ICS 321 Fall 2011
 Algebraic and Logical Query Languages

Asst. Prof. Lipyeow Lim

Information \& Computer Science Department
University of Hawaii at Manoa

Relational Algebra Review

- Relations are sets of tuples - no duplicates allowed
- Basic operations:
- Selection (σ) Selects a subset of rows from relation.
- Projection (π) Deletes unwanted columns from relation.
- Cross-product (x) Allows us to combine two relations.
- Set-difference (-) Tuples in reln. 1, but not in reln. 2.
- Union (U) Tuples in reln. 1 and in reln. 2.
- Additional operations:
- Intersection, join, division, renaming: Not essential, but (very!) useful.
- Each operation returns a relation, operations can be composed! (Algebra is "closed".)

Bag Semantics

- Commercial DBMS implements relations as bags
- Avoid duplicate elimination
- Support aggregations

B		Set	
A	B	A	B
1	2	1	2
3	4	3	4
1	2		
1	2		

Can relational algebra work with bags ?

Selection \& Projection

- Expected behavior
- No duplicate elimination of results

TT age (S2)

sid	sna me	rating	age
23	Yuppy	9	35.0
31	Luhber	8	55.5
44	Guopy	5	35.0
53	Rusty	10	35.0

Cross Product \& Joins

Bag Union, Intersection \& Difference

Extended Operators

- Duplicate elimination δ
- turns a bag into a set
- Aggregation
- calculates an aggregate (sum, average etc) over the values in a column
- Grouping γ
- partitions tuples in a relation into groups based on values in some columns
- Extended projection π
- allow computation on column values to produce new values
- Sorting τ
- sorts a relation according to the values in some column(s)
- Outer join
- preserves dangling pointers in the results of joins

Aggregation

- Standard: SUM, AVG, MIN, MAX, COUNT
- DBMS supports more sophisticated functions like Variance, standard deviation etc.
- $\operatorname{SUM}(B)=2+4+2+2=10$
- $\operatorname{AVG}(A)=(1+3+1+1) / 4=1.5$
- $\operatorname{MIN}(A)=1$
- $\operatorname{MAX}(B)=4$
- $\operatorname{COUNT}(A)=4$

A	B
1	2
3	4
1	2
1	2

Grouping

Movies

| Title | Year |
| :--- | :--- | :--- |
| ing operator γ | |

- Groups tuples by some columns
- Apply aggregation function to each group
- Generate a result tuple per group

For each studio, find the total lengths of movies produced

	studioName	
	Disney	
	Disney	
	Disney	
	MGM	
	MGM	
	\circ	
	\circ	

Grouping Operator Arguments

Extended Projection

Outer Join

R		
A	B	C
1	2	3
4	5	6
7	8	9

S		
B		
C	D	
2	3	10
2	3	11
6	7	12

$R \bowtie S$
$\left.\begin{array}{|c|c|c|c|}\hline \text { A } & \text { B } & \text { C } & \text { D } \\ \hline 1 & 2 & 3 & 10 \\ 1 & 2 & 3 & 11\end{array} \begin{array}{c}\text { Discard } \\ \text { right \& left } \\ \text { dangling } \\ \text { pointers }\end{array}\right\}$
$R \propto_{L} S$

A	B	C	D
1	2	3	10
1	2	3	11
4	5	6	\perp
7	8	9	\perp

Keep left dangling pointers

A	B	C	D
1	2	3	10
1	2	3	11
4	5	6	\perp
7	8	9	\perp
\perp	6	7	12

