
ICS 321 Fall 2010

Overview of Storage & Indexing (ii)

Asst. Prof. Lipyeow Lim

Information & Computer Science Department

University of Hawaii at Manoa

11/15/2010 1Lipyeow Lim -- University of Hawaii at Manoa

Indexes
• An index on a file speeds up selections on the

search key fields for the index.
– Any subset of the fields of a relation can be the search

key for an index on the relation.
– Search key is not the same as key (minimal set of fields

that uniquely identify a record in a relation).

• An index contains a collection of data entries, and
supports efficient retrieval of all data entries k*
with a given key value k.
– A data entry is usually in the form <key, rid>
– Given data entry k*, we can find record with key k in

at most one disk I/O. (Details soon …)

11/15/2010 Lipyeow Lim -- University of Hawaii at Manoa 2

B+ Tree Indexes

• Leaf pages contain data entries, and are chained (prev & next)

• A data entry typically contain a key value and a rid.

• Non-leaf pages have index entries; only used to direct searches:

11/15/2010 Lipyeow Lim -- University of Hawaii at Manoa 3

Non-leaf

Pages

Pages

(Sorted by search key)

Leaf

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Example B+ Tree

• Find 28*? 29*? All > 15* and < 30*
• Insert/delete: Find data entry in leaf, then

change it. Need to adjust parent sometimes.
– And change sometimes bubbles up the tree

11/15/2010 Lipyeow Lim -- University of Hawaii at Manoa 4

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

Note how data entries

in leaf level are sorted

Point Queries using B+ Trees
• Use index to find 30*

• Request tuple from buffer manager

• If not in bufferpool, fetch page from
disk

11/15/2010 Lipyeow Lim -- University of Hawaii at Manoa 5

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

SELECT *
FROM Employees
WHERE age=30

Assume heap file
data storage

Range Queries using B+ Trees
• Use index to find 30*

• For each data entry to the right of 30*

• Request tuples from buffer manager

• If not in bufferpool, fetch page from disk

11/15/2010 Lipyeow Lim -- University of Hawaii at Manoa 6

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

SELECT *
FROM Employees
WHERE age>30

Assume heap file
data storage

Analysis of Heap File with B+Tree Index

11/15/2010 Lipyeow Lim -- University of Hawaii at Manoa 7

Op Worst Case
Analysis

Scans B*D

Point
Query

D logF B + D

Range
Query

D logF B +
S/R *D +
S*D

Insert 2*D + 3*D*
logF B

Delete D logF B +
+ 2*B*D

• B+ tree search for the desired index page
• Binary search for the desired record within the
index page
•Fetch the data page

• Let S be the number of records in the result
• B+ tree search for the desired index page
• Fetch the next S/R index leaf pages
• Fetch the data pages for the S records

• Insert record to end of heap file
• B+ tree search to find index page for the inserted
record
• create a data entry for the inserted record in the
index page. In worst case, index page has no extra
space and page split cascades up. Write index pages

• B+ tree search for the desired index page and
record
• Fetch the data page and delete the record
• In the worst case, data page is empty after deletion
and needs to be removed from heap file

Assume index page density =
data page density

Running Comparison

11/15/2010 Lipyeow Lim -- University of Hawaii at Manoa 8

Op Heap Sorted Heap+Tree

Scans B*D B*D B*D

Point
Query

B*D D log B D logF B + D

Range
Query

B*D D log B +
S/R*D

D logF B +
S/R *D +
S*D

Insert 2*D D log B +
2*B*D

2*D + 3*D*
logF B

Delete 2*B*D D log B +
2*B*D

D logF B +
+ 2*B*D

Hash-Based Indexes

• Index is a collection of buckets that contain data entries
– Bucket = primary page plus zero or more overflow pages.

• Hashing function h: h(r) = bucket in which (data entry for)
record r belongs. h looks at the search key fields of r.

• No “index entries” in this scheme.

11/15/2010 Lipyeow Lim -- University of Hawaii at Manoa 9

H1(age)

File

Value for age

Hash Index on Age

30 45 56 41 20 25 20 25

Overflow

page

Analysis of Heap File with Hash Index

11/15/2010 Lipyeow Lim -- University of Hawaii at Manoa 10

Op Worst Case
Analysis

Scans B*D

Point
Query

2*D

Range
Query

B*D

Insert 4*D

Delete 3*D +
2*B*D

• Hash search for the desired index page
• Linear search for the desired record within the index
page
•Fetch the data page

• Hash index does not support range queries
• Fall back on scanning the heap file

• Insert record to end of heap file
• Hash search to find index page for the inserted
record
• Create a data entry for the inserted record in the
index page.
• Write index page back to disk

• Hash search for the desired index page and record
• Fetch the data page, delete the record
• In the worst case, pages need to be moved forward
• update index page and write back to disk

Running Comparison

11/15/2010 Lipyeow Lim -- University of Hawaii at Manoa 11

Op Heap Sorted Heap+Tree Heap+H
ash

Scans B*D B*D B*D B*D

Point
Query

B*D D log B D logF B + D 2*D

Range
Query

B*D D log B +
S/R*D

D logF B +
S/R*D + S*D

B*D

Insert 2*D D log B +
2*B*D

2*D + 3*D logF B 4*D

Delete 2*B*D D log B +
2*B*D

D logF B +
+ 2*B*D

3*D+2*B
*D

Index Classifications
• What should be in a Data Entry k* ?

– Possibilities:
• The data record itself with key value k
• <k, rid of data record with key value k>
• <k, list of rids of data records with key value k>

– Variable size data entries

– Applies to any indexing technique

• Primary vs Secondary
– Primary index : search key contains primary key
– Unique Index : search key contains candidate key

• Clustered vs unclustered
– Clustered index: order of data records same or close

to order of data entries

11/15/2010 Lipyeow Lim -- University of Hawaii at Manoa 12

Clustered vs Unclustered Index

• Suppose data records are stored in a Heap file.
– To build clustered index, first sort the Heap file (with

some free space on each page for future inserts).
– Overflow pages may be needed for inserts. (Thus,

order of data recs is `close to’, but not identical to, the
sort order.)

11/15/2010 Lipyeow Lim -- University of Hawaii at Manoa 13

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

Clustered File

• An index where the data entry contains the data record itself (cf.
just the key value, RID pair).

• No heap/sorted file is used, the index IS the file of record
• Steps to build a clustered file:

– Sort data records
– Partition into pages
– Build the tree on the pages

11/15/2010 Lipyeow Lim -- University of Hawaii at Manoa 14

Tree-based index

File

Analysis of Clustered Files

11/15/2010 Lipyeow Lim -- University of Hawaii at Manoa 15

Op Worst Case
Analysis

Scans B*D

Point
Query

D logF B

Range
Query

D logF B +
S/R *D

Insert 3*D logF B

Delete 2*D logF B

• B+ tree search for the desired index page
• Binary search for the desired record within the
index page

• Let S be the number of records in the result
• B+ tree search for the desired index page
• Fetch the next S/R index leaf pages which contains
the data records as well

• B+ tree search to find index page for the insertion
point
• create a data entry for the inserted record in the
index page. In worst case, index page has no extra
space and page split cascades up. Write index pages

• B+ tree search for the desired index page and
record
• Delete the record
• In the worst case, the index page is underfilled after
deletion and needs to be rebalanced

Running Comparison

11/15/2010 Lipyeow Lim -- University of Hawaii at Manoa 16

Op Heap Sorted Heap+Tree Heap+H
ash

Clustered
File

Scans B*D B*D B*D B*D B*D

Point
Query

B*D D log B D logF B + D 2*D D logF B

Range
Query

B*D D log B +
S/R*D

D logF B +
S/R*D + S*D

B*D D logF B +
S/R *D

Insert 2*D D log B +
2*B*D

2*D + 3*D
logF B

4*D 3*D logF B

Delete 2*B*D D log B +
2*B*D

D logF B +
+ 2*B*D

3*D+2*
B*D

2*D logF B

