
ICS 101 Fall 2013 Introduction to Data Management

Asst. Prof. Lipyeow Lim
Information & Computer Science Department
University of Hawaii at Manoa

The Data Management Problem

Where did I read about "Turing Machines"?

Where is the invoice for this computer?

Which product is the most profitable?

User

Queries

Data

What is "data"?

- Data are known facts that can be recorded and that have implicit meaning.
- Three broad categories of data
 - Structured data
 - Semi-structured data
 - Unstructured data
- ``Structure'' of data refers to the organization within the data that is identifiable.

What is a database?

- A database: a collection of related data.
 - Represents some aspect of the real world (aka universe of discourse).
 - Logically coherent collection of data
 - Designed and built for specific purpose
- A data model is a collection of concepts for describing/organizing the data.
- A schema is a description of a particular collection of data, using the a given data model.

The Relational Data Model

- Relational database: a set of relations
- A relation is made up of 2 parts:
 - Instance: a table, with rows and columns.
 #Rows = cardinality, #fields = degree / arity.
 - Schema: specifies name of relation, plus name and domain/type of each column or attribute.
 - E.G. Students(sid: string, name: string, login: string, age: integer, gpa: real).
- Can think of a relation as a set of rows or tuples (i.e., all rows are distinct).

Example Instance of Students Relation

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@eecs	18	3.2
53650	Smith	smith@math	19	3.8

- Q1. What is the cardinality of the relation instance?
 (a) 1
 (b) 2
 (c) 3
 (d) 4
- Q2. What is the degree/arity of the relation instance?
 (a) 2 (b) 3 (c) 4 (d) 5

Why is the relational model useful?

- Supports simple and powerful query capabilities!
- Structured Query Language (SQL)

SELECT S.sname **FROM** Students S **WHERE** S.gpa>3.5

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@eecs	18	3.2
53650	Smith	smith@math	19	3.8

What is a DBMS?

- A database management system (DBMS) is a <u>collection of programs</u> that enables users to
 - Create new DBs and specify the structure using data definition language (DDL)
 - Query data using a query language or data manipulation language (DML)
 - Store very large amounts of data
 - Support durability in the face of failures, errors, misuse
 - Control concurrent access to data from many users

Types of Databases

- On-line Transaction Processing (OLTP)
 - Banking
 - Airline reservations
 - Corporate records
- On-line Analytical Processing (OLAP)
 - Data warehouses, data marts
 - Business intelligence (BI)
- Specialized databases
 - Multimedia

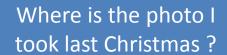
- XML
- Geographical Information Systems (GIS)
- Real-time databases (telecom industry)
- Special Applications
 - Customer Relationship Management (CRM)
 - Enterprise Resource Planning (ERP)
- Hosted DB Services
 - Amazon, Salesforce

A Bit of History

- 1970 Edgar F Codd (aka "Ted") invented the relational model in the seminal paper "A Relational Model of Data for Large Shared Data Banks"
 - Main concept: <u>relation</u> = a table with rows and columns.
 - Every relation has a <u>schema</u>, which describes the columns.
- Prior 1970, no standard data model.
 - Network model used by Codasyl
 - Hierarchical model used by IMS
- After 1970, IBM built System R as proof-of-concept for relational model and used SQL as the query language.
 SQL eventually became a standard.

Transactions

- A <u>transaction</u> is the DBMS's abstract view of a user program: a sequence of reads and writes.
 - Eg. User 1 views available seats and reserves seat
 22A.
- A DBMS supports multiple users, ie, multiple transactions may be running concurrently.
 - Eg. User 2 views available seats and reserves seat
 22A.
 - Eg. User 3 views available seats and reserves seat
 23D.


ACID Properties of Transactions

- Atomicity: all-or-nothing execution of transactions
- Consistency: constraints on data elements is preserved
- <u>Isolation</u>: each transaction executes as if no other transaction is executing concurrently
- <u>Durability</u>: effect of an executed transaction must never be lost

Q3. Why use a DBMS?

- a) The data is too large to manage in excel files
- b) I do not want to write my own programs to find something in the data
- c) I do not want to write my own program to manage multiple users and transactions
- d) All of the above.

The Data Management Problem

Where did I read about "Turing Machines"?

Where is the invoice for this computer?

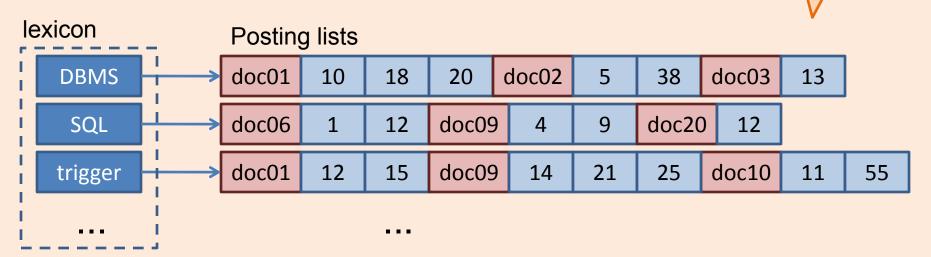
Which product is the most profitable?

User

Queries

Data

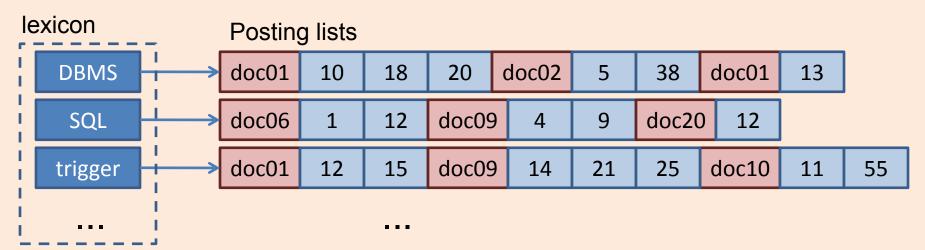
Unstructured Data


- What are some examples of unstructured data?
- How do we model unstructured data?
- How do we query unstructured data?
- How do we process queries on unstructured data?
- How do we index unstructured data?

Unstructured Text Data

- Field of "Information Retrieval"
- Data Model
 - Collection of documents
 - Each document is a bag of words (aka terms)
- Query Model
 - Keyword + Boolean Combinations
 - Eg. DBMS and SQL and tutorial
- Details:
 - Not all words are equal. "Stop words" (eg. "the", "a", "his" ...) are ignored.
 - Stemming: convert words to their basic form. Eg.
 "Surfing", "surfed" becomes "surf"

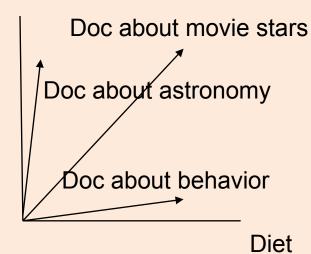
Inverted Indexes


- Recall: an index is a mapping of search key to data entries
 - What is the search key ?
 - What is the data entry ?
- Inverted Index:
 - For each term store a list of postings
 - A posting consists of <docid,position> pairs

What is the data in an inverted

index sorted on?

Lookups using Inverted Indexes

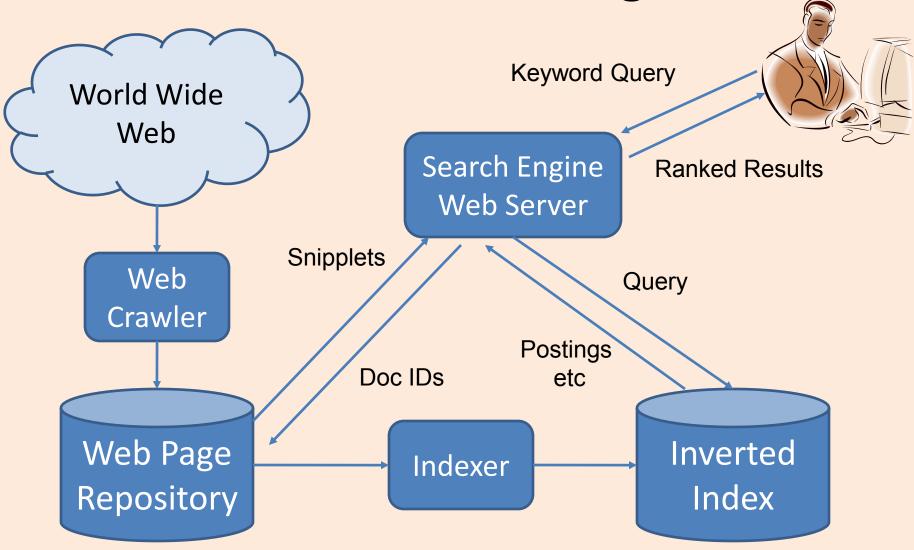


- Given a single keyword query "k" (eg. SQL)
 - Find k in the lexicon
 - Retrieve the posting list for k
 - Scan posting list for document IDs [and positions]
- What if the query is "k1 and k2"?
 - Retrieve document IDs for k1 and k2
 - Perform intersection

Too Many Matching Documents

- Rank the results by "relevance"!
- Vector-Space Model
 - Documents are vectors in hidimensional space
 - Each dimension in the vector represents a term
 - Queries are represented as vectors similarly
 - Vector distance (dot product)
 between query vector and document
 vector gives ranking criteria
 - Weights can be used to tweak relevance
- PageRank (later)

Star



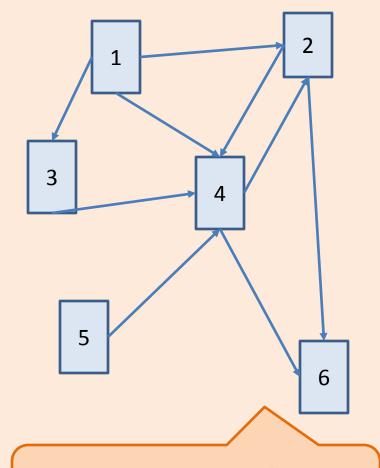
19

Q4. Which of the following is the most similar to an inverted index?

- a) Bookmarks.
- b) Content page of a book.
- c) The index at the end of a book.
- d) A deck of playing cards.

Internet Search Engines

Basic Web Search


 http://www.googleguide.com/advanced_oper ators_reference.html

Query Expression	What it means
Biking italy	Biking AND italy
Recycle steel OR iron	Recycle AND (steel OR iron)
"I have a dream"	"I have a dream" treated as one term
Salsa -dance	Salsa AND NOT dance

Other nifty expressions	What it means
12 + 34 - 56 * 7 / 8	Evaluates the arithmetic expression
300 Euros in USD	Converts 300 euros to US currency

Ranking Web Pages

- Google's PageRank
 - Links in web pages provide clues to how important a webpage is.
- Take a random walk
 - Start at some webpage p
 - Randomly pick one of the links and go to that webpage
 - Repeat for all eternity
- The number of times the walker visits a page is an indication of how important the page is.

Vertices represent web pages. Edges represent web links.

Semi-structured Search

Web pages are not really unstructured! Click "view source" to view HTML.

Query Expression	What it means	
define:imbroglio	Find definitions of "imbroglio"	
Halloween site: www.census.gov	Restrict search for "halloween" to US census website	
Form 1098-T IRS filetype: pdf	Find the US tax form 1098-T in PDF format	
link:warriorlibrarian.com	Find pages that link to Warrior Librarian's website	
Dan Shugar intext: Powerlight	Find pages mentioning Dan Shugar where his company, Powerlight , is included in the text of the page, i.e., less likely to be from the corporate website.	
allintitle: Google Advanced Operators	Search for pages with titles containing "Google," "Advanced,", and "Operators"	

Summary

- Data Management Problem
 - How do we pose and answer queries on data?
- Structured data
 - Relational Data Model
 - SQL
 - Relational DBMS
 - Transactions
- Unstructured data
 - Bag of terms
 - Boolean combination of keyword queries
 - Inverted Indexes (Web Search Engines)
- Semi-structured data
 - Could use techniques from either structured or unstructured
 - More sophisticated keyword queries