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PK and FK Constraints 
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CREATE TABLE   Studio ( 

 name CHAR(30) NOT NULL PRIMARY KEY, 

 address  VARCHAR(255), 

 presC#  INT REFERENCES MovieExec(cert#) ) 

CREATE TABLE   Studio ( 

 name CHAR(30) NOT NULL, 

 address  VARCHAR(255), 

 presC#  INT, 

 PRIMARY KEY(name), 

          FOREIGN KEY(presC#)  

  REFERENCES MovieExec(cert#) ) 

Cert# must be 
declared with 

PRIMARY KEY or 
UNIQUE constraint 



Maintaining Referential Integrity 

• INSERT INTO studio VALUES (...) 

• UPDATE studio SET presC#=? ... 

• DELETE FROM MovieExec WHERE 
... 

• UPDATE MovieExec SET cert#=? 
... 
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CREATE TABLE   Studio ( 

 name CHAR(30) NOT NULL PRIMARY KEY, 

 address  VARCHAR(255), 

 presC#  INT REFERENCES MovieExec(cert#) ) 

If new presC# value 
does not exist in 

MovieExec, reject! 

If deleted cert# values are 
used in studio, reject! 

If old cert# values are used in 
studio, reject! 



Other Options for Referential Integrity 

• CASCADE : changes to referenced attributes are 
mimicked at FK. 

• SET NULL : changes to referenced attributes makes 
affected FK null 

• DEFERABLE : checking can wait till end of transaction 
– INITIALLY DEFERRED : defer checking 
– INITIALLY IMMEDIATE : check immediately 
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CREATE TABLE   Studio ( 

 name CHAR(30) NOT NULL PRIMARY KEY, 

 address  VARCHAR(255), 

 presC#  INT REFERENCES MovieExec(cert#)  

   ON DELETE SET NULL 

   ON UPDATE CASCADE ) 



Check Constraints 

• Attribute, tuple-based, multi-table 

• Syntax:  CHECK conditional-expression 
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CREATE TABLE   Studio ( 

 name CHAR(30) NOT NULL PRIMARY KEY, 

 address  VARCHAR(255), 

 presC#  INT REFERENCES MovieExec(cert#)  

   CHECK ( presC# >=100000 ) ) 

CREATE TABLE   MovieStar ( 

 name CHAR(30) NOT NULL PRIMARY KEY, 

 address  VARCHAR(255), 

 gender CHAR(1), birthdate DATE, 

 CHECK ( gender = ‘F’ OR name NOT LIKE ‘Ms.%’ ) ) 



Naming Constraints 

• Constraints can be named, so that you can 
refer to them in alter table statements 
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CREATE TABLE   Studio ( 

 name CHAR(30) CONSTRAINT nameiskey PRIMARY KEY, 

 address  VARCHAR(255), 

 presC#  INT REFERENCES MovieExec(cert#)  

  CONSTRAINT sixdigit CHECK ( presC# >=100000 ) ) 

ALTER TABLE Studio DROP CONSTRAINT nameiskey; 

ALTER TABLE Studio ADD CONSTRAINT nameiskey  

   PRIMARY KEY(name) ; 



Constraints over Multiple Tables 

• Example: number of boats + number of sailors 
< 100  
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CREATE TABLE   Sailors ( sid  INTEGER, sname  CHAR(10), 

 rating  INTEGER, age  REAL, PRIMARY KEY  (sid), 

 CHECK  (  

  (SELECT COUNT (S.sid) FROM Sailors S) 

  + (SELECT COUNT (B.bid) FROM Boats B) < 100 ) 

• When is the constraint enforced ? 

• What happens if the sailors table is empty ? 

• Think of a case when the constraint is violated 
but the system never catches it.  

 



CREATE ASSERTION 

• Allows constraints that are not associated with 
any table. 

• Evaluated whenever tables in the condition 
are updated 
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CREATE ASSERTION  smallClub 

CHECK  (  

 (SELECT COUNT (S.sid) FROM Sailors S) 
 + (SELECT COUNT (B.bid) FROM Boats B) < 100 )  



Triggers 

• Trigger: procedure that starts automatically if 
specified changes occur to the DBMS 

• Three parts: 

– Event (activates the trigger) 

– Condition (tests whether the triggers should run) 

– Action (what happens if the trigger runs) 
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Example of a Trigger 

• Why is “NewSailors” needed ? 
• What is the difference between a constraint and a 

trigger ? 
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CREATE TRIGGER youngSailorUpdate 

 AFTER INSERT ON SAILORS 

REFERENCING NEW TABLE NewSailors 

FOR EACH STATEMENT 

 INSERT 

  INTO YoungSailors(sid, name, age, rating) 

  SELECT sid, name, age, rating 

  FROM NewSailors N 

  WHERE N.age <= 18 



Another Example of a Trigger 

• Create a trigger that will cause an error when an 
update occurs that would result in a salary 
increase greater than ten percent of the current 
salary.  
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CREATE TRIGGER RAISE_LIMIT  

 AFTER UPDATE OF SALARY ON EMPLOYEE 

REFERENCING NEW AS N OLD AS O  

FOR EACH ROW  

 WHEN (N.SALARY > 1.1 * O.SALARY)  

 SIGNAL SQLSTATE '75000'  

 SET MESSAGE_TEXT='Salary increase>10%' 



Views 

• A view is just a relation, but we store a definition, 
rather than a set of tuples. 

• Views can be dropped using the DROP VIEW 
command. 

• What if table that the view is dependent on is 
dropped ? 
• DROP TABLE command has options to let the 

user specify this. 
 

CREATE  VIEW  YoungActiveStudents (name, grade) AS   
 SELECT   S.name, E.grade 

 FROM  Students S, Enrolled E 

 WHERE  S.sid = E.sid and S.age<21 
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Querying Views 
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CREATE  VIEW  YoungActiveStudents (name, grade) AS   
 SELECT   S.name, E.grade 

 FROM  Students S, Enrolled E 

 WHERE  S.sid = E.sid and S.age<21 

SELECT   name 

FROM  YoungActiveStudents 

WHERE  grade = ‘A’ 

SELECT   name 
FROM (SELECT   S.name, E.grade 
 FROM  Students S, Enrolled E 
 WHERE  S.sid = E.sid and S.age<21) 
WHERE  grade = ‘A’ 

Query views as with 
any table 

Conceptually, 
you can think of 
rewriting using 

a subquery 



Updateable Views 
• In general views are not updateable. Why? 
• A view on R is updateable when 

– WHERE : must not involve R in a subquery 
– FROM : only one occurrence of R and no joins. 
– SELECT : include enough attributes to fill out other 

attributes in R 

11/07/2011 Lipyeow Lim -- University of Hawaii at Manoa 14 

CREATE  VIEW  ParamountMovies AS   
  SELECT   title, year 
  FROM  movies 
  WHERE  studioName=‘Paramount’ 

INSERT INTO  ParamountMovies  
 VALUES (‘Star Trek’, 1979)   

INSERT INTO  Movies ( title, year )  
 VALUES (‘Star Trek’, 1979)   

SELECT * 
FROM ParamountMovies 



Indexes in SQL 
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SELECT *  

FROM Movies 

WHERE studioName=‘Disney’  AND year=1990 

Title Year Length Genre studio
Name 

produc
erC# 

... 

1990 

10,000 rows 

 

200 movies are made in 1990 

An index on attribute A is a data structure that makes it 
efficient to find those tuples that have a fixed value for 

attribute A 



Creating Indexes 

• Clustered Index : an index on an attribute that the 
tuples are sorted in. 

• If a primary key is specified in the CREATE TABLE 
statement, an (unclustered) index is automatically 
created for the PK.  

• To create a clustered PK index: 
– Create table without PK constraint 
– Create index on PK with cluster option 
– Alter table to add PK constraint 

• To get rid of unused indexes: DROP INDEX myIdx; 
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CREATE INDEX myIdx ON mytable(col1, col3) 

CREATE UNIQUE INDEX myUniqIdx ON mytable(col2, col5) 

CREATE INDEX myIdx ON mytable(col1, col3) CLUSTER 



Materialized Views 

• Views can be “materialized” for efficiency 

• Updating the materialized view (materialized 
query table in DB2) : incremental or batch 
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CREATE  VIEW  ParamountMovies AS   
  SELECT   title, year 
  FROM  movies 
  WHERE  studioName=‘Paramount’ 

CREATE  TABLE  ParamountMovies AS   
  (SELECT   title, year 
  FROM  movies 
  WHERE  studioName=‘Paramount’) 

SELECT   title 
FROM  movies 
WHERE  studioName=‘Paramount’  
AND year=1990) 

Queries on base relation 
may be able to exploit 

materialized views! 


