ICS 321 Fall 2010 Normal Forms

Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa

The Problem with Redundancy

Hourly_Emps

<u>SSN</u>	Name	Lot	Rating	Hourly_wages	Hours_worked
123-22-2366	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

- Suppose hourly wages are determined by rating
- Redundant storage : (8,10) stored multiple times
- Update anomaly : change hourly wages in row 1
- Insertion anomaly : requires knowing hourly wages for the rating
- **Deletion anomaly** : deleting all (8,10) loses info

Using Two Smaller Tables

Hourly_Emps

RatingWages

<u>SSN</u>	Name	Lot	Rating	Hours_ worked
123-22-2366	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

Rating	Hourly_ wages
5	7
8	10

- <u>Notation</u>: denote relation schema by listing the attributes SNLRWH
- **Update anomaly** : Can we change W for Attishoo?
- Insertion anomaly : What if we want to insert an employee and don't know the hourly wage for his rating?
- **Deletion anomaly** : If we delete all employees with rating 5, do we lose the information about the wage for rating 5?

Decomposition

Hourly_Emps

RatingWages

<u>SSN</u>	Name	Lot	Rating	Hours_ worked
123-22-2366	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

Rating	Hourly_ wages
5	7
8	10

- Remove redundancy by decomposition
 - Since hourly wage is completely determined by rating, factor out hourly wage.
- Pros: less redundancy less anomalies
- Cons: retrieving the hourly wage of an employee requires a join

Normal Forms

- Helps with the question: do we need to refine the schema ?
- If a relation is in a certain *normal form* (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized. This can be used to help us decide whether decomposing the relation will help.
- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No FDs hold: There is no redundancy here.
 - Given A → B: Several tuples could have the same A value, and if so, they'll all have the same B value!

Boyce-Codd Normal Form (BCNF)

- Let R denote a relation, X a set of attributes from R, A an attribute from R, and F the set of FDs that hold over R.
- R is in **<u>BCNF</u>** if for all $X \rightarrow A$ in F⁺,
- $-A \in X$ (trivial FD) orThe only non-trivial FDs-X is a superkeythat hold are key
constraints
 - Negation: R is not in BCNF if there exists an X
 → A in F⁺, such that A ∉ X (non-trivial FD) AND
 X is not a key

Examples: BCNF

• Are the following in BCNF ?

<u>Firstname</u>	<u>Lastname</u>	DOB	Address	Telephone	
John	Smith	Sep 9 1979	Honolulu,HI	808-343-0809	
$F= \{ FLD \rightarrow FLDAT \}$					

<u>Firstname</u>	<u>Lastname</u>	DOB	Street	CityState	Zipcode	Telephone
John	Smith	Sep 9 1979	1680 East West Rd.	Honolulu,HI	96822	808-343- 0809

 $\mathsf{F=} \{ \mathsf{FLD} \rightarrow \mathsf{FLDSCZT}, \mathsf{C} \rightarrow \mathsf{Z} \}$

Third Normal Form (3NF)

- Let R denote a relation, X a set of attributes from R, A an attribute from R, and F the set of FDs that hold over R.
- R is in <u>**3NF</u>** if for all $X \rightarrow A$ in F⁺,</u>
 - $\mathsf{A} \in \mathsf{X}$ (trivial FD) or
 - X is a superkey or
 - A is part of some key
- Negation: R is not in 3NF if there exists an X → A in F⁺, such that A ∉ X (non-trivial FD) AND X is not a key AND A is not part of some key
- If R is in BCNF, obviously in 3NF.
- If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no ``good" decomp, or performance considerations).

Example: 3NF

• Which of the following is in 3NF and which in BCNF?

<u>Firstname</u>	<u>Lastname</u>	DOB	Address	Telephone
John	Smith	Sep 9 1979	Honolulu,HI	808-343-0809

$\mathsf{F=} \{ \mathsf{FLD} \to \mathsf{FLDAT} \}$

<u>Firstname</u>	<u>Lastname</u>	DOB	Street	CityState	Zipcode	Telephone
John	Smith	Sep 9 1979	1680 East West Rd.	Honolulu,HI	96822	808-343- 0809

 $\mathsf{F=} \{ \mathsf{FLD} \rightarrow \mathsf{FLDSCZT}, \mathsf{C} \rightarrow \mathsf{Z} \}$

Student	Course	Instructor
Smith	OS	Mark

 $\mathsf{F=} \{ \: \mathsf{SC} \to \mathsf{I}, \: \mathsf{I} {\to} \mathsf{C} \: \}$