
ICS 321 Fall 2011

Constraints, Triggers, Views & Indexes

Asst. Prof. Lipyeow Lim

Information & Computer Science Department

University of Hawaii at Manoa

11/07/2011 1 Lipyeow Lim -- University of Hawaii at Manoa

PK and FK Constraints

11/07/2011 Lipyeow Lim -- University of Hawaii at Manoa 2

CREATE TABLE Studio (

 name CHAR(30) NOT NULL PRIMARY KEY,

 address VARCHAR(255),

 presC# INT REFERENCES MovieExec(cert#))

CREATE TABLE Studio (

 name CHAR(30) NOT NULL,

 address VARCHAR(255),

 presC# INT,

 PRIMARY KEY(name),

 FOREIGN KEY(presC#)

 REFERENCES MovieExec(cert#))

Cert# must be
declared with

PRIMARY KEY or
UNIQUE constraint

Maintaining Referential Integrity

• INSERT INTO studio VALUES (...)

• UPDATE studio SET presC#=? ...

• DELETE FROM MovieExec WHERE
...

• UPDATE MovieExec SET cert#=?
...

11/07/2011 Lipyeow Lim -- University of Hawaii at Manoa 3

CREATE TABLE Studio (

 name CHAR(30) NOT NULL PRIMARY KEY,

 address VARCHAR(255),

 presC# INT REFERENCES MovieExec(cert#))

If new presC# value
does not exist in

MovieExec, reject!

If deleted cert# values are
used in studio, reject!

If old cert# values are used in
studio, reject!

Other Options for Referential Integrity

• CASCADE : changes to referenced attributes are
mimicked at FK.

• SET NULL : changes to referenced attributes makes
affected FK null

• DEFERABLE : checking can wait till end of transaction
– INITIALLY DEFERRED : defer checking
– INITIALLY IMMEDIATE : check immediately

11/07/2011 Lipyeow Lim -- University of Hawaii at Manoa 4

CREATE TABLE Studio (

 name CHAR(30) NOT NULL PRIMARY KEY,

 address VARCHAR(255),

 presC# INT REFERENCES MovieExec(cert#)

 ON DELETE SET NULL

 ON UPDATE CASCADE)

Check Constraints

• Attribute, tuple-based, multi-table

• Syntax: CHECK conditional-expression

11/07/2011 Lipyeow Lim -- University of Hawaii at Manoa 5

CREATE TABLE Studio (

 name CHAR(30) NOT NULL PRIMARY KEY,

 address VARCHAR(255),

 presC# INT REFERENCES MovieExec(cert#)

 CHECK (presC# >=100000))

CREATE TABLE MovieStar (

 name CHAR(30) NOT NULL PRIMARY KEY,

 address VARCHAR(255),

 gender CHAR(1), birthdate DATE,

 CHECK (gender = ‘F’ OR name NOT LIKE ‘Ms.%’))

Naming Constraints

• Constraints can be named, so that you can
refer to them in alter table statements

11/07/2011 Lipyeow Lim -- University of Hawaii at Manoa 6

CREATE TABLE Studio (

 name CHAR(30) CONSTRAINT nameiskey PRIMARY KEY,

 address VARCHAR(255),

 presC# INT REFERENCES MovieExec(cert#)

 CONSTRAINT sixdigit CHECK (presC# >=100000))

ALTER TABLE Studio DROP CONSTRAINT nameiskey;

ALTER TABLE Studio ADD CONSTRAINT nameiskey

 PRIMARY KEY(name) ;

Constraints over Multiple Tables

• Example: number of boats + number of sailors
< 100

11/07/2011 Lipyeow Lim -- University of Hawaii at Manoa 7

CREATE TABLE Sailors (sid INTEGER, sname CHAR(10),

 rating INTEGER, age REAL, PRIMARY KEY (sid),

 CHECK (

 (SELECT COUNT (S.sid) FROM Sailors S)

 + (SELECT COUNT (B.bid) FROM Boats B) < 100)

• When is the constraint enforced ?

• What happens if the sailors table is empty ?

• Think of a case when the constraint is violated
but the system never catches it.

CREATE ASSERTION

• Allows constraints that are not associated with
any table.

• Evaluated whenever tables in the condition
are updated

11/07/2011 Lipyeow Lim -- University of Hawaii at Manoa 8

CREATE ASSERTION smallClub

CHECK (

 (SELECT COUNT (S.sid) FROM Sailors S)
 + (SELECT COUNT (B.bid) FROM Boats B) < 100)

Triggers

• Trigger: procedure that starts automatically if
specified changes occur to the DBMS

• Three parts:

– Event (activates the trigger)

– Condition (tests whether the triggers should run)

– Action (what happens if the trigger runs)

11/07/2011 Lipyeow Lim -- University of Hawaii at Manoa 9

Example of a Trigger

• Why is “NewSailors” needed ?
• What is the difference between a constraint and a

trigger ?

11/07/2011 Lipyeow Lim -- University of Hawaii at Manoa 10

CREATE TRIGGER youngSailorUpdate

 AFTER INSERT ON SAILORS

REFERENCING NEW TABLE NewSailors

FOR EACH STATEMENT

 INSERT

 INTO YoungSailors(sid, name, age, rating)

 SELECT sid, name, age, rating

 FROM NewSailors N

 WHERE N.age <= 18

Another Example of a Trigger

• Create a trigger that will cause an error when an
update occurs that would result in a salary
increase greater than ten percent of the current
salary.

11/07/2011 Lipyeow Lim -- University of Hawaii at Manoa 11

CREATE TRIGGER RAISE_LIMIT

 AFTER UPDATE OF SALARY ON EMPLOYEE

REFERENCING NEW AS N OLD AS O

FOR EACH ROW

 WHEN (N.SALARY > 1.1 * O.SALARY)

 SIGNAL SQLSTATE '75000'

 SET MESSAGE_TEXT='Salary increase>10%'

Views

• A view is just a relation, but we store a definition,
rather than a set of tuples.

• Views can be dropped using the DROP VIEW
command.

• What if table that the view is dependent on is
dropped ?
• DROP TABLE command has options to let the

user specify this.

CREATE VIEW YoungActiveStudents (name, grade) AS
 SELECT S.name, E.grade

 FROM Students S, Enrolled E

 WHERE S.sid = E.sid and S.age<21

11/07/2011 12 Lipyeow Lim -- University of Hawaii at Manoa

Querying Views

11/07/2011 Lipyeow Lim -- University of Hawaii at Manoa 13

CREATE VIEW YoungActiveStudents (name, grade) AS
 SELECT S.name, E.grade

 FROM Students S, Enrolled E

 WHERE S.sid = E.sid and S.age<21

SELECT name

FROM YoungActiveStudents

WHERE grade = ‘A’

SELECT name
FROM (SELECT S.name, E.grade
 FROM Students S, Enrolled E
 WHERE S.sid = E.sid and S.age<21)
WHERE grade = ‘A’

Query views as with
any table

Conceptually,
you can think of
rewriting using

a subquery

Updateable Views
• In general views are not updateable. Why?
• A view on R is updateable when

– WHERE : must not involve R in a subquery
– FROM : only one occurrence of R and no joins.
– SELECT : include enough attributes to fill out other

attributes in R

11/07/2011 Lipyeow Lim -- University of Hawaii at Manoa 14

CREATE VIEW ParamountMovies AS
 SELECT title, year
 FROM movies
 WHERE studioName=‘Paramount’

INSERT INTO ParamountMovies
 VALUES (‘Star Trek’, 1979)

INSERT INTO Movies (title, year)
 VALUES (‘Star Trek’, 1979)

SELECT *
FROM ParamountMovies

Indexes in SQL

11/07/2011 Lipyeow Lim -- University of Hawaii at Manoa 15

SELECT *

FROM Movies

WHERE studioName=‘Disney’ AND year=1990

Title Year Length Genre studio
Name

produc
erC#

...

1990

10,000 rows

200 movies are made in 1990

An index on attribute A is a data structure that makes it
efficient to find those tuples that have a fixed value for

attribute A

Creating Indexes

• Clustered Index : an index on an attribute that the
tuples are sorted in.

• If a primary key is specified in the CREATE TABLE
statement, an (unclustered) index is automatically
created for the PK.

• To create a clustered PK index:
– Create table without PK constraint
– Create index on PK with cluster option
– Alter table to add PK constraint

• To get rid of unused indexes: DROP INDEX myIdx;
 11/07/2011 Lipyeow Lim -- University of Hawaii at Manoa 16

CREATE INDEX myIdx ON mytable(col1, col3)

CREATE UNIQUE INDEX myUniqIdx ON mytable(col2, col5)

CREATE INDEX myIdx ON mytable(col1, col3) CLUSTER

Materialized Views

• Views can be “materialized” for efficiency

• Updating the materialized view (materialized
query table in DB2) : incremental or batch

11/07/2011 Lipyeow Lim -- University of Hawaii at Manoa 17

CREATE VIEW ParamountMovies AS
 SELECT title, year
 FROM movies
 WHERE studioName=‘Paramount’

CREATE TABLE ParamountMovies AS
 (SELECT title, year
 FROM movies
 WHERE studioName=‘Paramount’)

SELECT title
FROM movies
WHERE studioName=‘Paramount’
AND year=1990)

Queries on base relation
may be able to exploit

materialized views!

