
ICS 321 Fall 2009

Overview of Transaction
Management (ii)

Asst. Prof. Lipyeow Lim

Information & Computer Science Department

University of Hawaii at Manoa

11/10/2009 1Lipyeow Lim -- University of Hawaii at Manoa

Transactions in SQL
• After connection to a database, a transaction is

automatically started
– Different connections -> different transactions

• Within a connection, a transaction is ended by
– COMMIT or COMMIT WORK
– ROLLBACK (= “abort”)

• SAVEPOINT <savepoint name>
• ROLLBACK TO SAVEPOINT <savepoint name>

– Locks obtained after savepoint can be released after
rollback to that savepoint

• Using savepoints vs sequence of transactions
– Transaction rollback is to last transaction only

11/10/2009 Lipyeow Lim -- University of Hawaii at Manoa 2

Lock Granularity

• What should the DBMS
lock ?

– Row ?

– Page ?

– A Table ?

11/10/2009 Lipyeow Lim -- University of Hawaii at Manoa 3

UPDATE Sailors

SET rating=0

WHERE rating>9

UPDATE Boats

SET color=‘red’

WHERE bid=13

SELECT *

FROM Sailors

SELECT *

FROM Sailors

WHERE rating < 2

UPDATE Boats

SET color=‘blue’

WHERE bid=100

Isolation levels in SQL
• SQL supports 4 isolation levels

11/10/2009 Lipyeow Lim -- University of Hawaii at Manoa 4

SQL Isolation Levels DB2 Isolation Levels Dirty read Unrepeat
able Read

Phantom

READ
UNCOMMITTED

UNCOMMITTED READ
(UR)

Maybe Maybe Maybe

READ COMMITTED CURSOR STABILITY *
(CS)

No Maybe Maybe

REPEATABLE READ READ STABILITY (RS) No No Maybe

SERIALIZABLE REPEATABLE READ (RR) No No No

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

SELECT *

FROM Reserves

WHERE SID=100

WITH UR

Crash Recovery

• Transaction Manager: DBMS component that
controls execution (eg. managing locks).

• Recovery Manager: DBMS component for
ensuring

– Atomicity: undo actions of transactions that do
not commit

– Durability: committed transactions survive system
crashed and media failures

• Assume atomic writes to disk.

11/10/2009 Lipyeow Lim -- University of Hawaii at Manoa 5

The Log
• The following actions are recorded in the log:

– Ti writes an object: the old value and the new value.
• Log record must go to disk before the changed page! (Write

Ahead Log property)

– Ti commits/aborts: a log record indicating this action.

• Log records are chained together by Xact id, so
it’s easy to undo a specific Xact.

• Log is often duplexed and archived on stable
storage.

• All log related activities (and in fact, all CC related
activities such as lock/unlock, dealing with
deadlocks etc.) are handled transparently by the
DBMS.

11/10/2009 Lipyeow Lim -- University of Hawaii at Manoa 6

Stealing Frames & Forcing Pages

• Stealing Frames: writing a modified page to
disk before transaction commits.
– T1 updates row r

– T2 needs to fetch a page, but bufferpool is full

– The page containing r is chosen for eviction

– Write page containing r back to disk (optimistic)

– What happens if T1 aborts ?

• Forcing Pages: All modified pages written back
to disk when transaction commits.
– If no-force is used, what happens after a crash ?

11/10/2009 Lipyeow Lim -- University of Hawaii at Manoa 7

Recovering from a Crash
• There are 3 phases in the Aries recovery

algorithm:
– Analysis: Scan the log forward (from the most recent

checkpoint) to identify all Xacts that were active, and
all dirty pages in the buffer pool at the time of the
crash.

– Redo: Redoes all updates to dirty pages in the buffer
pool, as needed, to ensure that all logged updates are
in fact carried out and written to disk.

– Undo: The writes of all Xacts that were active at the
crash are undone (by restoring the before value of the
update, which is in the log record for the update),
working backwards in the log. (Some care must be
taken to handle the case of a crash occurring during
the recovery process!)

11/10/2009 Lipyeow Lim -- University of Hawaii at Manoa 8

