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Abstract Recent work on incremental crawling has enabled the indexed document
collection of a search engine to be more synchronized with the changing World Wide
Web. However, this synchronized collection is not immediately searchable, because
the keyword index is rebuilt from scratch less frequently than the collection can
be refreshed. An inverted index is usually used to index documents crawled from
the web. Complete index rebuild at high frequency is expensive. Previous work on
incremental inverted index updates have been restricted to adding and removing
documents. Updating the inverted index for previously indexed documents that have
changed has not been addressed. In this paper, we propose an efficient method to
update the inverted index for previously indexed documents whose contents have
changed. Our method uses the idea of landmarks together with the diff algorithm
to significantly reduce the number of postings in the inverted index that need to be
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updated. Our experiments verify that our landmark-diff method results in significant
savings in the number of update operations on the inverted index.

Keywords web search · indexing methods · document management

1 Introduction

The inverted index is the indexing technique of choice for web documents. Search
engines use an inverted index for HTML documents [25], and DBMSs use it to
support containment queries in XML documents [21, 32]. An inverted index is a
collection of inverted lists, where each list is associated with a particular word. An
inverted list for a given word is a collection of document IDs of those documents that
contain the word. If the position of a word occurrence in a document is needed,
each document ID entry in the inverted list also contains a list of location IDs.
Positional information of words is needed for proximity queries and query result
ranking [25]. Omitting positional information in the inverted index is therefore a
serious limitation. Positional information is usually stored in the form of location
IDs. The location ID of a word is the position in the document where the word
occurs. An entry in an inverted file is also called a posting; it encodes the information
〈word_id, doc_id, loc_id〉.

Since web documents change frequently, keeping inverted indexes up-to-date is
crucial in making the most recently crawled web documents searchable. A crawler
is a program that collects web documents to be indexed. Cho and Garcia-Molina [9]
have shown that an in-place, incremental crawler can improve the freshness of the
inverted index. However, the index rebuild method commonly used for updating
the inverted index cannot take advantage of an incremental crawler, because the
updated documents crawled in between rebuilds are not searchable until the next
index rebuild.

In this paper we study the problem of keeping inverted indexes up-to-date. We
first describe two general approaches and then show how our proposed landmark-
diff method addresses the deficiencies in these two approaches.

The first approach is to rebuild the index more frequently. As the interval between
rebuilds gets smaller, the magnitude of change between the two snapshots of the
indexed collection also becomes smaller [9]. A large portion of the inverted index will
remain unchanged, and a large portion of the work done by the rebuild is redundant.

The second approach is to store the updates in between rebuilds in a searchable
update log. This is similar to the ‘stop-press’ technique [31] used to store the postings
of documents that need to be inserted into the indexed collection. Each entry in
this update log is a delete or insert posting operation. Query processing will need to
search both the inverted index and the update log, and merge the results of both. If
positional information is stored in each posting, which is often the case, the size of
the update log will be prohibitively large.

Frequent rebuild is inefficient because it rebuilds portions of the index that did
not change. The update log is unsatisfactory because it is too large and affects
query response time. A better way of updating the inverted index is needed. An
update method has to handle three types of changes: (1) documents that no longer
exist (henceforth “deleted documents”); (2) new documents (henceforth “inserted
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documents”); (3) common documents that have changed. In order not to re-index
common documents that did not change, an incremental update method is needed.
Previous work on incremental inverted index updates has addressed changes due to
inserted documents [8, 17, 27] and deleted documents [11, 12, 27]. Changes due to
common documents that have changed have not been addressed.

In this paper, we propose the landmark-diff update method that addresses the
problem of updating the inverted index in response to changes in the common
documents. We show that solving this particular problem results in very efficient
solutions to the more general index update problem.

Our landmark-diff method is based on the diff of the old and updated docu-
ments, and the encoding of positional information using landmarks in a document.
Positional information is stored as a landmark-offset pair and the position of a
landmark in a document is stored in a separate landmark directory for each docu-
ment. The landmark encoding scheme reduces the number of inverted index update
operations obtained from the diff output, because postings using landmarks are
more “shift-invariant.”

1.1 Our contributions

First, our method addresses how to incrementally update the inverted index for
previously indexed documents whose contents have changed. This problem has not
been addressed before.

Second, our method uses a landmark-offset pair to represent positional infor-
mation. This representation has three advantages: it renders postings more “shift-
invariant,” it does not increase the index size, and it does not affect query processing
(Section 3.5). The mapping of a landmark to its position in a document is maintained
in a landmark directory. A landmark directory is very small compared with the size of
the document and hence does not significantly affect query response time. We show
that this landmark-offset representation significantly reduces the number of update
operations on the inverted index when used with the diff approach.

Third, our landmark-diff method is a general method that can be applied in a
variety of ways. It can also be used to optimize many existing methods. Some possible
applications are discussed in Section 3.4.

Fourth, we show analytically that the number of inverted index update operations
generated by our landmark-diff method is independent of the size of the document
and is dependent only on the size of the document change and the maximum distance
between two landmarks. In contrast, the number of inverted index update operations
generated by previous methods are all dependent on the size of the document. We
also derive bounds on the update and query running time performance.

Fifth, in our experiments, we show that our landmark-diff method is three times
faster than the forward index method (Section 3.1) in updating the inverted index
for common documents that have changed. We also show how our landmark-diff
method can be used in the partial rebuild method (Section 3.4) to solve the more
general inverted index update problem where all three types of changes (deleted,
inserted, and common documents) are addressed. The partial rebuild method is
twice as fast as a complete rebuild. The partial rebuild method uses an array-based
implementation of the inverted index, because the set of inserted documents is of the
same magnitude as the set of common documents. As the update frequency increases,
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the number of inserted documents and the number of update operations for the
common documents will be very small. Using our landmark-diff update method on
a B-tree implementation of the inverted index will result in an even more dramatic
speedup.

In the rest of this section we discuss related work. In the next section, we present
an empirical analysis of web document change that motivate our work. In Section 3
we describe current indexing techniques and our landmark-diff method. In Section 4
we evaluate our landmark-diff method analytically, and in Section 5 we provide
empirical validation.

1.2 Relation with prior work

Information retrieval using inverted indexes is a well studied field [3, 31]. Although
most of the update techniques generalize to keyword searches in web documents
(HTML and XML files), several assumptions made by those techniques need to
be re-examined. First, web documents are more dynamic than the text document
collections assumed by those techniques. Past work on incremental updates of
inverted indexes [3, 8, 13, 27, 31] deals mostly with additions of new documents to
a collection of static documents. Static documents are existing documents in the
collection whose contents do not change over time. The problem addressed in this
paper deals with existing documents whose contents do change over time.

Second, previous work assumes that the inverted index resides on disk or in
some persistent storage and try to optimize the propagation of in-memory update
posting operations to the inverted file in persistent storage [8, 11, 12, 27]. Current
search engines keep a large portion of the inverted index in memory,1 especially the
most frequently queried portions of the inverted index. Even though the indexed
collection is growing, we have three reasons to believe that a large portion of the
inverted index will still be kept in memory: (1) query volume is increasing and there
is a demand for increasing query processing speed; (2) the cost of memory chips is
relatively low and still decreasing; (3) the ease of scaling with parallel architecture.
Not only does the inverted index in persistent storage need to be updated, but the
portion of the inverted index in memory needs to be updated as well. The update
method we propose in this paper addresses the problem of updating the inverted
index as a data structure independent of whether it resides in memory or on disk.
In many cases, our method could be used in conjunction with existing techniques to
speedup the propagation of updates to the off-memory inverted index. Several of
these existing techniques will be described in greater detail next.

For append-only inverted index updates, Tomasic et al. [27] proposed a dual
inverted list data structure: the in-memory short list and the disk-based long list.
New postings are appended to their corresponding short lists and the longest short
list is migrated into a long list when the storage area for the short lists is full. Brown
et al. [8] proposed another incremental append strategy that uses overflow ‘buckets’
to handle the new postings in the relevant inverted lists. These overflow buckets are
chained together and have sizes that are powers of 2. Both [27] and [8] deal with
append-only incremental updates and assume that a document never changes once

1For example, Google has thousands of machines with at least 8 GB of memory each.
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indexed. Our method tackles the complementary problem of updating previously
indexed documents that have changed.

Clarke and Cormack [11] and Clarke et al. [12] addressed the deficiency of these
append-only inverted index techniques and proposed a block-based processing of
the inverted index that supports deletion of documents as well. The entire document
collection is concatenated into a long sequence of words. Positional information of
a posting is reckoned from the beginning of the document collection (as opposed
to the beginning of each document). Hence, even though Clarke’s inverted index
supports updates at the postings level, it does not solve the problem of small changes
in documents causing a shift in the positional information of many postings unrelated
to the change. In fact, the positional shift problem is exacerbated by the use of
absolute positional information reckoned from the beginning of the collection.

Our landmark encoding scheme is based on the idea of blocking. The idea of
partitioning a document or document collection into blocks has been used for various
purposes in [4, 18, 23, 26, 33]. The Glimpse [23] system uses a block addressing
inverted index in order to keep the index size small. A block addressing inverted
index stores, for each keyword, pointers to the blocks of text containing the keyword.
The actual occurrence of the keyword in each block is not stored and is found by
scanning the actual text itself using a fast sequential scan algorithm, such as Knuth–
Morris–Pratt [19] or Boyer–Moore [5]. In [18, 26, 33], the idea of block addressing
is used to improve the quality or the relevance of the information retrieved for a
given query. In our work, landmarks are used to provide relative addressing for
efficient index update using diff. The inverted indexes we consider are full inverted
indexes that differ from block addressing inverted indexes in that the position of the
occurrences of each word in the text is stored.

2 An analysis of web document change

We analyzed a small set of web documents in order to understand the update
characteristics of web documents. The results are summarized in this section as
motivation for our landmark-diff index update method. Detailed results can be
found in [22]. Other than scale, our analysis differs from [15] in that our distance
measure for two documents is based on exact edit distance whereas a shingle-
based approximate similarity measure [7] is used in [15]. Because our landmark-diff
index update method is based on edit transcripts, the exact edit distance is a more
appropriate distance measure in the context of this work. We have chosen to restrict
our study to a small sample of the web (relative to that used in [15]) due to resource
limitations. Despite the difference in distance measure and scale, our results agree
with that in [15].

We call the set of web documents associated with a snapshot of the web at a
particular time a sample. The time between two consecutive samples is the sampling
interval. Consider two consecutive samples Sn and Sn+1. Any document can only
belong to one of the three partitions: (1) common documents Sn ∩ Sn+1, (2) deleted
documents Sn − Sn+1, and (3) inserted documents Sn+1 − Sn. Correspondingly, three
operations are needed to update the index of Sn so that it reflects Sn+1. First, postings
corresponding to the deleted documents need to be removed from the current
index. Second, postings corresponding to the inserted documents need to be inserted
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Table 1 Summary of the
representative data set used
for data analysis.

Sample Data

No. of docs at time n 6,042
No. of docs at time n + 1 6,248
No. of deleted docs 2,788
No. of inserted docs 2,994
No. of common docs 3,254
No. of common docs unchanged 1,940

into the index. Third, postings corresponding to the common documents that have
changed need to be updated in the index.

We analyze the changes occurring in the set of common documents in terms of the
magnitude of change and the clusteredness of change. For our analysis, we used sev-
eral samples of the web recursively crawled from several seed URLs at 12 h intervals.
The list of seed URLs consists of www.cnn.com, www.ebay.com, www.yahoo.com,
espn.go.com, and www.duke.edu. We present our analysis using two samples that
are representative of the general update behavior. Other characteristics of our data
are summarized in Table 1.

2.1 Magnitude of document change

For common documents whose contents have changed, we are interested in how
large the changes are. The magnitude of change between two versions of a document
can be quantified by the edit distance. The edit distance of two documents is the
minimum number of edit operations (word insertions or deletions) required to
transform one document to the other. Let δ be the minimal number of words deleted
or inserted to transform one document to another. We define the distance between
two documents A and B as

d(A, B) = δ

m + n
, (1)

where m and n are the size (in words) of document A and document B, respectively.
Two identical documents will have zero distance and two completely different
documents will have a distance of one.

For our empirical analysis, we measure the distance of each pair of old and
updated documents (same document ID) in the set of common documents and
put them into bins according to the distance. Each bin has a width of 0.5%. The
number of documents in each bin is normalized to a percentage and plotted in
Figure 1. We observe that most documents fall into the bins between distance 0
and 20% (Figure 1). In fact, the corresponding cumulative distribution plot shows
that more than 90% of the documents have changes smaller than a distance of 20%.
Moreover this behavior is consistent across the consecutive samples we crawled and
we conjecture that the set of common word occurrences is very big in general. The
implication is that a large portion of the information maintained by a web index can
remain unchanged at an update.
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(a) Probability Distribution (b) Cumulative Distribution

Figure 1 Distribution of documents with respect to our distance measure.

2.2 Clusteredness of change

Another important characteristic of change is how clustered the changes are. For
example, from an update processing point of view, the insertion of a paragraph of
ten words to the beginning of a document is quite different from inserting the same
ten words at ten different random and non-contiguous locations in the document.
The former has locality that could be exploited in update processing.

We measure how clustered the document changes are as follows. Partition the
document into blocks according to some partitioning scheme and count the number
of blocks affected by the changes. The fraction of affected blocks over the total
number of blocks is then used as a measure of how clustered the changes are
under the partitioning scheme used. A simple partitioning scheme is to used fixed
size blocks of b words each. Other partitioning scheme that exploits the embedded
structure of the document can also be used. One example is to use HTML tags such as
the paragraph tag <p>. Choosing a partitioning scheme is discussed in greater detail
in Section 3.3. A summary of the differences between the fixed size partitioning and
the tag-based partitioning used in the current analysis is given in Table 2.

Table 2 A summary of the differences between fixed size partitioning and tag-based partitioning.

Characteristic Fixed size partitioning Tag-based partitioning

Block boundaries Imposed by fixed size constraint Inherent in document structure
diff Brute force Block-based

requirements
Variance of Determined by split/grow-block Determined by document structure

block sizes policy and de-fragmentation
Assumption Localized by small number of blocks Localized by document structure

on updates
Storage overhead A landmarking block size will need to A landmarking tag description needs

per document be stored, if a different block size is to be stored, if different tags are
used for each document. used for each document.
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For a given partitioning scheme with parameter b , we define the clusteredness of
the changes required to transform document A to document B as

c(A, B, b) = 1 − �

�m/b� , (2)

where � is the number of blocks affected by the change, m is the size of the old
documents in words and b is the parameter of the partitioning scheme used. For
fixed size partitioning, b is the block size in words. If there are no changes, � will be
zero and the clusteredness will measure one. If all the changes are clustered into one
block and assuming that the block size b is sufficiently small, the clusteredness will
be close to one. If the changes are distributed over all the blocks, � will be equal to
�m/b� and clusteredness will be zero. The block size b must be chosen such that it is
much smaller than the document size m for this measure to be meaningful.

We study the empirical distribution of the common documents that have changed
using this clusteredness measure. Our results are obtained by computing the clus-
teredness measure for each document in the set of common documents. The clus-
teredness values are normalized to a percentage and classified into bins of 0.5%.
The number of values in each bin is counted and normalized to a percentage of
the total number of common documents. From the probability distribution plot with
respect to our clusteredness measure c(A, B, 32) (Figure 2), we observe that most
documents have changes that are more than 50% clustered, that is, the changes
affect less than half of the blocks. The corresponding cumulative distribution plot
shows that only about 20% of the documents have changes that are less than 70%
clustered. Using HTML paragraph tags, we observe in the probability distribution
plot with respect to the clusteredness measure c(A, B,<p>-tag) (Figure 3) that many
document have changes that are more than 50% clustered; however significant spikes
occur consistently at the 0–0.5% clusteredness bin. This is because some documents
do not use the <p>-tag at all. For such documents there is only one block in total
and any changes must occur in that block and hence c(A, B,<p>-tag) is zero. This
is consistent with the previous c(A, B, 32)-distribution plot (Figure 2) where no
documents have changes distributed to every block. Other observable artifacts are
the spikes at the 50 and 66% clusteredness marks. These are mostly due to the
documents with only two to three paragraphs in total.

(a) Probability Distribution (b) Cumulative Distribution

Figure 2 Distribution of documents with respect to clusteredness c(A, B, 32).
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(a) Probability Distribution (b) Cumulative Distribution

Figure 3 Distribution of documents with respect to clusteredness c(A, B,<p>-tag).

We draw three conclusions from our empirical analysis that are true for the web
samples we collected and we conjecture that they are true in general if the sampling
interval is sufficiently small: (1) common documents represents at least 50% of the
currently indexed collection, (2) most of the changes in the common documents, are
small, and (3) most of the changes are spatially localized within the document. The
landmark-diff update method that we propose in the next section is a scheme that
exploits these properties.

3 Updating inverted indexes

3.1 Current methods

Before we describe our method in detail, we briefly describe three naive update
methods: the index rebuild, document update, and forward index methods. The
forward index method is used as a benchmark in our experiments because it is the
most efficient of these naive methods.

Index rebuild In this method, the old inverted index is discarded, and a new
inverted index is constructed by scanning and sorting the entire updated document
collection (see [31] for details). The disadvantages are: (1) the entire document
collection has to be crawled at periodic intervals, and (2) every word in the collection
has to be scanned to construct the inverted file. Distributed rebuilding techniques,
such as [24], parallelizes (and pipelines) the process, but does not eliminate the need
of scanning every word in every document. If the magnitude of change is small,
scanning and re-indexing the words in documents that did not change is wasteful
and unnecessary. Rebuilding is recommended only if (1) there are very few common
documents (|Sn ∩ Sn+1| is small), or (2) the set of common word occurrences is small,
i.e., a large portion of each updated document has changed.

Document delete and insert One improvement over index rebuild is to process only
documents that have changed. For each document that has changed, we delete all
the postings for the old version of that document in the inverted index and insert
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inserted to the beginning), a forward index representation is constructed. This forward index is then
compared with the forward index of the old version stored by the system. Note how the location IDs
of the words changes.

the postings of the new document. The worst case number of postings deleted and
inserted is O(m + n), where m and n are the number of words in the old and new
version of the document, respectively. The advantage of this method is that web
documents can be crawled at different sampling intervals depending on their rate
of change.2 The document delete and insert method is recommended if (1) the rate
of change of documents has a large variance, and (2) the magnitude of change within
an updated document is large.

Forward index update A forward index is a list of postings associated with a single
document (see Figure 4) and differs from the inverted index in that the list of postings
of the form 〈word_id, doc_id, loc_id〉 is sorted first by doc_id, then by word_id and
loc_id. The forward index data-structure was introduced in Page and Brin’s Google
paper [25] as an auxiliary data structure to speedup inverted index construction. We
deduce that it can be used for index updates as described next.

Given the forward indexes of the old and new document, we generate a list
of postings operations (insert posting and delete posting) that will transform the
forward index of the old document to that of the new document. Since the postings
stored in a forward index are the same postings that are stored in the inverted index,
we can use these posting operations to update the inverted index. The data flow
diagram in Figure 5 illustrates the update procedure for a single document. To update
the inverted index, we apply the procedure for every common document that has
changed.

The advantages of using the forward index method are: (1) as with the document
delete and insert method, incremental crawling can be used, (2) when the content

2Incremental crawling has been addressed in [6, 9, 10, 20] and optimal crawling frequency is discussed
in [6, 10, 20].
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Figure 5 Updating an
inverted index using forward
indexes.
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change occurs near the end of the document, the postings corresponding to the words
before the position of that change need not be deleted and re-inserted. However,
the disadvantages are: (1) an additional forward index needs to be stored for each
document, (2) each forward index requires as much space as the document itself, and
(3) the number of postings deleted and inserted for a document that has changed is
still �(m + n) in the worst case, even if the difference between the two documents
is small. For a pathological example, consider an insertion of one word to the
beginning of the old document. All subsequent loc_ids will shift by one and hence
all corresponding postings in the index will need to be updated.

3.2 Our landmark-diff update method

In this section, we present our landmark-diff index update method. Our method has
the following desirable properties: (1) it is document based and incremental crawling
can be used; (2) the number of update operations on the inverted index (the number
of postings deleted and inserted) is independent of the document size, and depends
on the size of the content change only; (3) the landmark-diff method is especially
efficient when the set of common documents is large, and changes are small and
clustered.

Our landmark-diff method combines two important ideas: encoding the position
of words using landmarks in a document, and using the edit transcript or diff
output of the old and new document to obtain the index update operations. An edit
transcript is a list of operations that transform an old version of a document to the
new version of the document. The landmark encoding scheme allows us to translate
the edit transcript for the document into a very compact list of update operations on
the inverted index.

We first introduce the landmark encoding scheme and then describe the landmark-
diff update procedure. For the rest of this paper, we reserve the term edit transcript
for the diff output of a document and its updated version, and we use the term
update operation list to refer to the list of inverted index update operations (delete
or insert posting) that will update an inverted index.

Landmarks The purpose of relative addressing using landmarks is to minimize the
changes to the location IDs stored in the inverted index when documents change.
Given a document, a number of positions in the document are chosen as landmarks.
The position of each landmark in the document is recorded in a landmark directory
structure for the document. The location ID for each word in the document is then
encoded as a 〈landmark ID, offset〉 pair. Given a 〈landmark ID, offset〉 pair, the
original location ID of the word occurrence is recovered by retrieving the position of
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the landmark from the associated landmark directory and adding the offset to that
position. Each landmark acts as a reference point for the words between itself and
the next landmark.

Putting landmarks in a document can also be thought of as partitioning a docu-
ment into blocks. The starting position of a block corresponds to a landmark and
the location of every word in a block is encoded as an offset from the start of that
block. We use the term block to denote the words between consecutive landmarks.
Each landmark corresponds to a block and vice versa. For the following discussion,
we assume that a document is partitioned into fixed sized blocks. Other ways of
choosing landmarks are discussed in Section 3.3. Figure 6 shows an inverted index
with landmarks.

The landmark encoding does not increase the space requirement of the inverted
index itself; however, auxiliary landmark directories need to be stored for each
document. Suppose k bits are allocated for each loc_id in an inverted index without
landmark encoding. In an equivalent index using landmark encoding, the same k bits
in each posting can be used to encode a 〈landmark ID, offset〉 pair with the most
significant b < k bits used for storing the landmark ID and the least significant k − b
bits for the offset.

The landmark directories for each document are usually small. For a fixed block
size of l words, the number of entries in a landmark directory for a document of
m words is �m/ l�. For other ways of choosing landmarks, such as using HTML
paragraph tags, the number of entries in a landmark directory is less dependent on
the document size. Note also that a landmark directory lookup is not always required
during query processing. Further analytical evaluation and implementation issues for
the landmark directories are presented in Section 4.
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Update procedure using landmarks We show how to update an inverted index using
our landmark-diff method in response to a content change in a document. The goal
is to obtain an update operation list (an “edit transcript” for the inverted index) that
can be applied to the inverted index to bring it up-to-date. The key idea is to obtain
this update operation list from the edit transcript for the old and updated document.
The landmark encoding scheme allows us to construct this update operation list
using the edit transcript of the updated document, without increasing the number
of delete or insert posting operations per document to �(m + n), where m and n are
the number of words in the old and new version of a document. The details of the
procedure for transforming a document edit transcript to an update operation list is
lengthy but trivial, and we illustrate it by way of the example in Figure 7. The entire
landmark-diff update procedure is also outlined in Figure 7. For each document that
has changed, we obtain the edit transcript for updating that document using a diff
procedure. The diff output is then transformed into corresponding entries in the
update operation list for the inverted index using landmark information. The update
operation list is then used to update the inverted index. All the procedures before
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Figure 7 The inverted index update method using landmarks. The top diagram shows the data
flow; the middle diagram shows what the edit transcripts look like with an example; the bottom
diagram show how the landmark directory is updated. The landmark directory is represented here
conceptually as a table.
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the apply step require as input the old document, its landmark directory, and the
new version of the document only; therefore these procedures lend themselves to
parallel processing.

In addition to updating the index, the landmark directory for each changed
document needs to be updated as well, because insertion and/or deletion of words
from the blocks within a document change the absolute position of landmarks
within that document. Updating a landmark directory can be done very efficiently
in a single sequential scan through the landmark directory data structure. This
process is linear in the size of the landmark directory and the number of landmarks
deleted and inserted. The overhead incurred for storing and maintaining landmark
directories is not significant compared to the savings gained in the number of inverted
update operations and in the update time as shown by our analytical and empirical
evaluations in Sections 4 and 5. Further analysis of landmark directories is given in
Section 4.

3.3 Choosing landmarks

Our landmark-diff update method exploits the clusteredness of the document up-
dates and the partitioning of the document into blocks to localize the clusters of
updates. Choosing a partitioning scheme, or, analogously, choosing landmarks, is
therefore an important aspect of the method.

A landmarking policy describes how landmarks are chosen in a document and also
how these landmarks are to be processed during updates. To understand the crux of
the problem, consider the hypothetical question: how would an oracle, i.e., a person
who knows everything about future updates (within a certain time window), choose
landmarks? An oracle would partition the document such that

1. Each longest contiguous sequences of words that do not change is put into a
block and

2. Each longest contiguous sequences of words that changes is localized into a
block.

The oracle would not only optimize these localization constraints for each update,
but across all updates over the time window. Figure 8 shows an example of such a
partitioning across all updates within a time window. The resultant policy ensures
that the minimal number of blocks are used and that changes are localized into as
few blocks as possible. Hence, the size of the landmark directory is minimized and
the number of blocks touched by update processing is also minimized.

Since we do not have foreknowledge of future updates, we can only choose
landmarking policies based on the document itself. If no assumptions can be made
on the structure of the document contents, fixed size partitioning can be used. If we
know something about the structure of the document contents, for example from
HTML/XML tags, metadata, or semantic structure, we can use this information to
choose landmarks.

Fixed size partitioning The fixed size partitioning policy partitions each document
into blocks of a fixed size during index construction. During update processing, two
ways of dealing with how an edit operation affect a block are possible and the
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Figure 8 The evolution of a document over time. A tall rectangular represents a document at time
ti. The shaded regions in a document denotes the presence of updates in those regions at that time.
The horizontal dotted lines denote the partition boundaries that would localized all updates occurring
within the time window.

landmarking policy needs to specify which one to use. Consider an edit operation
that inserts a piece of text at some position within a block, the landmarking policy
has to specify whether to make the block bigger or to split the block (Figure 7
shows the case when an insert always splits a block). Similarly, when a piece of
text in the middle of a block is deleted, the landmark policy has to specify whether
the remaining text forms one block or two blocks. A split-block policy is a policy
where an edit operation always splits a block. A grow-block policy is a policy
where an edit operation always makes a block larger. The split-block policy has
the property that each block never exceeds the chosen size, while the grow-block
policy has the property that the landmark directory never exceeds a certain size.
In both cases, the variance in block size increases with the number of updates—a
condition we term loosely as fragmentation. For the split-block policy fragmentation
results in large landmark directories and hence increases the overhead in query and
update processing that require accesses to the landmark directories. For the grow-
block policy, fragmentation results in large blocks of text and increases the number
of index update operations required. Defragmentation or index rebuild should be
performed when update performance degrades. Since content changes in the updated
documents are likely to be small, fragmentation would not occur frequently.

In fixed size landmarking, the landmarks are not inherent in the structure of the
document. A brute-force diff on the old and updated documents is required to
generate the edit transcript. Using the landmark information of the old document
and the edit transcript, inverted index and landmark directory update operations are
generated (see Figure 7 for an example). Each edit operation in the edit transcript
is mapped to landmark directory update operations and index update operations in
terms of landmark-offset pairs.

HTML/XML tags HTML tags such as the paragraph tag (<p>) can also be used as
landmarks. In contrast to the fixed size policy, the landmarks in this case are inherent
in the document and the problem of whether an edit operation should split or grow
a block is irrelevant, because block boundaries are decided by the HTML tags, say
the <p> tag. A more efficient, block-based, approximate diff procedure could be
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Figure 9 A HTML document and its DOM tree. The first three layers can be chosen to be the
landmarking policy, i.e., the <TR> tag can be used to partition the document into three blocks.

used instead of the brute force diff. For example, we could hash each block of the
original and new versions and do the diff on the substantially smaller sequence of
hashed values.

A natural question arises: which tags or sequence of tags should be used as
landmarks? Linear-time heuristics can be used to check which tags (or sequences of
tags) are suitable as landmarks. For example, the Document Object Model (DOM)
tree [1] of a HTML or XML file can be generated and the top few levels used as the
partitioning policy. Note that we really only need to generate the top few levels of
the tree. Figure 9 shows an example of a HTML document and its DOM tree. In the
example, the first three layers of the tree can be used as the landmarking policy and
we could use the <TR> tags as the landmarks. Using such techniques to determine
landmarks for each document means that a brief description of the landmarking tags
will need to be stored together with the landmark directory for each document.

3.4 Some application scenarios

We have described the landmark-diff method for updating the index for common
documents that have changed. We now give three example scenarios to illustrate how
our landmark-diff method can be used to solve the general index update problem.

Update log If the inverted index is maintained using an update log (similar to “stop-
press”) in between complete index rebuilds, our landmark-diff method can be used
to reduce the size of the update log. The naive update log corresponds to the list
of inverted index update operations generated by the forward index update method
(Section 3.1). Our landmark-diff update method can be used to significantly reduce
the size of this update log and thus the query processing time.

Partial rebuild In contrast to a complete rebuild, a partial rebuild avoids re-
indexing the common documents that did not change. Suppose that the inverted
index is stored as a sorted array Aindex of postings, the doc_ids of the deleted
documents are stored in a bitmap Bdeleted, and the postings of the inserted documents
are stored in a sorted array Ainserted (stop-press). The landmark-diff method can be
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used to maintain a reduced-size sorted update log Aupdate for the common documents.
The inverted index can then be updated in a single merging pass of the three sorted
arrays Aindex, Aupdate and Ainserted (checking Bdeleted for deletes). Our experiments
described in Section 5.3 show that partial rebuild can be twice as fast as complete
rebuild.

Distributed index update Suppose the document collection is partitioned among
M machines and indexed independently. At each update, each machine updates its
index using a bitmap for the deleted documents and the landmark-diff method for
the common documents. Inserted documents are always processed at a free machine
that builds an index for them. When no free machines are available, the two machines
with the smallest indexes are found and the two indexes are merged to free one
machine.

3.5 Query processing with landmarks

Query processing using an inverted index with landmarks does not differ significantly
from using a traditional inverted index. The main difference is that when positional
information is required (either to check positional query constraints or to compute
relevance rank), the landmark directories of all documents involved need to be
retrieved to compute the location ID’s of the postings. To minimize the number of
landmark directories retrieved, the retrieval of landmark directories should be done
after all document ID based filtering.

For phrase queries, the landmark directory retrieval and lookup can be avoided
completely if positional information is not required. An additional field is as-
sociated with the last word occurrence of every block to store the ID of the
next landmark. Given a phrase query (key1 key2), the postings for each key-
word is retrieved from the index independently. Postings with the same document
ID are grouped together and two postings, 〈key1, doc_id, landmark_id1, offset1〉
and 〈key2, doc_id, landmark_id2, offset2〉 form a phrase only if (1) landmark_id1 is
equal to landmark_id2 and the difference between offset1 and offset2 is 1, or (2)
landmark_id1 is not equal to landmark_id2, but offset2 is zero and the posting for
key1 has the additional next landmark field that is equal to landmark_id2.

The cost of retrieving a landmark directory depends on the size of the landmark
directory which depends on the landmarking policy. The cost of looking up the
location ID of a landmark, depends on the implementation of the directory and we
discuss the details in Section 4.3 and Section 4.7.

4 Analytical evaluation

In this section we evaluate the performance of our landmark-diff update method
analytically using the number of update operations as well as the more traditional
running time complexity. We also show that the complexity of the diff operation is
not a bottleneck, and that landmarking has minimal impact on query processing.
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4.1 Update performance in number of operations

Consider the number of updates (insert and delete postings) to an inverted index
generated by our update method for a single edit operation on a single document.
The following theorem states a key property of the landmark-diff method that all
existing update methods lack: the number of updates generated by our method is
independent of document size and dependent only on the size of the edit operation
in the document and the maximum block size. The number of updates generated by
existing update methods, on the other hand, is dependent on the size of both the
original and the updated document.

Theorem 1 The number U of updates to an inverted index caused by a single edit
operation that deletes or inserts � contiguous words is at most

U ≤ � + ε,

where ε is the number of words that are not deleted in the last modified block.

Proof Let B be the set of landmarks or blocks affected by this deletion or insertion
of � words in the document. For the example in Figure 10, B = {L2, L3, L4}. All
postings in the inverted index corresponding to the words in B will have to be
updated except postings for the words occurring prior to the start of the deletion
or insertion point. The number of updates is thus bounded by � + ε words, where ε

is the number of words following the change in the last block in B. In Figure 10, the
posting for the word ‘c’ does not change, but the posting for the word ‘h’ changes,
because its offset becomes zero after the deletion of four words. �	

The following lemma follows from the analysis of the gap distribution given in [29].
The positions of the L landmarks of a document are modeled as random, because the
initially uniform landmark positions are no longer uniform after several random edit
operations.

Δ = 4 words

Doc b g hdca fe ji k l

L2 L3 L4 L5 L6L1

0 1 2 3 4 5 6 7 98 10 11locIDs

deleted 
unchanged
locIDs

Landmarks shifted

ε

B

= 1 word

Figure 10 Consider a document with 12 words (‘a’ to ‘l’). The block size is set at two words. Deletion
of � = 4 words generates � + ε update posting operations on the inverted index. The set B contains
all the segments affected by the change. Landmark ID L3 has to be deleted, the position of landmark
L4 has to be changed to 3, the offset of the word ‘h’ has to be changed to 0, and the position of
landmarks L5 and L6 has to be shifted by −4.
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Lemma 1 If the L landmarks of a particular document are randomly located, the
expected number U of updates to an inverted index caused by a single edit operation
of size � on a document of size m words satisfies

U ≤ � + (m − L)/(L + 1).

This lemma provides an upper bound in terms of m and L for the expected value
of the ε term in Theorem 1. If the number of landmarks L is a fixed constant, then the
expected value of ε is linear in the document size m. If the number of landmarks is a
factor of m (for example in fixed size partitioning, L = m ÷ blocksize), the expected
value of ε is upper bounded by the block size.

4.2 The complexity of the diff operation

The use of edit transcripts (diff output) is a key idea in our method. The problem
of computing an edit transcript given two documents is known formally as the
longest common subsequence (LCS) problem. The worst case running time for a
dynamic programming solution to the LCS problem is �(mn), where m and n are
the number of words in the old and the new documents, respectively. A heuristic-
based algorithm due to Ukkonen [28] achieves a running time of O(D min{n, m})
using O(D min{n, m}) space, where D is the minimum edit distance. The Unix diff
program uses an output-sensitive heuristic algorithm similar to that of [28], so that
the running time is near-linear when D is small and quadratic if D is linear.

Since diff is near-linear for small updates and the updates are usually small
between two consecutive samples [22], diff is not a bottleneck in the processing
in most cases. If the diff operation did form a bottleneck, we could represent each
block in a document by its hashed value and perform the diff operation on the
sequence of hash values rather than on the raw blocks directly.

Theorem 2 Let L and L′ be the number of landmarks in the old and new documents,
respectively. The block-based diff variant takes O(D′ min{L, L′} + m + n) time to
generate the edit transcript, where L ≤ m, L′ ≤ n, and D′ is the block-wise minimum
edit distance.

False negatives (i.e., two identical blocks that are reported to be different) do
not affect the correctness of the update method, but increases the size of the edit
transcript and hence the number of update operations. Note that hash functions in
general do not produce false negatives. False positives (i.e., two different blocks that
are reported to match) could affect the correctness of our update method and need
to be eliminated by doing a linear scan of the blocks that are reported to be identical
to verify identity. All the blocks that are found different (both from the diff step
and the linear scan step) will be the ones that need to be deleted and inserted into the
system. The edit transcript would then consist of a list of delete landmark operations
for blocks deleted from the old document and a list of insert landmark and insert
postings operations for the blocks of text inserted into the new document.
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Table 3 Summary of the performance of the offset tree data structure versus that of the array data
structure for landmark directories.

Operation Offset tree Simple array

Insert O(log L) O(1)

Delete O(log L) O(1)

DeleteRange O(log L) O(B)

Shift O(log L) O(L)

Find_Pos O(log L) O(1)

Find_Ldmk O(log L) O(L)

Find_All_Ldmk O(log L + B) O(L)

Update Ops Generation O(log L + B + �) O(L + �)

Query Overhead O(
(∑

i skeyi

) × log Lmax) O(
∑

i skeyi
)

Space Overhead 40L 16L

The term L is the number of landmarks in the document, B is the number of landmarks affected by
change or within a range, and � is the number of words deleted or inserted.

4.3 Implementing the landmark directory

The running time complexity of the landmark-diff method is dependent on how
the landmark directory is implemented. We briefly describe the operations that an
implementation of the landmark directory must support.

Insert(pos) inserts a new landmark at position pos.
Delete(landmark_id) deletes the landmark landmark_id.
DeleteRange(landmark_id1, landmark_id2) deletes all landmarks occurring between
landmark_id1 and landmark_id2.
Shift(landmark_id, value) adds value to the position of all the landmarks that occur
after landmark_id.
Find_Pos(landmark_id) returns the position of the landmark landmark_id.
Find_Ldmk(pos) returns the landmark corresponding to the position pos.
Find_All_Ldmk(pos_range) returns all the landmarks corresponding to the positions
in the range pos_range.

An offset tree [30] is the theoretically efficient data structure for a landmark
directory. In practice, an array is used because of its compactness and good locality of
memory reference. We analyze the offset tree data structure for landmark directories
in Section 4.4, and the array data structure for landmark directories in Section 4.5.
A summary of the analysis is given in Table 3. For the rest of the analysis we will
assume that the landmark directories are implemented as arrays.

4.4 Offset trees for landmark directories

Offset trees are binary trees that store an offset value in each node (Figure 11). They
resemble the document representation data structures proposed in [14, 16, 30]. In
this paper, we are not concerned with document representation, but with index rep-
resentation together with novel index update techniques. Offset trees are frequently
used in similar problems (such as in [30]) and they are theoretically very efficient.
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Figure 11 The offset tree data
structure.
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However, they require too much space as compared with arrays and exhibit poor
locality of memory reference in practice.

In our context, each node in the offset tree stores an additional parent pointer
and each leaf node corresponds to a landmark of the document. The leaf nodes also
store the following extra fields: the size field, the byte position field, the left and right
pointers. The size field stores the extent (in number of words) of that landmark. The
byte position field stores the byte position of the landmark in the document. The left
and right pointers point to the adjacent leaf nodes and make the leaf nodes a doubly
linked list.

The actual word position of a landmark is the sum of the offsets of the nodes in the
path from the root to the leaf node corresponding to that landmark. Conceptually we
can think of a landmark as a pointer to a leaf node without affecting the bounds we
describe.

Offset trees can be height-balanced by using splay trees (amortized) or red-
black trees (worst-case) [30]. Using offset trees, all the landmark directory op-
erations (described in Section 4.3) take O(log L) time except for the operation
Find_All_Ldmk(pos_range) which runs in O(log L + B) time, where L is the number
of landmarks and B is the number of landmarks in the given range. We omit the proof
for reasons of brevity.

Space requirement For L landmarks, how much space does this offset tree structure
require? Each tree has L leaf nodes and L − 1 internal nodes. Each node stores
an offset value and three pointers (parent, left and right). Each leaf node stores an
additional two integers for the size and byte position fields. Assuming 4-byte pointers
and integers, this structure requires (L − 1) × 4 × 4 + L × 6 × 4 ≈ 40L bytes.

Update performance Suppose � contiguous words are deleted or inserted in an
existing document. Using an offset tree, O(log L + B + �) time is required to
generate the update operations that need to be done on the inverted index and to
update the offset tree given the position(s) and the word IDs of the � words that are
deleted or inserted.

Query performance The additional time required to process a conjunctive query
of k keywords key0 ∧ key1 ∧ . . . ∧ keyk−1 is O

((∑
i skeyi

) × log Lmax
)
, where skeyi

is
the selectivity of keyword keyi and Lmax is the maximum number of landmarks per
document among all the inverted index entries involved in this query. The selectivity
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of a keyword is the number of inverted index entries with word_id equal to the given
keyword.

4.5 Arrays for landmark directories

Although offset trees are theoretically efficient, they are not space-efficient for
our application in practice. Arrays offer a more practical solution. Several array
implementations of a landmark directory are possible depending on the space-time
trade-off. We describe one simple implementation here as an illustration and analyze
its update and query performance.

For a particular document, suppose there are at most L landmarks and we allocate
landmark IDs as integers in [0, L − 1]. The landmark directory can be implemented
as an array of size L indexed by the landmark IDs. Each array entry stores the
actual word position of that landmark, a previous landmark pointer, a next landmark
pointer, and the actual byte position of the landmark in the document.

Space requirement Again assuming 4-byte integer/pointer for each of the four fields
(word position, previous landmark, next landmark, and byte position), the space
required by the array is 4 × 4 × L = 16L bytes. Some additional space could be used
to accommodate future insertions, or else new space for the array can be allocated
when L changes. Thus, arrays provide significant saving in space over the use of offset
trees.

Update performance The time complexity of the various update operations ap-
pears in Table 3. All lookups using a landmark ID takes constant time; hence
Find_Pos(landmark_id) takes constant time. However, the Find_Ldmk(pos) oper-
ation requires O(L) time, because the array is not indexed by word position and we
have to scan through the array in order to find the corresponding landmark given its
position. The Find_All_Ldmk(pos_range) operation also takes O(L) time because
we need one scan to locate the landmark ID corresponding to the starting position
and then we can follow the next landmark pointers and check if the ending position
has been reached. Since at most two passes through the array is required, it requires
O(L) time.

The insert, delete, shift, DeleteRange operations are not needed if a new updated
landmark directory is generated together with the inverted index update operations.
This is the update method of choice since only one linear scan is required per
document to generate the update landmark directory. Nevertheless, for the sake of
completeness, we give brief analysis of these operations.

If we maintain a free list of unused landmark IDs, the insert operation requires
only O(1) time. The delete operation requires a constant time lookup, a constant
time nullify operation, and a constant time update previous landmark operation.

The shift operation requires changing the word position of all subsequent land-
marks. The next landmark pointer is used to traverse through the subsequent
landmarks and there are at most L − 1 subsequent landmarks.

For the DeleteRange operation, we lookup the starting landmark ID and traverse
the range of landmark IDs using the next landmark field and nullify each entry; hence
if B is the number of landmarks in the given range, DeleteRange takes O(B) time.
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Note that the Delete and Shift operations are not required if the landmarking
policy relies on the structure of the document (e.g., HTML tags), since we can rebuild
the entire landmark directory from the new version of the document.

Compared with the logarithmic time lookup using offset trees, this simple array
implementation offers constant time lookup of the word position given the landmark
ID, an operation required during query processing. Query performance of arrays
is therefore superior to offset trees; update performance requires the linear time
reverse lookup operation (given position find the landmark ID) and hence is more
expensive compared with offset trees.

4.6 Update performance using arrays

Theorem 3 Let � be the number of contiguous words that were deleted or inserted and
L be the number of landmarks in the existing document. Using an array, O(L + �)

time is required to generate the update operations on the inverted index and update
the landmark directory given the position(s) and the word IDs of the � words that are
deleted or inserted.

Proof In the case where Unix diff is used, the edit transcripts consist of the
positions of the words deleted or inserted and the words themselves. For delete,
a position range of the words deleted is usually given. To generate the update
entries for the deleted words, the operation Find_All_Ldmk(pos_range) is called.
The operation Find_All_Ldmk(pos_range) outputs the landmark ID and offset of
the starting word, the landmark ID and offset of the ending word and a list landmark
IDs with their corresponding extents. Using this list and the information inside the
edit transcript, we can generate the delete entries for the inverted file. The operation
Find_All_Ldmk takes O(L) time, where L is the total number of landmarks for
that document. Generating the delete landmark entries and applying them on the
landmark directory take another O(L), because at most O(L) landmarks can lie
in the given range and each delete landmark operation requires constant time.
Generating the delete and insert posting entries for the words in the first and last
block requires constant time assuming a constant block size. Hence to delete �

contiguous words, O(L + �) time is required to generate the update entries for the
inverted file and update the landmark directory given the edit transcript. A similar
argument can be made for inserts. From our data analysis, we can deduce that � is
typically very small.

In the case where a block-based variant of diff such as that described in
Section 4.2 is used, an extra access to the old file or new file is required to obtain
the words that are deleted or inserted. We show that this additional file access does
not degrade the bound obtained in the previous paragraph.

Suppose that the variant diff returns an edit transcript in the following format.
For delete, it returns the landmark ID of the block to be deleted. For insert it returns
to the word position of the insertion point and the byte positions in the new document
where the words to be inserted are located.

For deletion of a block of � words, we can obtain the word position, the byte
position and the extent of the landmark in constant time. Using the byte position, we
can access the starting point of the block of text to be deleted in the old document
in O(1) time. Reading the � words require another O(�) time assuming a constant
word length. We can now generate the delete entries for the inverted file and update
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the landmark directory as before. Since the file access required only O(�) time the
overall bound is still O(L + �) time. The argument for insert is analogous. �	

4.7 Query performance using arrays

Theorem 4 The additional time required to process a conjunctive query of k keywords
key0 ∧ key1 ∧ . . . ∧ keyk−1 is O(

∑k−1
i=0 skeyi

), where skeyi
is the selectivity of keyword

keyi.

Proof Recall how conjunctive queries are processed. For each keyword keyi, we
obtain from the inverted index a list li of inverted index entries of the form
〈word_id, doc_id, loc_id〉. The selectivity of keyword keyi is skeyi

= |li|, the number
of inverted index entries with word_id equal to keyi. Entries from documents that do
not contain all the keywords are filtered out of each li.

If the query post processing does not require the position of each occurrence of
the word in a document, then we do not need to access the landmark directories
and no additional cost is incurred. If positional information is needed (for example,
to compute some relevant metric), then there is an additional skeyi

× O(1) time
overhead to look up the actual position of each of the skeyi

landmark IDs for a
keyword keyi, assuming in the worst case that the the landmark IDs are all distinct.
Hence, for a query consisting of a list of k keywords {keyi | 0 ≤ i < k} joined by
the boolean operator AND, the additional overhead is O(

∑
i skeyi

) time. Note that
an offset tree implementation of the landmark directory is an order of magnitude
slower, because each lookup requires O(log L) time (see Table 3). �	

5 Experimental evaluation

In this section we describe the experiments used to evaluate our landmark-diff
method. We compare the performance of the landmark-diff method with the forward
index method, because both methods are designed for updating common documents
whose contents have changed. For the performance on general index update, we
compare the the partial rebuild method using landmark-diff with the complete
rebuild method, because the complete rebuild method is the industry workhorse.

Through our experiments, we answer five important questions about the perfor-
mance of our landmark-diff method:

1. How does landmark or block size affect performance?
2. Does the landmark-diff method significantly reduce the number of edit oper-

ations on the inverted index compared to other methods (e.g., forward index
method)?

3. Does the reduction in the number of inverted index update operations actually
translate to savings in real execution time when applying these operations?

4. Does generating update operations using the
landmark-diff method require more time than other methods?

5. Does the landmark-diff method provide a more efficient solution for the general
inverted index maintenance problem than complete rebuild method, especially
when the change between two consecutive samples is large?
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Table 4 The number of update operations generated by the update methods in our experiments.

Data C(docs) �C(docs) Fwd. index Landmark

I 37,641 10,743 10,501,047 3,360,292
IIa 2,026 1,209 1,109,745 330,695
IIb 5,456 1,226 1,566,239 350,802
IIc 5,335 3,096 1,855,618 534,088
IId 5,394 1,278 1,426,163 378,661
IIe 5,783 1,605 1,762,018 539,594

The symbol C denotes the number of common documents (|Sn ∩ Sn+1|) and the symbol �C denotes
the portion of C that has changed.

Our implementation Our text indexing system is implemented in C. Two imple-
mentations of the inverted index have been used. The binary tree (of postings) imple-
mentation is used for measuring the time required to apply update operations on the
index, because the binary tree represents the worst case tree-based data structure.
We discuss a B-tree representation in Section 5.4 which will take better advantage
of our landmark-diff method when updates are very frequent and therefore very
small in magnitude. A b-way search structure implicitly represented by a linear
array of postings is used for the comparison between the partial rebuild method
and the complete rebuild method, because both methods rely on an external k-way
merge sort and linear arrays give the complete rebuild method the most advantage.
Landmark directories and forward indexes are implemented using linear arrays,
because these are small data structures.

Landmarking policy and block size Fixed size partitioning is used to choose land-
marks. Intuitively, the square root of the average document size is a good block size.3

For the experiments we present, a default block size of 32 words is chosen since the
average document size is roughly 1,000 words. Insertion of words always split a block.

Performance measures We evaluate the performance of our landmark method
using four measures: (1) the number of inverted index update operations (Table 4);
(2) the time needed to perform those operations (Table 5); (3) the time needed to
generate those operations (Table 6); (4) the time needed to bring the inverted index
up-to-date using the partial rebuild method (Table 7).

An edit operation is defined to be a delete posting or insert posting operation. The
number of edit operations on the inverted index is a natural performance measure,
since the goal of a good update method is to reduce the number of edit operations
on the inverted index. Moreover, unlike the execution time, the number of edit
operations depends neither on the implementation of the system nor on the hardware
architecture. The number of edit operations is therefore a good measure of update
performance across different search engine architectures and implementations.

3The reasoning is similar to a 2-level B-tree where the number of blocks and the block size is
‘balanced.’
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Table 5 Time required to apply the update operations on a binary tree implementation of the
inverted index.

Method |Sn| No. update ops. Time (s)

Fwd. Index 63,336 10,501,047 28.3
Landmark 63,336 3,360,292 9.2

The symbol |Sn| denote the number of documents in the index and corresponds to the index size.

Data set Two sets of data are crawled from the web. Data Set I consists of two
samples of the web crawled from 100 seed web sites. The time between the start
of the two web crawls is 71 h and the recursion depth is limited to five levels. The
first sample has 63,336 documents and the second has 64,639 documents with 37,641
documents common to both. Each sample contains about 1.5 GB worth of HTML
files. Data Set II consists of six samples of the web crawled from five seed web sites
(www.cnn.com, www.ebay.com, www.yahoo.com, espn.go.com, and www.duke.edu).
The sampling interval is 12 h and the recursion depth is five levels. Note that four out
of the five listed web sites have fast changing contents.

Document preprocessing Every HTML file is preprocessed into a canonical form
by stripping off HTML tags, scripting code, and extra white space. Every letter is
capitalized so that different capitalizations do not result in different word IDs. If the
canonical form of a file has less than ten words, it is discarded.

5.1 Block size and performance

In this section, we address two questions: how does block size affect the number of
inverted index update operations, and how does block size affect the time to generate
these operations.

We measured the minimum number of index update operations required for
different block sizes (using data set I described previously) and verified that as
the block size gets smaller the number of index update operations decreases at the
expense of increasing landmark directory size. Figure 12 shows the distribution of
the documents with respect to the number of index update operations normalized by
the sum of the sizes of the old and new documents. While small block sizes result

Table 6 The time (in seconds) required to generate the inverted index update operations for the
landmark-diff method and the forward index method.

Generation time (s)

Method No. update ops C �C

Fwd. index 10,501,047 148.9 18.9
Landmark 3,360,292 17.5 7.5

The C column gives the required time if all the common files (37,641) have to be checked and
processed. The �C column gives the required time, if incremental crawling is used and the system
knows a priori whether a common file has been modified since the last crawl.
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Table 7 Running time performance of the partial rebuild method using landmark-diff and the
complete rebuild method.

No. of docs No. of postings

D 25,695 –
C 37,641 58,575,596
�C 10,743 –
� – 3,360,292
N 26,998 43,366,308

Partial rebuild 513.8 s
Complete rebuild 1113.7 s

The symbols D, C, �C, � and N denote the deleted documents, the common documents, the common
documents that have changed, the update operations for the common documents and the new
documents that have been inserted. We give the sizes of these sets in units of documents as well
as postings.

in less update operations on the index, it also results in larger landmark directories,
which translates to an increase in the cost of manipulating the landmark directory.

The increasing cost of manipulating the landmark directories as block sizes de-
creases can be seen in our experiment for investigating how the landmark size affects
the time required to generate the update operations for the common documents
(data set I) that have changed. Figure 13 shows that smaller landmark size results in
less processing time to generate update operations for block sizes greater than eight
words. For block sizes less than eight words, the cost of manipulating large landmark
directories dominate and the processing time increases. Note that the block size that
minimizes the time to generate update operations is dependent on the magnitude
and clusteredness of change of the data as well as the implementation of the system.

In principle it is possible to determine the block size that minimizes the time
for the entire update process for common documents given a data set and a
particular system implementation. However, that is computationally intensive, and
the computed optimal block size is not very useful, because it is dependent on the
data, which change over time. One approach to reduce the computational overhead

Figure 12 Cumulative
distribution of documents with
respect to the number of
inverted index update
operations for different block
sizes. Note that the lines from
right to left are in the same
order as the labels in the
legend (top-down), so the right
most line is for block size 64. If
a vertical line is drawn at 20%
cumulative update operations,
the intersection with each of
the plotted lines gives the
percentage of documents that
each require less than 20%
number of update operations.
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Figure 13 Landmark size
versus time to generate update
operations for common
documents that have changed.
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is to compute the optimal block size using a small subset (a statistical sample) of the
data. A simple strategy to deal with changes in data characteristics is to recompute
the block size during periodic index re-organization (de-fragmentation).

5.2 Performance on common documents

We compare the update performance of the landmark-diff method on common
documents with the forward index method.

Number of update operations We count the number of inverted index update
operations generated by the forward index method and our landmark-diff method
on two data sets. Fixed size landmarking policy is used with a block size of 32
words. Table 4 shows that the landmark-diff method generates significantly less
update operations on the inverted index than the forward index method (which
represents the best of the naive methods). The performance of the landmark-diff
update method is consistent over a broad range of web sites including web sites with
fast changing content. We indicate in Section 5.4 that this measure will mirror real-
world performance when updates are frequent.

Update time Do the reductions in the number of inverted index update operations
actually translate to savings in the time to apply these operations? We measure
the execution time for applying the update operations generated by the forward
index method and the landmark-diff method to a binary tree implementation of the
inverted index for data set I. The experiment is performed on a Sun Blade-1000
computer running SunOS 5.8 with 4 GB of RAM. Our results as summarized in
Table 5 show that a reduction in the number of update operations does translate to a
proportional reduction in the time required to update the inverted index. Note that
the measured time does not include the time for updating the landmark directories,
because we are interested in the time required to update the inverted index data-
structure. The landmark directory is a per document data-structure and therefore is
small and can be updated in parallel for each document. The inverted index, on the
other hand, is a data-structure for a collection of documents that is used for query
processing. The update processing time on the inverted index is therefore critical to
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the performance of the retrieval system. Updating each landmark directory requires
only one linear pass through the associated document and can be done at the same
time as generating the update operations (see Section 5.2).

Time for generating update operations Does generating update operations using
the landmark-diff method require prohibitively more time than the forward index
method? We measured the time used to generate the update operations for data
set I using the same configuration as in Section 5.2. For the forward index method,
the measured time includes the time to read each pair of old and new document
from disk, the time to create forward indexes for them, and the time to compare
the forward indexes and generate update operations. For the landmark-diff method,
the measured time includes the time to read each pair of old and new document from
disk, the time to performing a diff on them, the time to translate the diff output to
update operations, and the time to generate the updated landmark directory. Table 6
shows that for common documents that have changed the landmark-diff method
is roughly three times as fast as the forward index method in generating update
operations. This speedup is roughly the ratio of the output size (the number of update
operations). Observe that diff is a more efficient method for detecting identical,
i.e. unchanged, documents than the forward index method. In our experiments, the
landmark directories are stored in memory, but even if the landmark directories
are stored on disk, the additional time required to read a landmark directory into
memory is still small compared with reading a document, since it is much smaller in
size.

For common documents, our experiments have shown that the landmark-diff
method does indeed reduce the number of update operations as compared to the
forward index method. Moreover, the reduced number of update operations does
translate to speedups of roughly the same ratio in update generation and application
time. We next show how the landmark-diff method can be used for efficient general
index update (not restricted to common documents).

5.3 Performance on general index update

We investigate the efficiency of using the landmark-diff method for solving the
general index update problem. We compare the performance of the partial rebuild
method using landmark-diff (see Section 3.4) with that of the complete rebuild
method.

In both methods, the inverted index is implemented as a sorted array of postings
residing on disk (searching can be accomplished using an implicit complete b-way
tree similar to a binary heap implemented as an array). For the complete rebuild
method, the entire updated document collection is scanned into a list of postings and
sorted using external k-way merge sort and written out to disk. For the partial rebuild
method, the original and updated document collection is scanned to obtained (1) a
list of document IDs of the deleted documents stored as a bit map in memory, (2) a
sorted list of postings of the inserted documents stored as an array in memory, and (3)
a sorted list of index update operations for the common documents, generated using
our landmark-diff method, and stored as an array on disk. The old inverted index
(on disk), the bit map, the array of new postings, and the sorted update operations
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Figure 14 The schematic diagram for the partial rebuild method. Our landmark-diff method
produces a list of update operations � which is then sorted. The new documents are processed into a
sorted list of postings D to be inserted. The doc_ids of the deleted documents are stored in a bitmap.
These three data structures are merged with the old inverted index in a linear pass.

are merged (in a fashion similar to mergesort) into an updated inverted index and
written to disk (see Figure 14).

The two update methods are applied on data set I and the elapsed time measured.
Table 7 shows that the partial rebuild using landmark-diff method is twice as fast
as the complete rebuild method even for two web samples that are crawled 71 h
apart and thus have a large number of changed common documents and inserted
documents. The partial rebuild method illustrates that the efficient update processing
of the common documents can improve overall efficiency by avoiding the expensive
re-indexing of the portion of the common documents that did not change. Hence, the
partial rebuild method is more efficient because it only has to perform the expensive
indexing operation on the new documents, whereas the complete rebuild method has
to index both the updated common documents and the new documents.

Observe that the time required to process common documents (Tables 5 and 6) is
quite small compared to the overall update time of the partial rebuild method using
landmark-diff (Table 7). A large portion of the elapsed time for the partial rebuild
method is spent on the expensive indexing operation done on the new documents.
One could argue that optimizing updates of common documents is meaningless
because the bottleneck lies in indexing the new documents; however, the goal of this
work is incremental updates. In the incremental update scenario, the time between
updates is small and the new documents that arrive between updates are also fewer.
Update processing of the common documents would account for the bulk of the
processing time in incremental updates. If the set of new documents is significantly
large, other ways of dealing with the new documents can be used. For example, a
separate index can be built for the new documents as suggested in Section 3.4.

5.4 Discussion

Updating inverted indexes given a new sample of the web involves four sets of items:

1. The postings of deleted documents D,
2. The postings for inserted/new documents N ,
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3. The postings for original common documents C, and
4. The update operations � for C.

The existing inverted index (consisting of C and D) has to be ‘merged’ with the sets
D, N and �, so that D is deleted, N is inserted, and � is applied to the inverted
index (the alternative is to rebuild from scratch). The set D can be processed very
efficiently by storing the doc_ids using a bit map. Updating the index with � can
be done very efficiently using our landmark-diff method (three times faster than the
forward index method). The efficiency of incorporating N to the inverted index will
depend on the size of N .

The partial rebuild method using landmark-diff exploits the following three facts
to achieve the factor of two speedup compared to the complete rebuild method: (1)
N can be processed in a sequential manner very efficiently; (2) our landmark-diff
method produces a very small � relative to C very efficiently; (3) the landmark-diff
method avoids re-indexing the portion of C that did not change. The goal of this
paper is to investigate fast incremental update of inverted index. As the sampling
interval decreases, the sizes of N and � also decrease relative to C [9]. In the limit,
N will be very small and random access updates to an inverted index implemented
as a B-tree will be faster than an array implementation. A similar trade-off between
random access data structures and stream-based processing has been observed in the
processing of spatial joins [2]. Therefore, the speedup in incremental update time
using a B-tree implementation approaches

|C| + |N | + |�|
|N | + |�| + |D| (3)

compared with a complete rebuild. We have showed in Table 7 that the array-based
partial rebuild using landmark-diff is twice as fast as complete rebuild for a relatively
large update interval of 71 h. As the update interval decreases, the speedup will be
more significant and even more dramatic if we use a B-tree implementation of the
inverted index.

6 Conclusion

Keeping web indexes up-to-date is an important problem for research and in practice.
Naive update methods such as index rebuild is inadequate in keeping the inverted
index up-to-date especially in the context of in-place, incremental crawling. That
web document changes are generally small and clustered, motivates the use of
incremental update algorithms based on diff. However, storing positional infor-
mation in the inverted index presents a problem in using the diff approach. The
landmark representation that we proposed allows the diff approach to be used to
efficiently update inverted indexes that store positional information. We show that
the performance of our method is theoretically sound and our experiments show that
our method results in significant savings in the number of edit operations performed
on the inverted index and hence in the update time. We further showed how the
landmark-diff method can be used with partial rebuild to update inverted index in
half the time it takes to rebuild the index from scratch. One important insight is
that not re-indexing the portion of the document collection that did not change can
result in more efficient update processing. The implication for incremental updates
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is significant, because smaller time intervals between updates mean that more of the
document collection remains unchanged. An orthogonal issue not addressed in this
paper is update processing for documents whose content did not change, but whose
URL or document ID changes. In the spirit of not re-indexing content that did not
change, such updates in URL should be detected and re-indexing avoided.
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