ICS 321 Fall 2009
 Schema Refinement \& Normal Forms (ii)

Asst. Prof. Lipyeow Lim

Information \& Computer Science Department
University of Hawaii at Manoa

Two More Rules

Firstname	Lastname	DOB	Address	Telephone
John	Smith	Sep 9 1979	Honolulu,HI	$808-343$-0809

- Union
- If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow Y Z$
- Eg. FLD \rightarrow A and FLD \rightarrow T, then FLD \rightarrow AT
- Decomposition
- If $X \rightarrow Y Z$, then $X \rightarrow Y$ and $X \rightarrow Z$
- Eg. FLD \rightarrow AT , then FLD $\rightarrow \mathrm{A}$ and FLD $\rightarrow T$
- Trivial FDs
- Right side is a subset of Left side
- Eg. F \rightarrow F, FLD \rightarrow FD

Closure

- Implication: An FD f is implied by a set of FDs F if f holds whenever all FDs in F hold.
$-f=A \rightarrow C$ is implied by $F=\{A \rightarrow B, B \rightarrow C\}$ (using Armstrong's transitivity)
- Closure F^{+}: the set of all FDs implied by F
- Algorithm:
- start with $\mathrm{F}^{+}=\mathrm{F}$
- keep adding new implied FDs to F^{+}by applying the 5 rules (Armstrong's Axioms + union + decomposition)
- Stop when F^{+}does not change anymore.

Example: Closure

Firstname	Lastname	DOB	Street	CityState	Zipcode	Telephone
John	Smith	Sep 9 1979	1680 East West Rd.	Honolulu,HI	96822	$808-343-$ 0809

- Given FLD is the primary key and $C \rightarrow Z$
- Find the closure:
- Start with $\{$ FLD \rightarrow FLDSCZT, C \rightarrow Z \}
- Applying reflexivity, \{ FLD \rightarrow F, FLD \rightarrow L, FLD \rightarrow D, FLD \rightarrow FL, FLD \rightarrow LD, FLD \rightarrow DF, FLDSCZT \rightarrow FLD, ... $\}$
- Applying augmentation, $\{$ FLDS \rightarrow FS, FLDS \rightarrow LS, ...\}
- Applying transitivity ...
- Applying union ...
- Applying decomposition ...
- Repeat until F^{+}does not change

Attribute Closure

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in \# attrs!)
- Typically, we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs F. An efficient check:
- Compute attribute closure of X (denoted X^{+}) wrt F:
- Set of all attributes A such that $X \rightarrow A$ is in F^{+}
- There is a linear time algorithm to compute this.
- Check if Y is in X^{+}
- Does $F=\{A \rightarrow B, B \rightarrow C, C D \rightarrow E\}$ imply $A \rightarrow E$?
- i.e, is $A \rightarrow E$ in the closure F^{+}? Equivalently, is E in A^{+}?

Normal Forms

- Helps with the question: do we need to refine the schema?
- If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized. This can be used to help us decide whether decomposing the relation will help.
- Role of FDs in detecting redundancy:
- Consider a relation R with 3 attributes, ABC .
- No FDs hold: There is no redundancy here.
- Given A \rightarrow B: Several tuples could have the same A value, and if so, they'll all have the same B value!

Boyce-Codd Normal Form (BCNF)

- Let R denote a relation, X a set of attributes from R, A an attribute from R, and F the set of FDs that hold over R.
- R is in BCNF if for all $X \rightarrow A$ in F^{+},
$-A \in X$ (trivial $F D$) or
-X is a superkey
The only non-trivial FDs that hold are key constraints
- Negation: R is not in BCNF if there exists an X $\rightarrow A$ in F^{+}, such that $A \notin X$ (non-trivial FD) AND X is not a key

Examples: BCNF

- Are the following in BCNF ?

Firstname	Lastname	DOB	Address	Telephone
John	Smith	Sep 9 1979	Honolulu,HI	808-343-0809
F= \{ FLD \rightarrow FLDAT $\}$				

Firstname	Lastname	DOB	Street	CityState	Zipcode	Telephone
John	Smith	Sep 9 1979	1680 East West Rd.	Honolulu,HI	96822	$808-343-$ 0809

$\mathrm{F}=\{\mathrm{FLD} \rightarrow \mathrm{FLDSCZT}, \mathrm{C} \rightarrow \mathrm{Z}\}$

Third Normal Form (3NF)

- Let R denote a relation, X a set of attributes from R, A an attribute from R, and F the set of FDs that hold over R.
- R is in 3NF if for all $X \rightarrow A$ in F^{+},
$-A \in X$ (trivial FD) or
$-X$ is a superkey or
- A is part of some key
- Negation: R is not in 3NF if there exists an $X \rightarrow A$ in F^{+}, such that $A \notin X$ (non-trivial FD) AND X is not a key AND A is not part of some key
- If R is in BCNF, obviously in 3NF.
- If R is in $3 N F$, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no "good" decomp, or performance considerations).

Example: 3NF

- Which of the following is in 3NF and which in BCNF ?

Firstname	Lastname	DOB		Address	Telephone		
John	Smith	Sep 91979		Honolulu, HI	808-343-0809		
$\mathrm{F}=\{\mathrm{FLD} \rightarrow \mathrm{FLDAT}\}$							
Firstname	Lastname	DOB	Stre		CityState	Zipcode	Telephone
John	Smith	$\begin{aligned} & \text { Sep } 9 \\ & 1979 \end{aligned}$		East West	Honolulu, HI	96822	$\begin{aligned} & \text { 808-343- } \\ & 0809 \end{aligned}$

$F=\{F L D \rightarrow F L D S C Z T, C \rightarrow Z\}$

Student	Course	Instructor
Smith	OS	Mark

$F=\{S C \rightarrow I, I \rightarrow C\}$

