
ICS 321 Fall 2011

Overview of Storage & Indexing (ii)

Asst. Prof. Lipyeow Lim

Information & Computer Science Department

University of Hawaii at Manoa

11/14/2011 1 Lipyeow Lim -- University of Hawaii at Manoa

Analysis of Heap File Storage

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 2

Operation Worst Case
Analysis

Scans B*(D + R*C)

Point
Query

B*(D + R*C)

Range
Query

B*(D + R*C)

Insert 2*D + C

Delete 2* B * (D +
R*C)

• Fetch all B pages from disk into memory
• Process each record on each page

• In the worst case, the desired record is the
last record on the last page

• Since file is unsorted, the desired records can
be anywhere in the file, so we have to scan the
entire file.

• Insert at the end of the file.
• Read in the last page
• Add record
• Write the page back

• Search for the record to be deleted
• Delete the record
• Move all subsequent records & pages forward.

Analysis of Heap File Storage (Disk Only)

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 3

Operation Worst Case
Analysis

Scans B*D

Point
Query

B*D

Range
Query

B*D

Insert 2*D

Delete 2*B*D

• Fetch all B pages from disk into memory
• Process each record on each page

• In the worst case, the desired record is the
last record on the last page

• Since file is unsorted, the desired records can
be anywhere in the file, so we have to scan the
entire file.

• Insert at the end of the file.
• Read in the last page
• Add record
• Write the page back

• Search for the record to be deleted
• Delete the record
• Move all subsequent records & pages forward.

Deleting a Record

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 4

File

Memory

Record to be deleted

Analysis of Sorted File Storage

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 5

Op Worst Case
Analysis

Scans B*(D + R*C)

Point
Query

D log B + C log R

Range
Query

D log B + C log R
+ S/R*D +
S*C

Insert D log B + C log R
+ 2*B*(D + R*C)

Delete D log B + C log R
+ 2*B*(D + R*C)

• Fetch all B pages from disk into memory
• Process each record on each page

• Binary search for the desired page
• Binary search for the desired record within
the page

• Let S be the number of records in the result
• Binary search for the desired page and record
• Fetch the next S records

• Binary search to insertion point
• In worst case, page has no extra space, so
page is split
• Move all subsequent pages back

• Search for the record to be deleted
• Delete the record
• Move all subsequent pages forward

Heap vs Sorted File

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 6

Op Heap Sorted

Scans B*D B*D

Point
Query

B*D

D log B

Range
Query

B*D

D log B +
S/R*D

Insert 2*D D log B +
2*B*D

Delete 2*B*D D log B +
2*B*D

Indexes
• An index on a file speeds up selections on the

search key fields for the index.
– Any subset of the fields of a relation can be the search

key for an index on the relation.
– Search key is not the same as key (minimal set of fields

that uniquely identify a record in a relation).

• An index contains a collection of data entries, and
supports efficient retrieval of all data entries k*
with a given key value k.
– A data entry is usually in the form <key, rid>
– Given data entry k*, we can find record with key k in

at most one disk I/O. (Details soon …)

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 7

B+ Tree Indexes

• Leaf pages contain data entries, and are chained (prev & next)

• A data entry typically contain a key value and a rid.

• Non-leaf pages have index entries; only used to direct searches:

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 8

Non-leaf

Pages

Pages

(Sorted by search key)

Leaf

P 0 K 1 P 1 K 2 P 2 K m P m

index entry

Example B+ Tree

• Find 28*? 29*? All > 15* and < 30*
• Insert/delete: Find data entry in leaf, then

change it. Need to adjust parent sometimes.
– And change sometimes bubbles up the tree

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 9

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

Note how data entries

in leaf level are sorted

Point Queries using B+ Trees
• Use index to find 30*

• Request tuple from buffer manager

• If not in bufferpool, fetch page from
disk

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 10

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

SELECT *
FROM Employees
WHERE age=30

Assume heap file
data storage

Range Queries using B+ Trees
• Use index to find 30*

• For each data entry to the right of 30*

• Request tuples from buffer manager

• If not in bufferpool, fetch page from disk

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 11

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

SELECT *
FROM Employees
WHERE age>30

Assume heap file
data storage

Analysis of Heap File with B+Tree Index

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 12

Op Worst Case
Analysis

Scans B*D

Point
Query

D logF B + D

Range
Query

D logF B +
S/R *D +
S*D

Insert 2*D + 3*D*
logF B

Delete D logF B +
+ 2*B*D

• B+ tree search for the desired index page
• Binary search for the desired record within the
index page
•Fetch the data page

• Let S be the number of records in the result
• B+ tree search for the desired index page
• Fetch the next S/R index leaf pages
• Fetch the data pages for the S records

• Insert record to end of heap file
• B+ tree search to find index page for the inserted
record
• create a data entry for the inserted record in the
index page. In worst case, index page has no extra
space and page split cascades up. Write index pages

• B+ tree search for the desired index page and
record
• Fetch the data page and delete the record
• In the worst case, data page is empty after deletion
and needs to be removed from heap file

Assume index page density =
data page density

Running Comparison

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 13

Op Heap Sorted Heap+Tree

Scans B*D B*D B*D

Point
Query

B*D

D log B D logF B + D

Range
Query

B*D

D log B +
S/R*D

D logF B +
S/R *D +
S*D

Insert 2*D D log B +
2*B*D

2*D + 3*D*
logF B

Delete 2*B*D D log B +
2*B*D

D logF B +
+ 2*B*D

Hash-Based Indexes

• Index is a collection of buckets that contain data entries
– Bucket = primary page plus zero or more overflow pages.

• Hashing function h: h(r) = bucket in which (data entry for)
record r belongs. h looks at the search key fields of r.

• No “index entries” in this scheme.

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 14

H1(age)

File

Value for age

Hash Index on Age

30 45 56 41 20 25 20 25

Overflow

page

Analysis of Heap File with Hash Index

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 15

Op Worst Case
Analysis

Scans B*D

Point
Query

2*D

Range
Query

B*D

Insert 4*D

Delete 3*D +
2*B*D

• Hash search for the desired index page
• Linear search for the desired record within the index
page
•Fetch the data page

• Hash index does not support range queries
• Fall back on scanning the heap file

• Insert record to end of heap file
• Hash search to find index page for the inserted
record
• Create a data entry for the inserted record in the
index page.
• Write index page back to disk

• Hash search for the desired index page and record
• Fetch the data page, delete the record
• In the worst case, pages need to be moved forward
• update index page and write back to disk

Running Comparison

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 16

Op Heap Sorted Heap+Tree Heap+H
ash

Scans B*D B*D B*D B*D

Point
Query

B*D

D log B D logF B + D 2*D

Range
Query

B*D

D log B +
S/R*D

D logF B +
S/R*D + S*D

B*D

Insert 2*D D log B +
2*B*D

2*D + 3*D logF B 4*D

Delete 2*B*D D log B +
2*B*D

D logF B +
+ 2*B*D

3*D+2*B
*D

Index Classifications
• What should be in a Data Entry k* ?

– Possibilities:
• The data record itself with key value k
• <k, rid of data record with key value k>
• <k, list of rids of data records with key value k>

– Variable size data entries

– Applies to any indexing technique

• Primary vs Secondary
– Primary index : search key contains primary key
– Unique Index : search key contains candidate key

• Clustered vs unclustered
– Clustered index: order of data records same or close

to order of data entries

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 17

Clustered vs Unclustered Index

• Suppose data records are stored in a Heap file.
– To build clustered index, first sort the Heap file (with

some free space on each page for future inserts).
– Overflow pages may be needed for inserts. (Thus,

order of data recs is `close to’, but not identical to, the
sort order.)

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 18

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

Clustered File

• An index where the data entry contains the data record itself (cf.
just the key value, RID pair).

• No heap/sorted file is used, the index IS the file of record
• Steps to build a clustered file:

– Sort data records
– Partition into pages
– Build the tree on the pages

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 19

Tree-based index

File

Analysis of Clustered Files

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 20

Op Worst Case
Analysis

Scans B*D

Point
Query

D logF B

Range
Query

D logF B +
S/R *D

Insert 3*D logF B

Delete 2*D logF B

• B+ tree search for the desired index page
• Binary search for the desired record within the
index page

• Let S be the number of records in the result
• B+ tree search for the desired index page
• Fetch the next S/R index leaf pages which contains
the data records as well

• B+ tree search to find index page for the insertion
point
• create a data entry for the inserted record in the
index page. In worst case, index page has no extra
space and page split cascades up. Write index pages

• B+ tree search for the desired index page and
record
• Delete the record
• In the worst case, the index page is underfilled after
deletion and needs to be rebalanced

Running Comparison

11/14/2011 Lipyeow Lim -- University of Hawaii at Manoa 21

Op Heap Sorted Heap+Tree Heap+H
ash

Clustered
File

Scans B*D B*D B*D B*D B*D

Point
Query

B*D

D log B D logF B + D 2*D D logF B

Range
Query

B*D

D log B +
S/R*D

D logF B +
S/R*D + S*D

B*D D logF B +
S/R *D

Insert 2*D D log B +
2*B*D

2*D + 3*D
logF B

4*D 3*D logF B

Delete 2*B*D D log B +
2*B*D

D logF B +
+ 2*B*D

3*D+2*
B*D

2*D logF B

