ICS 321 Fall 2009 Schema Refinement & Normal Forms (ii)

Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa

Two More Rules

Firstname	<u>Lastname</u>	DOB	Address	Telephone
John	Smith	Sep 9 1979	Honolulu,HI	808-343-0809

Union

- If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
- Eg. FLD \rightarrow A and FLD \rightarrow T, then FLD \rightarrow AT

Decomposition

- If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
- Eg. FLD \rightarrow AT , then FLD \rightarrow A and FLD \rightarrow T

Trivial FDs

- Right side is a subset of Left side
- Eg. F \rightarrow F, FLD \rightarrow FD

Closure

- Implication: An FD f is implied by a set of FDs F
 if f holds whenever all FDs in F hold.
 - f=A \rightarrow C is implied by F={ A \rightarrow B, B \rightarrow C} (using Armstrong's transitivity)
- Closure F⁺ : the set of all FDs implied by F
 - <u>Algorithm</u>:
 - start with F⁺ = F
 - keep adding new implied FDs to F⁺ by applying the 5 rules (Armstrong's Axioms + union + decomposition)
 - Stop when F⁺ does not change anymore.

Example: Closure

<u>Firstname</u>	<u>Lastname</u>	DOB	Street	CityState	Zipcode	Telephone
John	Smith	Sep 9 1979	1680 East West Rd.	Honolulu,HI	96822	808-343- 0809

- Given FLD is the primary key and $\mathrm{C} \rightarrow \mathrm{Z}$
- Find the closure:
 - Start with { FLD \rightarrow FLDSCZT, C \rightarrow Z }
 - − Applying reflexivity, { FLD \rightarrow F, FLD \rightarrow L, FLD \rightarrow D, FLD \rightarrow FL, FLD \rightarrow LD, FLD \rightarrow DF, FLDSCZT \rightarrow FLD, ...}
 - Applying augmentation, { FLDS \rightarrow FS, FLDS \rightarrow LS, ...}
 - Applying transitivity ...
 - Applying union ...
 - Applying decomposition ...
 - Repeat until F⁺ does not change

Attribute Closure

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- Typically, we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs *F*. An efficient check:
 - Compute <u>attribute closure</u> of X (denoted X⁺) wrt F:
 - Set of all attributes A such that $X \rightarrow A$ is in F^+
 - There is a linear time algorithm to compute this.
 - Check if Y is in X⁺
- Does $F = \{A \rightarrow B, B \rightarrow C, C D \rightarrow E\}$ imply $A \rightarrow E$?

– i.e, is $A \rightarrow E$ in the closure F^+ ? Equivalently, is E in A^+ ?

Normal Forms

- Helps with the question: do we need to refine the schema ?
- If a relation is in a certain *normal form* (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized. This can be used to help us decide whether decomposing the relation will help.
- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No FDs hold: There is no redundancy here.
 - Given A → B: Several tuples could have the same A value, and if so, they'll all have the same B value!

Boyce-Codd Normal Form (BCNF)

- Let R denote a relation, X a set of attributes from R, A an attribute from R, and F the set of FDs that hold over R.
- R is in **<u>BCNF</u>** if for all $X \rightarrow A$ in F⁺,
- A ∈ X (trivial FD) or
 A ∈ X (trivial FD) or
 X is a superkey
 The only non-trivial FDs that hold are key constraints
 - Negation: R is not in BCNF if there exists an X
 → A in F⁺, such that A ∉ X (non-trivial FD) AND
 X is not a key

Examples: BCNF

• Are the following in BCNF ?

<u>Firstname</u>	<u>Lastname</u>	DOB	Address	Telephone		
John	Smith	Sep 9 1979	Honolulu,HI	808-343-0809		
$F= \{ FLD \rightarrow FLDAT \}$						

<u>Firstname</u>	<u>Lastname</u>	DOB	Street	CityState	Zipcode	Telephone
John	Smith	Sep 9 1979	1680 East West Rd.	Honolulu,HI	96822	808-343- 0809

 $\mathsf{F=} \{ \mathsf{FLD} \rightarrow \mathsf{FLDSCZT}, \mathsf{C} \rightarrow \mathsf{Z} \}$

Third Normal Form (3NF)

- Let R denote a relation, X a set of attributes from R, A an attribute from R, and F the set of FDs that hold over R.
- R is in <u>**3NF</u>** if for all $X \rightarrow A$ in F⁺,</u>
 - $\mathsf{A} \in \mathsf{X}$ (trivial FD) or
 - X is a superkey or
 - A is part of some key
- Negation: R is not in 3NF if there exists an X → A in F⁺, such that A ∉ X (non-trivial FD) AND X is not a key AND A is not part of some key
- If R is in BCNF, obviously in 3NF.
- If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no ``good" decomp, or performance considerations).

Example: 3NF

• Which of the following is in 3NF and which in BCNF?

<u>Firstname</u>	Lastname	DOB	Address	Telephone
John	Smith	Sep 9 1979	Honolulu,HI	808-343-0809

$\mathsf{F=} \{ \mathsf{FLD} \to \mathsf{FLDAT} \}$

<u>Firstname</u>	<u>Lastname</u>	DOB	Street	CityState	Zipcode	Telephone
John	Smith	Sep 9 1979	1680 East West Rd.	Honolulu,HI	96822	808-343- 0809

 $\mathsf{F=} \{ \mathsf{FLD} \rightarrow \mathsf{FLDSCZT}, \mathsf{C} \rightarrow \mathsf{Z} \}$

Student	Course	Instructor
Smith	OS	Mark

 $\mathsf{F=} \{ \ \mathsf{SC} \to \mathsf{I}, \ \mathsf{I} {\to} \mathsf{C} \ \}$