 16* 33* 34* 38* 39* 

13 5 

7* 5* 8* 22* 24* 

27 

27* 29* 

Entries <=  17 Entries >  17 

SELECT * 
FROM Employees 
WHERE age=30 

Assume heap file 
data storage 



Range Queries using B+ Trees 
• Use index to find 30* 

• For each data entry to the right of 30* 

• Request tuples from buffer manager 

• If not in bufferpool, fetch page from disk  
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2* 3* 

Root 

17 

30 

14* 16* 33* 34* 38* 39* 

13 5 

7* 5* 8* 22* 24* 

27 

27* 29* 

Entries <=  17 Entries >  17 

SELECT * 
FROM Employees 
WHERE age>30 

Assume heap file 
data storage 



Analysis of Heap File with B+Tree Index  
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Op Worst Case 
Analysis 

Scans B*D 

Point 
Query 

D logF B + D 

Range 
Query 

D logF B +  
S/R *D + 
S*D 

Insert 2*D + 3*D* 
logF B 

Delete D logF B + 
+ 2*B*D  

• B+ tree search for the desired index page 
• Binary search for the desired record within the 
index page 
•Fetch the data page 

• Let S be the number of records in the result   
• B+ tree search for the desired index page 
• Fetch the next S/R index leaf pages 
• Fetch the data pages for the S records 

• Insert record to end of heap file  
• B+ tree search to find index page for the inserted 
record 
• create a data entry for the inserted record in the 
index page. In worst case, index page has no extra 
space and page split cascades up. Write index pages 

• B+ tree search for the desired index page and 
record 
• Fetch the data page and delete the record 
• In the worst case, data page is empty after deletion 
and needs to be removed from heap file 

Assume index page density = 
data page density 



Running Comparison 
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Op Heap Sorted Heap+Tree 

Scans B*D B*D B*D 

Point 
Query 

B*D 
 

D log B D logF B + D 

Range 
Query 

B*D 
 

D log B +  
S/R*D 

D logF B +  
S/R *D + 
S*D 

Insert 2*D D log B + 
2*B*D 

2*D + 3*D* 
logF B 

Delete 2*B*D D log B + 
2*B*D 

D logF B + 
+ 2*B*D  



Hash-Based Indexes 

• Index is a collection of buckets that contain data entries 
– Bucket = primary page plus zero or more overflow pages.  

• Hashing function h:  h(r) = bucket in which (data entry for) 
record r belongs. h looks at the search key fields of r. 

• No “index entries” in this scheme. 
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H1(age) 

File 

Value for age 

Hash Index on Age 

30 45 56 41 20 25 20 25 

Overflow  

page 



Analysis of Heap File with Hash Index  
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Op Worst Case 
Analysis 

Scans B*D 

Point 
Query 

2*D 

Range 
Query 

B*D 

Insert 4*D 

Delete 3*D + 
2*B*D  

• Hash search for the desired index page 
• Linear search for the desired record within the index 
page 
•Fetch the data page 

• Hash index does not support range queries 
• Fall back on scanning the heap file 

• Insert record to end of heap file  
• Hash search to find index page for the inserted 
record 
• Create a data entry for the inserted record in the 
index page. 
• Write index page back to disk 

• Hash search for the desired index page and record 
• Fetch the data page, delete the record 
• In the worst case, pages need to be moved forward 
• update index page and write back to disk 



Running Comparison 

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 16 

Op Heap Sorted Heap+Tree Heap+H
ash 

Scans B*D B*D B*D B*D 

Point 
Query 

B*D 
 

D log B D logF B + D 2*D 

Range 
Query 

B*D 
 

D log B +  
S/R*D 

D logF B +  
S/R*D + S*D 

B*D 

Insert 2*D D log B + 
2*B*D 

2*D + 3*D logF B 4*D 

Delete 2*B*D D log B + 
2*B*D 

D logF B + 
+ 2*B*D  

3*D+2*B
*D  



Index Classifications 
• What should be in a Data Entry k* ? 

– Possibilities: 
• The data record itself with key value k 
• <k, rid of data record with key value k> 
• <k, list of rids of data records with key value k> 

– Variable size data entries 

– Applies to any indexing technique 

• Primary vs Secondary 
– Primary index : search key contains primary key 
– Unique Index : search key contains candidate key 

• Clustered vs unclustered 
– Clustered index: order of data records same or close 

to order of data entries 

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 17 



Clustered vs Unclustered Index 

• Suppose data records are stored in a Heap file. 
–  To build clustered index, first sort the Heap file (with 

some free space on each page for future inserts).   
– Overflow pages may be needed for inserts.  (Thus, 

order of data recs is `close to’, but not identical to, the 
sort order.) 
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Index entries 

Data entries 

direct search for  

(Index File) 

(Data file) 

Data Records 

data entries 

Data entries 

Data Records 

CLUSTERED UNCLUSTERED 



Clustered File 

• An index where the data entry contains the data record itself (cf. 
just the key value, RID pair). 

• No heap/sorted file is used, the index IS the file of record 
• Steps to build a clustered file: 

– Sort data records 
– Partition into pages 
– Build the tree on the pages 
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Tree-based index 

 

File 



Analysis of Clustered Files 
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Op Worst Case 
Analysis 

Scans B*D 

Point 
Query 

D logF B 

Range 
Query 

D logF B +  
S/R *D 

Insert 3*D logF B 

Delete 2*D logF B 

• B+ tree search for the desired index page 
• Binary search for the desired record within the 
index page 

• Let S be the number of records in the result   
• B+ tree search for the desired index page 
• Fetch the next S/R index leaf pages which contains 
the data records as well 

• B+ tree search to find index page for the insertion 
point 
• create a data entry for the inserted record in the 
index page. In worst case, index page has no extra 
space and page split cascades up. Write index pages 

• B+ tree search for the desired index page and 
record 
• Delete the record 
• In the worst case, the index page is underfilled after 
deletion and needs to be rebalanced 



Running Comparison 
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Op Heap Sorted Heap+Tree Heap+H
ash 

Clustered 
File 

Scans B*D B*D B*D B*D B*D 

Point 
Query 

B*D 
 

D log B D logF B + D 2*D D logF B 

Range 
Query 

B*D 
 

D log B +  
S/R*D 

D logF B +  
S/R*D + S*D 

B*D D logF B +  
S/R *D 

Insert 2*D D log B + 
2*B*D 

2*D + 3*D 
logF B 

4*D 3*D logF B 

Delete 2*B*D D log B + 
2*B*D 

D logF B + 
+ 2*B*D  

3*D+2*
B*D  

2*D logF B 


