ICS 321 Fall 2009
SQL: Queries, Constraints, Triggers

Asst. Prof. Lipyeow Lim
Information & Computer Science Department

University of Hawaii at Manoa

9/8/2009 Lipyeow Lim -- University of Hawaii at Manoa

Example Relations
* Sailors(W sid | bid [day |

sid: integer, 22 101 10/10/96

sname: string, 58 103 11/12/96
rating: integer,

age: real) S1 @mm-

o Boats(22 Dustin 45.0
bid: integer, 31 Lubber 8 55.5
bname: string, 58 Rusty 10 35.0

color: string) mmm
B1

* Reserves(
Interlake Blue

sid: integer, " |
bid: string, 102 Interlake Re
day: date) 103 Clipper green

104 Marine Red

9/8/2009 Lipyeow Lim -- University of Hawaii at Manoa

Basic SQL Query

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

relation-list A list of relation names (possibly with a
range-variable after each name).

target-list A list of attributes of relations in relation-list

qualification Comparisons (Attr op const or Attrl op
Attr2, where op is one of <, >, £, 2, =, #) combined
using AND, OR and NOT.

DISTINCT is an optional keyword indicating that the
answer should not contain duplicates. Default is that
duplicates are not eliminated!

Example Q1

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

Without range variables

SELECT sname

FROM Sailors, Reserves

WHERE Sailors.sid=Reserves.sid
AND bid=103

 Range variables really needed only if the same
relation appears twice in the FROM clause.

* Good style to always use range variables

Conceptual Evaluation Strategy

 Semantics of an SQL query defined in terms of
the following conceptual evaluation strategy:

1. Compute the cross-product of relation-list.

2. Discard resulting tuples if they fail gualifications.
3. Delete attributes that are not in target-list.

4. If isTineT is specified, eliminate duplicate rows.

* This strategy is probably the least efficient way
to compute a query! An optimizer will find
more efficient strategies to compute the same
answers.

Cross-Product

e Consider the cross product of S1 with R1
 Each row of S1 is paired with each row of R1.

* Result schema has one field per field of S1 and R1, with field
names inherited’ if possible.

— Conflict: Both S1 and R1 have a field called sid.
— Rename to sid1 and sid2

S1 x R1
8l sid | bid |day
22 101 10/10/96 mmm-mm

58 103 11/12/96 DUV 10/10/96
22 Dustin 45 58 103 11/12/96

7
7

S1 mmm 31 Lubber 8 555 22 101 10/10/96

22 Dustin 7 45.0 31 Lubber 8 555 58 103 11/12/96

31 Lubber 8 33.5 58 Rusty 10 35.0 22 101 10/10/96

58 Rusty 10 35.0 58 Rusty 10 350 58 103 11/12/96

Example Q1: conceptual evaluation

SELECT S.sname Conceptual Evaluation Steps:
FROM Sailors S. Reserves R 1. Compute cross-product

. _ _ 2. Discard disqualified
WHERE S.sid=R.sid AND bid=103 tuples

Delete unwanted

mmm-mm attributes

Dustin 7 10/10/96 4 If DisTINCT is specified,
eliminate duplicate rows.

22 Dustin 7 45 58 103 11/12/96

31 Lubber 8 55,5 22 101 10/10/96

31 Lubber 8 55.5 58 103 11/12/96

58 Rusty 10 35.0 22 101 10/10/96
58 Rusty 10 35.0 58 103 11/12/96

mmm-mm sname _

Rusty 10 35.0 58 103 11/12/96 Rusty

9/8/2009 Lipyeow Lim -- University of Hawaii at Manoa 7

Q2: Find sailors who've reserved at

least one boat
(8l sid | bid [day

SELECT S1.sid 22 101 10/10/96
FROM Sailors S1, Reserves R1 58 103 11/12/96

WHERE S5S1.sid=R1.sid YW sid | sname | rating | age

22 Dustin 7 45.0
31 Lubber 8 55.5
58 Rusty 10 35.0

* Would adding DISTINCT to this query make a difference?

 What is the effect of replacing S.sid by S.sname in the
SELECT clause? Would adding DISTINCT to this variant of
the query make a difference?

9/8/2009 Lipyeow Lim -- University of Hawaii at Manoa 8

Q3: Find the colors of boats reserved

by Lubber

SELECT B1.color

AND R1

FROM Sailors S1, Reserves R1,
Boats B1

WHERE S1.sid=R1.sid

.bid=B1.bid

AND S1.

sname=‘Lubber’

9/8/2009

Lipyeow Lim -- University of Hawaii at Manoa

8l sid | bid |dav

22 101 10/10/96
58 103 11/12/96

22 Dustin 7
31 Lubber 8
58 Rusty 10

;P bid | bname | color _

101
102
103
104

Interlake
Interlake
Clipper

Marine

Sl sid | sname | rating | age _

45.0
55.5
35.0

Blue
Red
green
Red

9

Expressions

 WHERE-qualification can contain expressions

 SELECT-list can also contain arithmetic or string
expressions over the column names

 Example: compute a new age adjusted” rating
for each sailor whose rating satisfies a special
formula

SELECT S1.sname, YW sid | sname | rating | age |
S1.rating * S1.age / 100 22 Dustin 7 45.0
AS NewRating 31 Lubber 8 55.5
FROM Sailors S1 58 Rusty 10 350
WHERE S1.rating-5.0> S1.age/
12.0

Strings & Pattern Matching

e String comparisons via the comparisons operators (<,
> =, etc), but take note of collations

— i.e. determines the ordering. Lexicographic, languages etc
e SQL supports pattern matching via the LIKE operator

and wildcards

— %"’ : zero or more arbitrary chars

’)

— " ranyone char

SELECT S1.sname, S1.rating
FROM Sailors S1
WHERE S1.sname LIKE 'L_%’

Sl sid | sname | rating | age

22 Dustin 7 45.0
31 Lubber 8 55.5
58 Rusty 10 35.0

UNION, INTERSECT & EXCEPT

e Set-manipulation constructs for result sets of SQL
gueries that are union-compatible

e Can simplify some complicated SQL queries

e Consider Q5: Find the names of sailors who have
reserved a red or a green boat

SELECT S1.sname
FROM Sailors S1, Reserves R1, Boats B1
WHERE S1.sid=R1.sid

AND R1.bid=B1.bid

AND (B1.color="red’ OR B1.color="green’)

Q6: Find the names of sailors who have
reserved both a red and a green boat

SELECT S1.sname
FROM Sailors S1, Reserves R1, Boats B1
WHERE S1.sid=R1.sid
AND R1.bid=B1.bid
AND (B1.color="red’
OR AND B1.color="green’)

SELECT S1.sname

FROM Sailors S1, Reserves R1, Boats B1,
Reserves R2, Boats B2

WHERE S1.sid=R1.sid AND R1.bid=B1.bid
AND S1.sid=R2.sid AND R2.bid=B2.bid
AND B1.color="red’ AND BZ2.color="green’

Q6 with INTERSECT : Find the names of sailors
who have reserved both a red and a green boat

SELECT S1.sname

FROM Sailors S1, Reserves R1, Boats B1

WHERE S1.sid=R1.sid AND R1.bid=B1.bid
AND B1.color="red’

INTERSECT

SELECT S2.sname

FROM Sailors S2, Reserves R2, Boats B2

WHERE S2.sid=R2.sid AND R2.bid=B2.bid
AND B2.color="green’

Q6 Nested: Find the names of sailors who have
reserved both a red and a green boat

SELECT S3.sname
FROM Sailors S3
WHERE S3.sid IN (
SELECT S1.sid
FROM Sailors S1, Reserves R1, Boats B1
WHERE S1.sid=R1.sid AND R1.bid=B1.bid
AND B1.color="red’
INTERSECT
SELECT S2.sid
FROM Sailors S2, Reserves R2, Boats B2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid
AND B2.color="green’)

Q5 with UNION : Find the names of sailors who
have reserved a red or a green boat

SELECT S1.sname

FROM Sailors S1, Reserves R1, Boats B1

WHERE S1.sid=R1.sid AND R1.bid=B1.bid
AND B1.color="red’

UNION

SELECT S2.sname

FROM Sailors S2, Reserves R2, Boats B2

WHERE S2.sid=R2.sid AND R2.bid=B2.bid
AND B2.color="green’

Q19: Find the sids of sailors who have reserved
red boats but not green boats

SELECT S1.sid

FROM Sailors S1, Reserves R1, Boats B1

WHERE S1.sid=R1.sid AND R1.bid=B1.bid
AND B1.color="red’

EXCEPT

SELECT S2.sid

FROM Sailors S2, Reserves R2, Boats B2

WHERE S2.sid=R2.sid AND RZ2.bid=B2.bid
AND B2.color="green’

Summary

Basic structure of an SQL query

Joins over multiple tables

Expressions in SELECT and WHERE clauses
String collation and pattern matching

Union, intersect, except set-manipulation
operators

Many ways to write the same queries, many
subtleties

