Multi-Dimensional Clustering: A New Data Layout Scheme
in DB2

_ Sriram Padmanabhan
Bishwaranjan Bhattacharjee
Tim Malkemus
IBM T.J. Watson Research Center
19 Skyline Drive
Hawthorne, New York, USA

{srp,bhatta,malkemus}@us.ibm.com

ABSTRACT

We describe the design and implementation of a new data
layout scheme, called multi-dimensional clustering, in DB2
Universal Database Version 8. Many applications, e.g., OLAP
and data warehousing, process a table or tables in a database
using a multi-dimensional access paradigm. Currently, most
database systems can only support organization of a table
using a primary clustering index. Secondary indexes are cre-
ated to access the tables when the primary key index is not
applicable. Unfortunately, secondary indexes perform many
random I/O accesses against the table for a simple opera-
tion such as a range query. Our work in multi-dimensional
clustering addresses this important deficiency in database
systems. Multi-Dimensional Clustering is based on the def-
inition of one or more orthogonal clustering attributes (or
expressions) of a table. The table is organized physically
by associating records with similar values for the dimension
attributes in a cluster. We describe novel techniques for
maintaining this physical layout efficiently and methods of
processing database operations that provide significant per-
formance improvements. We show results from experiments
using a star-schema database to validate our claims of per-
formance with minimal overhead.

1. INTRODUCTION

We report on the design and implementation of a new
data layout scheme in DB2 Universal Database Version 8
called Multi-Dimensional Clustering(MDC) [1]. Logically,
every database schema defines a large multidimensional cube
containing the active domains of its attributes. Many appli-
cations, OLAP and data warehousing in particular, usually
consider several of these attributes as dimensions for pro-
cessing and maintenance. For example, a retail warehouse
contains dimension attributes based on time, region, cus-
tomer, product, forecast, and others [6]. Applications and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD 2003, June 9-12, 2003, San Diego, CA.

Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

634

Leslie Cranston
Matthew Huras
IBM Toronto Laboratory
Markham, Ontario, Canada

{lesliew,hurasy@ca.ibm.com

users access data from this database using subsets of dimen-
sions. These access patterns can be considered as selecting
regions from the large multidimensional cube.

Most commercial database systems now include primary
clustering indexes in their repertoire [3, 5]. In this scheme,
an index composed of one or more keyparts is identified as
the basis for data clustering. All records are organized based
on their attribute values for these index keyparts. Two
records are placed physically close to each other if the at-
tributes defining the clustering index keyparts have similar
values. Note that the clustering index typically contains one
entry for each record. In our terminology, these clustering
indexes provide unidimensional physical clustering of data.
Records are clustered in the order of the index keyparts.
When a query contains predicates on attributes in the index
but not conforming to the primary order, it requires skip se-
quential accesses of the data. These skip sequential accesses
can generate significant 1/O seek times as the scan jumps
between pages on disk. In many cases, it may be cheaper
to perform such accesses using a different secondary index
or using a table scan method. Several relational database
systems also support a coarser grain range-partitioning tech-
nology [5, 4]. Most of these mechanisms are also fairly uni-
dimensional and provide rigid syntax that introduces many
manageablility issues if they are to be extended to multiple
orthogonal dimensions.

OLAP systems recognized this problem of relational databases

and provide a solution that physically organizes the data in
some multidimensional cube form [2]. A request to find re-
gions in this cube is easily satisfied by OLAP systems. How-
ever, these systems usually suffer from sparsity and scalabil-
ity problems. OLAP systems organize data by maintaining a
physical cell for each possible dimension combination. When
data elements are sparse, this results in many empty base
cells and introduces significant space wastage. On the other
hand, scalability and ability to address sparsity are strengths
of relational databases. It is to be noted that there are many
reasearch publications dealing with spatial clustering. We
do not claim to invent a radically different idea for cluster-
ing. Instead, we extend basic research ideas to practically
surmount the problem of providing efficient clustering us-
ing multiple attributes and describe the various processing
techniques that are implemented to take advantage of this
scheme.

We would like a scheme that maintains the robustness

and scalability provided by relational database systems but
is able to provide efficiency for multidimensional data ac-
cess. This is the main design goal behind MDC. An MDC
table is defined to include one or more clustering dimensions.
Unlike the unidimensional primary clustering index, we sup-
port a physical layout that mimics a multi-dimensional cube
by associating a physical region for each unique combination
of dimension attribute values. Records containing the same
unique values for dimension attributes are clustered in one
or more regions called blocks. These blocks are the units of
addressability for our clusters. We provide a higher granu-
larity indexing scheme, called block indezes, to address these
blocks. Block indexes are quite compact since they identify
several records using one entry. In all other aspects, block
indexes resemble regular B-tree indexes. We also associate a
data structure called the Block Map to maintain information
about the state of blocks in a table. We will describe the or-
ganization of the table and these data structures in more de-
tail. New techniques for query processing and maintenance
operations using these data strucutures are overviewed. We
present experimental results showing the effectiveness of this
data layout scheme.

The rest of this paper is organized as follows. Section 2
describes the overview of our MDC scheme describing the
data layout as well as the auxiliary data structures. Sec-
tion 3 describes the basic aspects of choosing dimensions
and organizing an MDC table. Section 4 describes the new
query processing techniques that are made possible using the
MDC data layout. Section 5 describes some of the mainte-
nance related aspects of our scheme. Section 6 describes
results from experiments comparing a table using the MDC
layout against a table clustered by a primary clustering in-
dex. Section 7 provides a conclusion.

2. MDC OVERVIEW

This section provides a brief overview of the main features
of MDC. Using this feature, a DB2 table may be created
by specifying one or more keys as dimensions along which
to cluster the table’s data. We have created a new clause
called ORGANIZE BY DIMENSIONS for this purpose. For ex-
ample, the following DDL describes a Sales table organized
by storeld, year(orderDate), and itemId attributes as
dimensions.

CREATE TABLE Sales(

int storeld,
date orderDate,
int region,
int itemId,

float price
int year0d generated always as year (orderDate))
ORGANIZE BY DIMENSIONS (region, year0Od, itemId)

Each of these dimensions may consist of one or more
columns, similar to index keys. In fact, a ‘dimension block
index’ will be automatically created for each of the dimen-
sions specified and will be used to quickly and efficiently ac-
cess data. A composite block index will also be created auto-
matically if necessary, containing all dimension key columns,
and will be used to maintain the clustering of data over in-
sert and update activity.

Every unique combination of dimension values forms a
logical ‘cell’, which is physically organized as blocks of pages,
where a block is a set of consecutive pages on disk. The

635

Mexicq g7, \ 1998,
Mexico, MEX2ICD,
1 1997, 17
a Mexico, Mexico?
g \ 2 2 /
“Bh
[A 1997, 1998
{=1 anadd canad’a, \ / canad’ﬂs
1 ‘ B 2
1907, | (31) ©

GzD)

Figure 1: Logical view of physical layout of an MDC
table

set of blocks that contain pages with data having a certain
key value of one of the dimension block indexes is called a
‘slice’. Every page of the table is part of exactly one block,
and all blocks of the table consist of the same number of
pages, viz., the blocksize. In DB2, we have associated the
block size with the extent size of the tablespace so that block
boundaries line up with extent boundaries.

Figure 1 illustrates these concepts. This MDC table is
clustered along the dimensions year (orderDate)?!, region,
and itemId. The figure shows a simple logical cube with
only two values for each dimension attribute. In reality,
dimension attributes can easily extend to large numbers of
values without requiring any administration. Logical cells
are represented by the sub-cubes in the figure. Records in
the table are stored in blocks, which contain an extent’s
worth of consecutive pages on disk. In the diagram, a block
is represented by a shaded oval, and is numbered according
to the logical order of allocated extents in the table. We
only show a few blocks of data for the cell identified by the
dimension values <1997,Canada,2>. A column or row in
the grid represents a slice for a particular dimension. For
example, all records containing the value ‘Canada’ in the
region dimension are found in the blocks contained in the
slice defined by the ‘Canada’ column in the cube. In fact,
each block in this slice only contains records having ‘Canada’
in the region field.

Block Indexes

In our example, a dimension block index is created on each of
the year (orderDate), region, and itemId attributes. Each
dimension block index is structured in the same manner as a
traditional B-tree index except that at the leaf level the keys
point to a block Identifier (BID) instead of a record identifier
(RID). Since each block contains potentially many pages
of records, these block indexes are much smaller than RID
indexes and need only be updated whenever a new block is
added to a cell or existing blocks are emptied and removed
from a cell. A slice, or the set of blocks containing pages

'Dimensions can be created using Rollup functions as ex-
plained in Section 3

o
—_
=~
(@]

11 19

U

Figure 2: Block Map entries

with all records having a particular key value in a dimension,
will be represented in the associated dimension block index
by a BID list for that key value. The following diagram
illustrates slices of blocks for specific values of region and
itemId dimensions, respectively.

Key BID List.

‘ Canada ‘ 21‘ 31‘ 45‘ 77‘ 12* 376‘501 ‘719‘

Dimension Block Index entry for Region ‘Canada’

BID List
/

‘ 2‘ 7‘ 20‘ 65‘ 101‘ 273‘ 274‘476‘

Key

R

Dimension Block Index entry for itemld = 1

Figure 3: Block Index Key entries

In the example above, to find the slice containing all
records with 'Canada’ for the region dimension, we would
look up this key value in the region dimension block index
and find a key as shown in Figure 3(a). This key points to
the exact set of BIDs for the particular value.

Block Map

A Block Map is also associated with the table. This map
records the state of each block belonging to the table. A
block may be in a number of states including In Use, Free,
Loaded, requiring Constraint enforcement, etc. The
states of the block are used by the data management layer
in order to determine various processing options. Figure 2
shows an example blockmap for a table. Element 0 in the
block map represents block 0 in the MDC table diagram.
Its availability status is ’U’; indicating that it is in use.
However, it is a special block and does not contain any
user records. Blocks 2,3,9,10,13, 14, and 17 are not being
used in the table and are considered ’F’ or free in the block
map. Blocks 7 and 18 have recently been loaded into the ta-
ble. Block 12 was previously loaded and requires constraint
checking to be performed on it.

3. DESIGN CONSIDERATIONS

A crucial aspect of MDC is to choose the right set of di-
mensions for clustering a table as well as their proper granu-
larities and table blocksize to minimize the space utilization.
If the dimensions and blocksizes are chosen appropriately,
then clustering benefits will translate into significant per-
formance and maintenance advantages. On the other hand,
if chosen incorrectly, performance may degrade and space
utilization could be significantly worse. There are a number
of tuning knobs that can be exploited to organize the table.
These include

e Varying the number of dimensions.

636

e Varying the granularity of one or more dimensions.

e Varying the blocksize (extentsize) and pagesize of the
tablespace containing the table.

One or more of these techniques can be used jointly to iden-
tify the best organization of the table.

Identify candidate dimension attributes

The first step is to identify candidate dimension attributes
for a table. The main criterion is the need for clustering
based on the workload. The sample workload should be
examined for one or more of the following types of clauses
or conditions that are likely candidates for clustering. These
include

e Range, equality, or IN-list types of predicates on attributes.

For example, year > 1999.

Roll-in or Rollout of data. For example, Load data for
itemId=100 and delete data for year=1999.

Group By clause attributes. For example, Group By year.

Join clauses especially in a star-schema. In particular, if
the join condition is 1:N (usually because of primary key-
foreign key joins), then the column with N duplicates can
be a good candidate for dimensions.

e Order By clauses.

e Combinations of the above.

Columns that are frequently updated (by changing values)
are NOT good candidates.

Using Rollup hierarchies

Given a candidate dimension, it is possible that it leads to
relatively few duplicates for each unique combination. In
such cases, we can rollup along hierarchies and improve the
number of duplicates. For instance, suppose date is a can-
didate dimension but each date value only has roughly 10
records in the table. At this level of granularity, each block
is likely to waste a lot of space. In this case, we can rec-
ognize that dates can be rolled upto unique yearAndMonth
values. If so, each yearAndMonth will contain roughly 300
records which should be sufficient for utilizing blocks.

4. QUERY PROCESSING

One of the goals of MDC is to facilitate efficient query
processing. In particular, new processing techniques are in-
troduced to take advantage of the block oriented clustering
and indexing techniques. We briefly overview block based
processing of index scans, index ANDing, and index Oring
schemes below. There are several other processing enhance-
ments which we are unable to describe due to space con-
straints.

Block Index Scan

Consider a query such as the following one. What is the
Aggregate sales of itemId=1000 over all dates, and regions?
This query can be efficiently processed by the block index

scan operation that is newly introduced for MDC tables.
It proceeds in two steps: (i) scan the block index to find
a Block ID that satisfies the query predicate. (ii) Process
all the records in this block. This might involve additional
predicates. The Block Scan operation is most effective when
all or most of a block or entire sets of blocks need to be
processed for a given query. This will involve just one I/O
per block as it is stored as an extent on disk and can be
read into the bufferpool as a unit. If the predicates for the
query are only on dimension values, we need only apply the
predicates on one record in the block due to the inherent
clustering property of the block. These predicates are called
block predicates. 1If other predicates are present, we need
only check these on the remaining records in the block.

The example query above is very likely to involve access
to a whole stripe of blocks. Thus, the block scan operation
is likely to be the most efficient method of processing this
query.

Block Index Anding

Now, if one wished to find all records having itemId = 1000
and region = ‘Mexico’, we can include an Index Anding
plan for consideration. For MDC tables, we have imple-
mented a block Index Anding technique that can combine
one or more block and RID indexes. The block Index Anding
employs a bit-map based intersection approach if sufficient
memory is available. Since the block indexes are smaller
than the RID based ones, the processing time for Index And-
ing is also significantly less. The intersecting list of blocks
are accessed efficiently using block based 1/O operations.
Overall, the operation is extremely efficient and should be
significantly faster than existing alternatives prior to this
technique. We are also able to combine Block and RID in-
dexes efficiently.

Block Index ORing

Likewise, a block based Index Oring operation has also been
implemented. Suppose a query includes the condition: itemId
1000 or itemId = 3000. The block index on itemld can
be scanned for each value and the aggregated list of blocks
can be obtained by an Oring operation. The Oring opera-
tion will eliminate duplicate blockIDs for conditions such as
region = ‘Mexico’ OR year > 1999.

Deriving predicates when using rollup hierar-
chies

One very important aspect of our MDC implementation is
the use of rolled up hierarchy level as a dimension attribute
for generating denser blocks of data. However, this feature
would be difficult to use if the queries being submitted by
users and applications need to be modified. For example,
suppose we decide to rollup date to year using the year()
function for use as a dimension. Suppose the original query
includes a predicate of the form date > ¢1999-01-01’. Re-
alizing the presence of the year(date) dimension attribute,
DB2’s query compiler will automatically derive a predicate
of the form year >= 1999 and include it for optimization.
This enables the query optimizer to choose the block index
on year for processing this query.

Impact on exisiting techniques

It is natural to ask whether the new MDC feature has an
adverse impact or disables some existing features of DB2 for

637

normal tables. We are pleased to report that all existing fea-
tures such as secondary RID indexes, constraints, triggers,
defining materialized views, query processing options, etc.
are available for MDC tables. Hence, MDC tables behave
just like normal tables except for its enhanced clustering and
processing aspects.

5. MAINTENANCE OF MDC TABLES

In this section, we briefly describe new techniques we
have implemented for maintaining MDC tables. We describe
schemes for loading, inserting, updating, and deleting these
tables. It is to be noted that sophisticated clustering nor-
mally implies additional overhead for maintenance. In fact,
maintenace overhead has been a crucial inhibitor for imple-
menting more sophisticated clustering or indexing ideas in
database systems. Below, we show briefly that the MDC
scheme lends itself to relatively efficient maintenance. Most
utilities such as Reorg, Backup, Restore, and Runstats have
been modified appropriately for use with MDC tables.

Load

The load utility must employ an efficient scheme to insert
large data sets into a table. Load into an MDC table must
organize the input data along dimension values. Since we
cannot rely on the input data to be sorted, we have designed
and implemented a bucketization algorithm in order to per-
form this operation efficiently. The load utility creates bins
for the data records based on the dimension attribute values.
For example, a bin is created for the logical cell correspond-
ing to <year=1999, region=‘Canada’, itemId=1000>. All
records with similar values of the dimension attributes will
be assigned to this bin. Physically, each bin is represented
minimally by a page in a block. Recently processed bins
are maintained in memory and written to disk when they
become full or if there is a need to bring other bins into
memory.

Insert

It is absolutely critical for clustering of data to be main-
tained during insert operations. Consider Figure 1. Sup-
pose we are inserting a record with dimension values <2000,
‘Mexico’,1000>. We would first need to identify the ap-
propriate block for this new record by using the composite
block index. We would look up the key value in the com-
posite block index and find that there are two blocks, say
4 and 8, with this key value. These blocks contain records
having these dimension key values. We therefore insert the
new record in one of these blocks if there is space in any
of their pages. If there is no space in any pages in these
blocks, we either allocate a new block for the table or use
a previously emptied block in the table. The block map is
searched to find a free block. Note that in this example,
block 2 (figure 2) is currently not in use by the table. We
insert the record on a page in that block, and assign this
block to this cell by adding its BID to the composite block
index and to each of the dimension block indexes. Suppose
that there are no more free blocks in the table. Then, a new
block is allocated in the table and is used to insert the row.
The indexes are updated in that case as well.

If a record with a new dimension values is inserted, then
a new block or free block must be allocated. The new key
values will be added to the dimension and composite block
indexes.

When performing insert, we have to pay special attention
to the insert of the first record in a block as well as the first
record to a new page in a block. We use a page bit map
per block to maintain the state of the pages in the block.
The bit in the page bit map is set when the first record is
inserted into the page. This bit map enables us to track
the occupancy of pages in a block and helps us maintain
the state of the block in the presence of inserts and delete
operations.

Delete

The delete operation can free one or more records in a ta-
ble. This is also the case for MDC tables. However, special
attention is given to the state of pages in a block and the
entire block as well. If we delete the last record in a page,
then the page bit map is updated to clear the bit associ-
ated with the particular page. When all pages in a block
are empty, this page bit map is fully cleared and this will
indicate that the block can be marked free in the block map.
This free block can be reused by future insert or load oper-
ations. When a block is freed, we must also update all the
dimension indexes and remove the BID from the particu-
lar key(s) corresponding to the dimension attributes for the
block.

Update

Update operations to non-clustering attributes are similar
to regular tables. If the update results in the creation of an
overflow, special care is taken to create the overflow record in
a block belonging to the same cell. When there is an update
to one or more clustering attributes, then the behavior is
similar to a delete followed by insert into a new cell.

storeld | salesDate | itemld

MDC Index Pages 71 72 222,086

Non-MDC Index Pages | 222,054 | 222,054 | 222,086
MDC Index Levels 2 2 4
Non-MDC Index Levels 4 4 4

Table 1: Comparison of index size and levels

6. EXPERIMENTAL RESULTS

We have conducted a set of atomic experiments using a
star-schema database called POPS. This schema includes a
main fact table called Sales of size 36 GB and a number
of dimension tables on dates, stores, products, customers.
We compared the performance of the queries on a MDC
Sales table organized by two dimensions (salesDate, stor-
eld) against a regular table with primary clustering index
(salesDate, storeld) and secondary indexes on other dimen-
sion keys. Both tables were loaded in sorted order of their
clustering keys.

Table 1 compares the sizes and number of levels of the
indexes on the MDC and non-MDC versions of the table.
Note that the sizes of the block indexes on the MDC table
are significantly smaller (only about 3%) than the equivalent
RID indexes. Also, note that a RID index on the itemld col-
umn uses the same space for both MDC and normal tables.
The number of pages of the MDC table is 689, 264 and is
only slightly larger than the non-MDC table which has 681,
903 pages.

638

B mpc nonmbC E mpcH nonMDG—

200

20 100 1l
10 |
) 0 |

ANDing FullTable TableBPred NL Join
Cell

Point MultiJoin

ORing

2D Range
1D Range

Figure 4: Performance comparison of MDC and nor-
mal tables

Figure 4 summarizes the comparison of queries executing
against these two tables. The queries include table scans
with and without block predicates, block index scans (point
and range), Index Anding and Oring plans, and join queries.
Note that the performance of the MDC table is usually
better than the performance of the non-MDC table for all
queries. The speedup improvements in these experiments
ranged from 4% for table scans to 75% or more for Index
Anding operations. Beta customers trying this feature are
also obtaining similar large speedups on their databases.

7. CONCLUSION

Multi-Dimensional Clustering is a new data layout tech-
nique in DB2 Universal Database version 8. It provides an
efficient block oriented clustering mechanism and associated
new processing techniques for obtaining efficiency and better
manageability of data. We believe that Multi-Dimensional
Clustering is an effective data organization technique for
many modern database applications. We described the de-
sign considerations, new query processing, and maintenance
operations for this new scheme. Finally, we showed that the
Multi-Dimensional clustering scheme is efficient for a wide
range of atomic queries.

8. REFERENCES

[1] Method and System for Multi-Dimensional Clustering
in a Relational Database System, 2002. Patent Filed,
IBM Corp.

[2] S. Chaudhuri and U. Dayal. An Overview of Data
Warehousing and OLAP Technology. ACM SIGMOD
Record, 26(1):65-74, 1997.

[3] http://www.ibm.com/software/data/db2/library.

[4] http://www.informix.com.

[5] http://www.oracle.com.

[6] R.E. Kimball. The Data Warehouse Toolkit: Practical

Techniques for Building Dimensional Data Warehouses.
John Wiley, 1996.

	page1: 634
	page2: 635
	page3: 636
	page4: 637
	page5: 638

