
ICS 321 Fall 2009

Storage & Indexing (iii)

Asst. Prof. Lipyeow Lim

Information & Computer Science Department

University of Hawaii at Manoa

10/27/2009 1Lipyeow Lim -- University of Hawaii at Manoa

Creating Indexes
• Most DBMS (eg. DB2) supports only B+ tree indexes:

CREATE INDEX myIdx ON mytable(col1, col3)
CREATE UNIQUE INDEX myUniqIdx ON mytable(col2, col5)
CREATE INDEX myIdx ON mytable(col1, col3) CLUSTER

• If a primary key is specified in the CREATE TABLE statement,
an (unclustered) index is automatically created for the PK.

• To create a clustered PK index:
– Create table without PK constraint
– Create index on PK with cluster option
– Alter table to add PK constraint

• To get rid of unused indexes: DROP INDEX myIdx;

10/27/2009 Lipyeow Lim -- University of Hawaii at Manoa 2

Indexes & Performance Tuning

• Most DBMSs have very few knobs for storage
– heap files are dominant

• In contrast, index creation is user-controlled

• What indexes should we create ?
– Which relations should have indexes ?

– Which columns should be indexed ?

– How many indexes do we need ?

• What kind of indexes should we use ?
– Clustered ?

– Hash or Tree ?

10/27/2009 Lipyeow Lim -- University of Hawaii at Manoa 3

Depends on the “Workload”
• For each query in the workload:

– How frequent does this query occur ?
– Which relations & attributes are accessed ?
– Which attributes are involved in selection/join

conditions ?
– How selective are these conditions?

• For each update in the workload:
– How frequent does the update occur ?
– Which attributes are involved in selection/join

conditions ?
– How selective are these conditions?
– What type of update (INSERT/DELETE/UPDATE) ?
– Which relation & attributes are affected ?

10/27/2009 Lipyeow Lim -- University of Hawaii at Manoa 4

Choosing Indexes
• One approach: Consider the most important

queries in turn. Consider the best plan using the
current indexes, and see if a better plan is
possible with an additional index. If so, create it.
– Obviously, this implies that we must understand how

a DBMS evaluates queries and creates query
evaluation plans!

– For now, we discuss simple 1-table queries.

• Before creating an index, consider also the impact
on updates in the workload!
– Trade-off: Indexes can make queries go faster, updates

slower. Require disk space, too.

10/27/2009 Lipyeow Lim -- University of Hawaii at Manoa 5

Index Selection Guidelines
• Attributes in WHERE clause are candidates for index keys.

– Exact match condition suggests hash index.

– Range query suggests tree index.
• Clustering is especially useful for range queries; can also help on equality

queries if there are many duplicates.

• Multi-attribute search keys should be considered when a
WHERE clause contains several conditions.
– Order of attributes is important for range queries.

– Such indexes can sometimes enable index-only strategies for
important queries.
• For index-only strategies, clustering is not important!

• Try to choose indexes that benefit as many queries as
possible. Since only one index can be clustered per relation,
choose it based on important queries that would benefit the
most from clustering.

10/27/2009 Lipyeow Lim -- University of Hawaii at Manoa 6

Example: Clustered Indexes
• B+ tree index on E.age can be

used to get qualifying tuples.
– How selective is the condition?

– Is the index clustered?

• Consider the GROUP BY query.
– If many tuples have E.age > 10,

using E.age index and sorting
the retrieved tuples may be
costly.

– Clustered E.dno index may be
better!

• Equality queries and duplicates:
– Clustering on E.hobby helps!

10/27/2009 Lipyeow Lim -- University of Hawaii at Manoa 7

SELECT E.dno
FROM Emp E
WHERE E.age>40

SELECT E.dno,
COUNT (*)

FROM Emp E
WHERE E.age>10
GROUP BY E.dno

SELECT E.dno
FROM Emp E
WHERE
E.hobby=Stamps

Indexes with Composite Search Keys
• Composite Search Keys:

Search on a combination of
fields.
– Equality query: Every field value

is equal to a constant value. E.g.
wrt <sal,age> index:
• age=20 and sal =75

– Range query: Some field value is
not a constant. E.g.:
• age =20; or age=20 and sal > 10

• Data entries in index sorted
by search key to support
range queries.
– Lexicographic order, or

– Spatial order.

10/27/2009 Lipyeow Lim -- University of Hawaii at Manoa 8

sue 13 75

bob

cal

joe 12

10

20

8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

Composite Search Keys
• SELECT * FROM Emp WHERE age=30 AND

sal=4000,
– an index on <age,sal> vs an index on age or an index

on sal.
– Choice of index key orthogonal to clustering etc.

• … WHERE 20<age<30 AND 3000<sal<5000:
– Clustered tree index on <age,sal> or <sal,age> is best.

• … WHERE age=30 AND 3000<sal<5000:
– Clustered <age,sal> index much better than <sal,age>

index!

• Composite indexes are larger, updated more
often.

10/27/2009 Lipyeow Lim -- University of Hawaii at Manoa 9

Multi-Dimensional Clustering (MDC)
• DB2 v8 and above.

• Physical layout mimics a
multi-dimensional cube

• Associates a physical
region called blocks for
each unique combination
of dimension attribute
values.

• These blocks are the
units of addressability for
our clusters.

• A block index that
addresses these blocks.

10/27/2009 Lipyeow Lim -- University of Hawaii at Manoa 10

CREATE TABLE Sales(

int storeId, date orderDate, int region,

int itemId, float price, int yearOd

generated always as year(orderDate))

ORGANIZE BY DIMENSIONS

(region, yearOd, itemId)

See Multi-Dimensional Clustering: A New Data Layout Scheme in DB2. SIGMOD 2003: 637-641

Index-Only Plans

• Query answered
using index
pages only

• Data pages are
not retrieved at
all

• In practice, such
plans are rare,
because of
consistency
issues.

10/27/2009 Lipyeow Lim -- University of Hawaii at Manoa 11

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND

E.sal > 3000 AND
E.sal < 5000

<E.dno>

<E.dno,E.sal>

Tree index!

<E. age,E.sal>
or

<E.sal, E.age>

Tree index!

Index-Only Plans (contd.)

• Index-only plans are
possible if the key is
<dno,age> or we have a
tree index with key
<age,dno>
– Which is better?

– What if we consider the
second query?

10/27/2009 Lipyeow Lim -- University of Hawaii at Manoa 12

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age=30
GROUP BY E.dno

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>30
GROUP BY E.dno

REORG

• After many updates, a clustered index may
become less and less clustered.

• The REORG TABLE command used to re-
organized, ie, re-cluster the table and indexes.

• The REORGCHK command can be used to
compute statistics relevant to making a
decision on REORG.

10/27/2009 Lipyeow Lim -- University of Hawaii at Manoa 13

