
ICS 321 Fall 2009

Overview of Transaction 
Management

Asst. Prof.  Lipyeow Lim

Information & Computer Science Department

University of Hawaii at Manoa

11/5/2009 1Lipyeow Lim -- University of Hawaii at Manoa



Transactions
• A transaction is the DBMS’s abstract view of a 

user program:  a sequence of reads and writes.
• A user’s program may carry out many operations 

on the data retrieved from the database, but the 
DBMS is only concerned about what data is 
read/written from/to the database.

• A DBMS supports multiple users, ie, multiple 
transactions may be running concurrently

• Concurrent executions can be exploited for DBMS 
performance.
– Because disk accesses are frequent, and relatively 

slow, it is important to keep the CPU humming by 
working on several user programs concurrently.

11/5/2009 Lipyeow Lim -- University of Hawaii at Manoa 2



Concurrency in a DBMS
• Users submit transactions, and can think of each 

transaction as executing by itself.
– Concurrency is achieved by the DBMS, which 

interleaves actions (reads/writes of DB objects) of 
various transactions.

– Each transaction must leave the database in a 
consistent state if the DB is consistent when the 
transaction begins.
• DBMS will enforce some ICs, depending on the ICs declared 

in CREATE TABLE statements.
• Beyond this, the DBMS does not really understand the 

semantics of the data.  (e.g., it does not understand how the 
interest on a bank account is computed).

• Issues: Effect of interleaving transactions, and 
crashes

11/5/2009 Lipyeow Lim -- University of Hawaii at Manoa 3



ACID Properties
4 important properties of transactions
• Atomicity: all or nothing

– Users regard execution of a transaction as atomic
– No worries about incomplete transactions

• Consistency:  a transaction must leave the 
database in a good state
– Semantics of consistency is application dependent
– The user assumes responsibility

• Isolation: a transaction is isolated from the 
effects of other concurrent transaction

• Durability: Effects of completed transactions 
persists even if system crashes before all changes 
are written out to disk

11/5/2009 Lipyeow Lim -- University of Hawaii at Manoa 4



Atomicity

• A transaction might commit after completing all 
its actions, or it could abort (or be aborted by the 
DBMS) after executing some actions.

• A very important property guaranteed by the 
DBMS for all transactions is that they are atomic.
That is, a user can think of a Xact as always 
executing all its actions in one step, or not 
executing any actions at all.
– DBMS logs all actions so that it can undo the actions 

of aborted transactions.

11/5/2009 Lipyeow Lim -- University of Hawaii at Manoa 5



Example (Atomicity)

• The first transaction is transferring $100 from B’s 
account to A’s account.  

• The second is crediting both accounts with a 6% 
interest payment

• There is no guarantee that T1 will execute before 
T2 or vice-versa, if both are submitted together.  
However, the net effect must be equivalent to 
these two transactions running serially in some 
order.

11/5/2009 Lipyeow Lim -- University of Hawaii at Manoa 6

T1: BEGIN   
A=A+100
B=B-100   
END

T2: BEGIN   
A=1.06*A
B=1.06*B   
END



Example Contd. (Atomicity)
• Consider the following interleavings (schedule)

11/5/2009 Lipyeow Lim -- University of Hawaii at Manoa 7

T1 T2

A=A+100

A=1.06*A

B=B-100

B=1.06*B

T1 T2

A=A+100

A=1.06*A

B=1.06*B

B=B-100

T1 T2

R(A)
W(A)

R(A)
W(A)

R(B)
W(B)

R(B)
W(B)

DBMS’ view of 
the 2nd schedule

T1 T2

A=A+100

B=B-100

A=1.06*A

B=1.06*B

equivalent



Scheduling Transactions

• Serial schedule: Schedule that does not interleave 
the actions of different transactions.

• Equivalent schedules: For any database state, the 
effect (on the set of objects in the database) of 
executing the first schedule is identical to the 
effect of executing the second schedule.

• Serializable schedule:  A schedule that is 
equivalent to some serial execution of the 
transactions.

(Note: If each transaction preserves consistency, 
every serializable schedule preserves 
consistency.)

11/5/2009 Lipyeow Lim -- University of Hawaii at Manoa 8



Anomaly: Dirty Reads

• AKA reading uncommitted Data, WR conflicts

11/5/2009 Lipyeow Lim -- University of Hawaii at Manoa 9

T1 T2

R(A)
W(A)

R(A)
W(A)

Commit

R(B)
W(B)
Abort

T1 T2

A=A+100

A=1.06*A
Commit

B=B-100

Abort

A = 20

A = 120

A = 127.2

With T1 
aborted 
correct 

value of A 
= 21.2



Anomaly: Phantom Reads

• AKA Unrepeatable Reads, RW conflicts

11/5/2009 Lipyeow Lim -- University of Hawaii at Manoa 10

T1 T2

R(A)

R(A)
W(A)

Commit

R(A)
W(A)
Commit

T1 T2

Print A

A=1.06*A
Commit

Print A
A = 100

Commit

A = 20

A = 20

A = 21.2

T1 sees two different 
values of A even 

though T1 did not 
change A!

A = 21.2



Anomaly: Blind Writes
• AKA Overwriting Uncommitted Data, WW 

conflicts

11/5/2009 Lipyeow Lim -- University of Hawaii at Manoa 11

T1 T2

W(A)

W(A)
W(B)

Commit

W(B)
Commit

T1 T2

A = 100

A=200
B=200
Commit

B= 100

Commit

A = 100

A = 200

Can any serializable
schedule produce this 

result ?

A = 200, B=200

A = 200, B=100



Lock-based Concurrency Control
• Strict Two-phase Locking (Strict 2PL) Protocol:

– Each Xact must obtain a S (shared) lock on object 
before reading, and an X (exclusive) lock on object 
before writing.

– All locks held by a transaction are released when the 
transaction completes

• (Non-strict) 2PL Variant: Release locks anytime, but cannot 
acquire locks after releasing any lock.

– If an Xact holds an X lock on an object, no other Xact
can get a lock (S or X) on that object.

• Strict 2PL allows only serializable schedules.
– Additionally, it simplifies transaction aborts
– (Non-strict) 2PL also allows only serializable

schedules, but involves more complex abort 
processing

11/5/2009 Lipyeow Lim -- University of Hawaii at Manoa 12



Example (Strict 2PL)

• Consider the dirty read schedule

11/5/2009 Lipyeow Lim -- University of Hawaii at Manoa 13

T1 T2

X(A)
R(A)
W(A)

X(B)
R(B)
W(B)
Abort

X(A)
R(A)
W(A)
Commit

T1 T2

A=A+100

A=1.06*A
Commit

B=B-100

Abort

A = 20

A = 120

Dirty read on A!

With Strict 2PL, T2 can 
only access A when T1 

aborts

A = 127.2



Example (Non-Strict 2PL)

• Consider the dirty read schedule

11/5/2009 Lipyeow Lim -- University of Hawaii at Manoa 14

T1 T2

X(A)
R(A)
W(A)
RX(A)

X(A)
R(A)
W(A)
Commit

X(B)
R(B)
W(B)
Abort

T1 T2

A=A+100

A=1.06*A
Commit

B=B-100

Abort

A = 20

A = 120

Dirty read on A!

With non-strict 2PL, T2 can still 
read uncommitted data if T1 

aborts!

A = 127.2



Deadlocks
• Cycle of transactions 

waiting for locks to be 
released

• DBMS has to either prevent 
or resolve deadlocks

• Common approach: 

– Detect via timeout

– Resolve  by aborting 
transactions

11/5/2009 Lipyeow Lim -- University of Hawaii at Manoa 15

T1 T2

Req X(A)
Gets X(A)
…
Req X(B)

Req X(B)
Gets X(B)
….

Req X(A)



Aborting a Transaction
• If a transaction T1 is aborted, all its actions have to be 

undone.  
– Not only that, if T2 reads an object last written by T1,  T2 

must be aborted as well!

• Most systems avoid such cascading aborts by releasing 
a transaction’s locks only at commit time.
– If T1 writes an object, T2 can read this only after T1

commits.

• In order to undo the actions of an aborted transaction, 
the DBMS maintains a log in which every write is 
recorded.  
– This mechanism is also used to recover from system 

crashes:  all active Xacts at the time of the crash are 
aborted when the system comes back up

11/5/2009 Lipyeow Lim -- University of Hawaii at Manoa 16


