
Dynamic Maintenance of Web Indexes
Using Landmarks

Lipyeow Lim
∗

Duke University,

Durham, NC 27708–0129, USA.

lipyeow@cs.duke.edu

Min Wang
IBM T. J. Watson Research Ctr.

Hawthorne, NY 10532, USA.

min@us.ibm.com

Sriram Padmanabhan
IBM T. J. Watson Research Ctr.

Hawthorne, NY 10532, USA.

srp@us.ibm.com

Jeffrey Scott Vitter
†

Purdue University

West Lafayette, IN 47907, USA.

jsv@purdue.edu

Ramesh Agarwal
IBM Almaden Research Ctr.

San Jose, CA 95120–6099, USA.

ragarwal@us.ibm.com

ABSTRACT

Recent work on incremental crawling has enabled the
indexed document collection of a search engine to be
more synchronized with the changing World Wide Web.
However, this synchronized collection is not immedi-
ately searchable, because the keyword index is rebuilt
from scratch less frequently than the collection can be
refreshed. An inverted index is usually used to index
documents crawled from the web. Complete index re-
build at high frequency is expensive. Previous work
on incremental inverted index updates have been re-
stricted to adding and removing documents. Updat-
ing the inverted index for previously indexed documents
that have changed has not been addressed.

In this paper, we propose an efficient method to up-
date the inverted index for previously indexed docu-
ments whose contents have changed. Our method uses
the idea of landmarks together with the diff algorithm
to significantly reduce the number of postings in the in-
verted index that need to be updated. Our experiments
verify that our landmark-diff method results in signifi-
cant savings in the number of update operations on the
inverted index.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Infor-
mation Search and Retrieval; I.7.m [Document and
text processing]: Miscellaneous

∗Work done while the author was visiting IBM T. J.
Watson Research Center.
†The author was supported in part by the Army Re-
search Office through grant DAAD19–01–1–0725, by the
National Science Foundation through research grants
CCR–9877133 and EIA–9870724, and by an IBM Fac-
ulty Award.

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

General Terms

Performance

Keywords

Inverted files, Update processing

1. Introduction

The inverted index is the indexing technique of choice
for web documents. Search engines use an inverted in-
dex for HTML documents [18], and DBMSs use it to
support containment queries in XML documents [14,
21]. An inverted index is a collection of inverted lists,
where each list is associated with a particular word. An
inverted list for a given word is a collection of document
IDs of those documents that contain the word. If the
position of a word occurrence in a document is needed,
each document ID entry in the inverted list also con-
tains a list of location IDs. Positional information of
words is needed for proximity queries and query result
ranking [18]. Omitting positional information in the in-
verted index is therefore a serious limitation. Positional
information is usually stored in the form of location IDs.
The location ID of a word is the position in the docu-
ment where the word occurs. An entry in an inverted
file is also called a posting ; it encodes the information
〈word id , doc id , loc id〉.

Since web documents change frequently, keeping in-
verted indexes up-to-date is crucial in making the most
recently crawled web documents searchable. A crawler
is a program that collects web documents to be indexed.
Cho and Garcia-Molina [7] have shown that an in-place,
incremental crawler can improve the freshness of the in-
verted index. However, the index rebuild method com-
monly used for updating the inverted index cannot take
advantage of an incremental crawler, because the up-
dated documents crawled in between rebuilds are not
searchable until the next index rebuild.

In this paper we study the problem of keeping in-
verted indexes up-to-date. We first describe two general

approaches and then show how our proposed landmark-
diff method addresses the deficiencies in these two ap-
proaches.

The first approach is to rebuild the index more fre-
quently. As the interval between rebuilds gets smaller,
the magnitude of change between the two snapshots of
the indexed collection also becomes smaller [7]. A large
portion of the inverted index will remain unchanged,
and a large portion of the work done by the rebuild is
redundant.

The second approach is to store the updates in be-
tween rebuilds in a searchable update log. This is sim-
ilar to the ‘stop-press’ technique [20] used to store the
postings of documents that need to be inserted into the
indexed collection. Each entry in this update log is a
delete or insert posting operation. Query processing will
need to search both the inverted index and the update
log, and merge the results of both. If positional infor-
mation is stored in each posting, which is often the case,
the size of the update log will be prohibitively large.

Frequent rebuild is inefficient because it rebuilds por-
tions of the index that did not change. The update log
is unsatisfactory because it is too large and affects query
response time. A better way of updating the inverted
index is needed. An update method has to handle three
types of changes: (1) documents that no longer exist
(henceforth “deleted documents”); (2) new documents
(henceforth “inserted documents”); (3) common docu-
ments that have changed. In order not to re-index com-
mon documents that did not change, an incremental up-
date method is needed. Previous work on incremental
inverted index updates has addressed changes due to in-
serted documents [11, 5, 19] and deleted documents [9,
8, 19]. Changes due to common documents that have
changed have not been addressed.

In this paper, we propose the landmark-diff update
method that addresses the problem of updating the in-
verted index in response to changes in the common doc-
uments. We show that solving this particular problem
results in very efficient solutions to the more general
index update problem.

Our landmark-diff method is based on the diff of
the old and updated documents, and the encoding of
positional information using landmarks in a document.
Positional information is stored as a landmark-offset
pair and the position of a landmark in a document is
stored in a separate landmark directory for each docu-
ment. The landmark encoding scheme reduces the num-
ber of inverted index update operations obtained from
the diff output, because postings using landmarks are
more “shift-invariant”.

1.1 Our Contributions
First, our method addresses how to incrementally up-

date the inverted index for previously indexed docu-
ments whose contents have changed. This problem has
not been addressed before.

Second, our method uses a landmark-offset pair to
represent positional information. This representation
has three advantages: it renders postings more “shift-
invariant”, it does not increase the index size, and it
does not affect query processing (Section 2.4). The map-
ping of a landmark to its position in a document is main-
tained in a landmark directory. A landmark directory is

very small compared with the size of the document and
hence does not measurably affect query response time.
We show that this landmark-offset representation sig-
nificantly reduces the number of update operations on
the inverted index when used with the diff approach.

Third, our landmark-diff method is a general method
that can be applied in a variety of ways. It can also be
used to optimize many existing methods. Some possible
applications are discussed in Section 2.3.

Fourth, we show that our landmark-diff method is
three times faster than the forward index method (de-
scribed in Section 2.1) in updating the inverted index for
common documents that have changed. We also show
how our landmark-diff method can be used in the partial
rebuild method (described in Section 2.3) to solve the
more general inverted index update problem where all
three types of changes (deleted, inserted, and common
documents) are addressed. The partial rebuild method
is twice as fast as a complete rebuild. The partial re-
build method uses an array-based implementation of the
inverted index, because the set of inserted documents
is of the same magnitude as the set of common docu-
ments. As the update frequency increases, the number
of inserted documents and the number of update oper-
ations for the common documents will be very small.
Using our landmark-diff update method on a B-tree im-
plementation of the inverted index will result in an even
more dramatic speedup.

In the rest of this section we discuss related work and
preliminaries. In Section 2 we describe current indexing
techniques and our landmark-diff method. In Section 3
we provide empirical validation.

1.2 Relation with Prior Work

Information retrieval using inverted indexes is a well
studied field [2, 20]. Although most of the update tech-
niques generalize to keyword searches in web documents
(HTML and XML files), several assumptions made by
those techniques need to be re-examined. First, web
documents are more dynamic than the text document
collections assumed by those techniques. Most of the
past work on incremental updates of inverted indexes
[5, 19, 10, 2, 20] deal with additions of new documents
to a collection of static documents. Static documents
are existing documents in the collection whose contents
do not change over time. The problem that we try to
solve in this paper deals with existing documents whose
contents do change over time.

Second, previous work assumes that the inverted in-
dex resides on disk or in some persistent storage and try
to optimize the propagation of in-memory update post-
ing operations to the inverted file in persistent storage
[19, 5, 9, 8]. Current search engines keep a large portion
of the inverted index in memory1, especially the most
frequently queried portions of the inverted index. Even
though the indexed collection is growing, we have three
reasons to believe that a large portion of the inverted
index will still be kept in memory: (1) query volume is
increasing and there is a demand for increasing query
processing speed; (2) the cost of memory chips is rel-
atively low and still decreasing; (3) the ease of scaling

1For example, Google has thousands of machines with
at least 8 GB of memory each.

with parallel architecture. Not only does the inverted
index in persistent storage need to be updated, but the
portion of the inverted index in memory needs to be up-
dated as well. The update method we propose in this
paper addresses the problem of updating the inverted
index as a data structure independent of whether it re-
sides in memory or on disk. In many cases, our method
could be used in conjunction with existing techniques to
speedup the propagation of updates to the off-memory
inverted index. Several of these existing techniques will
be described in greater detail next.

For append-only inverted index updates, Tomasic et
al. [19] proposed a dual inverted list data structure: the
in-memory short list and the disk-based long list. New
postings are appended to their corresponding short lists
and the longest short list is migrated into a long list
when the storage area for the short lists is full. Brown
et al. [5] proposed another incremental append strategy
that uses overflow ‘buckets’ to handle the new postings
in the relevant inverted lists. These overflow buckets
are chained together and have sizes that are powers of
2. Both [19] and [5] deal with append-only incremen-
tal updates and assume that a document never changes
once indexed. Our method tackles the complementary
problem of updating previously indexed documents that
have changed.

Clarke et al. [9, 8] addressed the deficiency of these
append-only inverted index techniques and proposed a
block-based organization of the inverted index that sup-
ports deletion of documents as well. The entire docu-
ment collection is concatenated into a long sequence of
words. Positional information of a posting is reckoned
from the beginning of the document collection (as op-
posed to the beginning of each document). Hence, even
though Clarke’s inverted index supports updates at the
postings level, it does not solve the problem of small
changes in documents causing a shift in the positional
information of many postings unrelated to the change.
In fact, the positional shift problem is exacerbated by
the use of absolute positional information reckoned from
the beginning of the collection.

A technique related to landmarks, called “chunking”,
was used by Glimpse [16] in another context related to
text indexing. The idea is to reduce the granularity of
the pointers in the inverted lists so that the pointers
point to pages rather than to individual words in the
text. Given the page a word appears on, the actual
occurrence can be found by fast sequential search, such
as Knuth-Morris-Pratt [12] or Boyer-Moore [3]. In our
work, landmarks are used to provide relative addressing.
When the offsets remain constant, only the landmark
locations in a landmark directory need to be updated.

1.3 Preliminaries: Web Data
A sample is the set of web documents corresponding

to one snapshot of the web at a particular time. The
sampling interval between two samples is the time be-
tween the two consecutive samples. Consider two con-
secutive samples Sn and Sn+1. Any document can only
belong to one of the following partitions: common doc-
uments Sn ∩ Sn+1, deleted documents Sn − Sn+1, and
inserted documents Sn+1 − Sn. Three operations are
needed to update the index of Sn so that it reflects
Sn+1: (1) postings corresponding to the deleted docu-

ments need to be removed from the current index, (2)
postings corresponding to the inserted documents need
to be inserted to into the index, and (3) postings corre-
sponding to the common documents that have changed
need to be updated in the index.

Data analysis2 from [15] showed that (1) common
documents represents at least 50% of the currently in-
dexed collection; (2) of the common documents, most
of the changes are small; (3) most of the changes are
spatially localized within the document. The update
method using landmarks that we propose is a scheme
that exploits these properties.

2. Updating Inverted Indexes

2.1 Current Methods

Before we describe our method in detail, we briefly
describe some existing data structures and update al-
gorithms. We discuss three naive methods: the index
rebuild, document update, and forward index methods.
The forward index method represents the best of these
naive methods and it will be used as a benchmark in
our experiments.

Index Rebuild. In this method, the old inverted
index is discarded, and the entire updated document
collection is scanned, sorted and a new inverted index
is constructed (see [20] for details). A complete index
rebuild consumes a considerable amount of resources.
The entire document collection has to be crawled at pe-
riodic intervals and every word in the collection has to
be scanned to construct the inverted file. Distributed re-
building technique such as [17] parallelizes (and pipelines)
the process, but does not eliminate the need of scan-
ning every word in every document. Scanning and re-
indexing the words in documents that did not change is
very wasteful. Rebuilding is preferable only if (1) there
are very few common documents (|Sn ∩Sn+1| is small),
or (2) the set of common word occurrences is small, i.e.,
a large portion of each updated document has changed.
Data analysis in [15] has showed that this is not the case
in practice: The set of common documents is usually
large, and the changes to the common documents are
small and clustered. Consequently, a large portion of
the inverted index can remain unchanged and rebuild-
ing the large portion that is unchanged is a waste of
resources.

Document Delete and Insert. One improvement
over index rebuild is to process only documents that
have changed. Using this method web documents can
be crawled at different sampling intervals depending on
their rate of change. Incremental crawling has been ad-
dressed in [6, 4, 13, 7] and optimal crawling frequency
is discussed in [6, 4, 13]. For each document that has
changed, we delete all the postings for the old version of
that document in the inverted index and insert the post-
ings of the new document. The worst case number of
postings deleted and inserted is O(m+n), where m and
n are the number of words in the old and new version
of the document, respectively. This inverted index up-
date method is efficient for documents that have a big

2The data consists of several samples of web documents
crawled from five seed URLs every 12 hours.

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0

3

2

1
4

5

lamb
the
wolf
ate

Today

Mary

a
little
lamb

wordID

has

0

1

2

3

4

lamb
the
wolf
ate

2

1

3
0

Forward Index

docID
12
13

locID

4

wolf

Mary has a little lamb

5

the lambateToday the

lambThe wolf theate

Construct
Forward index

(new)
doc # 13

(old)
doc # 13

doc # 12

Compare

Figure 1: An example of a forward index. For the

new version of the document #13 (with “Today” in-

serted to the beginning), a forward index represen-

tation is constructed. This forward index is then

compared with the forward index of the old version

stored by the system. Note how the location IDs of

the words changes.

inverted
index

updated
inverted
index

apply
Merge

Compare

Fwd Index

Fwd Index

Operations
Ins/Del Postings

Old

New

Figure 2: Updating an inverted index using forward

indexes.

percentage of their contents changed. Most web doc-
uments, however, have small content changes between
two consecutive crawlings [15].

Forward Index Update. Forward indexes were
first mentioned in Page and Brin’s paper describing the
Google search engine [18]. For each document, a for-
ward index stores the words that occur in that doc-
ument and the positions of each occurrence (see Fig-
ure 1). It differs from the inverted index in that it stores
the same tuples 〈word id , doc id , loc id〉 sorted first by
doc id , then by word id and loc id . It is primarily used
as an auxiliary data structure to speedup inverted in-
dex construction. It is not clear whether it is used for
index updates, but we deduce that it can be used for
index updates as described next. Given the forward in-
dex representation of the old and new document, we
can generate a list of postings operations (insert post-
ing and delete posting) that will transform the forward
index of the old document to that of the new document.
Since these postings or tuples are the same tuples that
are stored in the inverted index, we can use them to up-
date the inverted index. See Figure 2 for the data flow
diagram for this process. Applying the procedure for
each common document that has changed will update
the inverted index.

The forward index method requires an additional for-
ward index to be stored for each document. Each for-
ward index of a document requires as much space as
each document itself. The advantage of using the for-
ward index is that when the content change occurs near
the end of the document, the postings corresponding to
the words before the position of that change need not
to be deleted and re-inserted. However, in the worst
case, the number of postings deleted and inserted is

Θ(m+n). Even if the difference between the two docu-
ment is small, the number of posting operations can still
be Ω(m+ n). For example, an insertion of one word to
the beginning of the old document will shift all subse-
quent loc ids by one and hence all the postings will have
to change.

2.2 Our Landmark-diff Update Method
In this paper, we propose the landmark-diff update

method. The landmark-diff method encodes the posi-
tion of words using landmarks in a document and per-
forms a diff of the old and new document to get an
edit transcript. An edit transcript is a list of operations
that when applied to an old version of a document will
transform it to the new version. The landmarks encod-
ing scheme allow us to translate the edit transcript for
the document into a compact list of update operations
on the inverted index. The landmark encoding scheme
achieves the following desirable property: the location
information of each posting is shift invariant, i.e., an in-
sertion of one word to the beginning of a document will
not shift the actual position of all subsequent words. To-
gether with the translation of the document diff out-
put, our method achieves another desirable property:
The number of update operations on the inverted index
(the number of postings deleted and inserted) is inde-
pendent of the document size, and depends on the size
of the content change only. Since most content changes
are small, this property is highly desirable.

We first introduce the landmark encoding scheme and
then describe the landmark-diff update procedure.

Landmarks. The purpose of landmarks is to min-
imize the changes to the location IDs stored in the
inverted index when documents change. The idea is
for a location ID to take reference from a landmark
within the document instead of from the beginning of
the document. Each location ID of a word is then en-
coded as a 〈landmark ID, offset〉 pair. The offset in a
〈landmark ID, offset〉 pair is the position of the word
occurrence relative to the landmark with the specified
ID in the document. A document can contain many
landmarks. Each landmark has an ID and acts as a ref-
erence point for the words between itself and the next
landmark. How landmarks are chosen is discussed in
Section 2.5.

Putting landmarks in a document can be thought of
as partitioning a document into blocks, where the begin-
ning of each block corresponds to a landmark and the
location of every word in a block is encoded as an off-
set from the beginning of that block. In this paper, the
term block denotes the words between consecutive land-
marks. Each landmark corresponds to a block and vice
versa. Figure 3 shows an inverted index with landmarks.
The landmark encoding does not increase the index size.
Suppose k bits are allocated for each loc id in the in-
verted index. The corresponding 〈landmark ID, offset〉
pair can be viewed as using the most significant b bits
of the original loc id as the landmark ID and the least
significant k − b bits as the offset.

To recover the actual position of a word given the
landmark ID and offset pair, the actual position of each
landmark in a document must be stored in a landmark
directory. For brevity, analytical performance evalua-
tion and implementation issues for the landmark direc-

0

4
2

L0
L1
L2

0

4
2

L0
L1
L2

The wolf the lambate

0 0 1 01

L0 L1 L2

Mary has a little lamb

0 0 1 01

L0 L1 L2
doc
#12

doc
#13

13

Mary
has
a

little
lamb
the
wolf
ate

12

12

13

13

13

12

12

wordID

OffsetLdmk ID

12
docID

Inverted Index

L0

L0

L0

L0

L1

L1

L1

L2

L2

L1

0

1

0

0

0

1

1

0

1

0

13
12
docID

Ldmk ID Pos

Landmark Directory

Figure 3: An inverted index with landmarks.

Ins, 0, TodayToday
the

wolf
ate

the
lamb

0
1
2
3
4
5

0
1
0
1
0

The

ate
the

lamb

wolf

The

ate
the

lamb

wolf
L0
L1
L2

inverted
index

landmark
directory

landmark
directory

Today
the

wolf
ate

the
lamb

L0
L1
L2
L3

L1

L2

transcript edit transcript

L0

applydiff

Ins−L, L3, 0

Shift−L, L0, 1

Ins−P, L3, 0, Today

updated

edit transformed index

transform

inverted

updated
landmark
directory

new

old

Landmark Directory

Update

Figure 4: The inverted index update method using

landmarks. The top diagram shows the data flow;

the middle diagram shows what the edit transcripts

look like with an example; the bottom diagram show

how the landmark directory is updated. The land-

mark directory is represented here conceptually as a

table.

tory are defered to the full paper.
Update Procedure Using Landmarks. Our

landmark-diff update method is based on the idea of
edit transcripts. To update an inverted index, we can
obtain the edit transcript (“diff output”) of the old and
the new inverted index and apply it to the old inverted
index. The landmark encoding scheme allows us to con-
struct this edit transcript for the inverted index using
the edit transcript of each document, without increas-
ing the number of delete or insert posting operations per
document to Ω(m+ n), where m and n are the number
of words in the old and new version of a document. The
update procedure is outlined in the data flow diagram
in Figure 4. For each document that has changed, we
obtain the edit transcript for updating that document
using a diff procedure. The diff output is then trans-
formed into corresponding entries in the edit transcript
for the inverted index using landmark information. Re-
call that the edit transcript for the inverted index is a
list of update operations on the inverted index. This list
of update operations can then be applied to the inverted
index to update it. All the procedures before the apply
step use only the old document, its landmark directory,
and the new version of the document; therefore these
procedures lend themselves to parallel processing.

Since words are inserted and/or deleted from the blocks
within a document during an update, the absolute posi-
tion of landmarks within that document may change as
well. The landmark directory will therefore have to be
updated. Updating a landmark directory can be done
very efficiently in a single sequential scan through the
landmark directory data structure. This process is lin-
ear in the size of the landmark directory and the num-
ber of landmarks deleted and inserted. The overhead
incurred for storing and maintaining landmark directo-
ries is insignificant compared to the savings gained in
the number of inverted update operations and in the
update time as shown by our empirical evaluations in
Section 3. Further analysis of landmark directories will
be given in the full paper.

2.3 Some Application Scenarios

We describe three example scenarios to illustrate how
our landmark-diff method can be applied. In all three
cases, the goal is to update the inverted index given a
new sample of the web.

Update Log. If the inverted index is maintained us-
ing an update log (similar to “stop-press”) in between
complete index rebuilds, our landmark-diff method can
reduce the size of the update log. The naive update log
corresponds to the list of inverted index update oper-
ations generated by the forward index update method
(Section 2.1). Our landmark-diff update method can be
used to significantly reduce the size of this update log
and thus the query processing time.

Partial Rebuild. In contrast to a complete rebuild,
a partial rebuild avoids re-indexing the common docu-
ments that did not change. Suppose that the inverted
index is stored as a sorted array Aindex of postings,
the doc ids of the deleted documents are stored in a
bitmap Bdeleted , and the postings of the inserted docu-
ments are stored in a sorted array Ainserted (stop-press).
The landmark-diff method can be used to maintain a
reduced-size sorted update log Aupdate for the common
documents. The inverted index can then be updated
in a single merging pass of three sorted arrays (Aindex ,
Aupdate and Ainserted) (checking Bdeleted for deletes). Our
experiments described in Section 3.4 show that partial
rebuild can be twice as fast as complete rebuild.

Distributed Index Update. Suppose the docu-
ment collection is partitioned among M machines and
indexed independently. At each update, each machine
updates its index using a bitmap for the deleted doc-
uments and the landmark-diff method for the common
documents. Inserted documents are always processed at
a free machine that builds an index for them. When no
free machines are available, the indexes at two machines
whose indexes have become too small are merged and
one machine is freed.

2.4 Query Processing with Landmarks

In this section we describe how query processing for
several types of queries can be done using an inverted
index with landmarks. The overhead incurred in com-
puting the actual position of a landmark for some query
types depends on the specific implementations of the
landmark directory, and we defer that analysis to the
full paper.

Single keyword queries. To find which documents

contain a particular keyword, we look up the inverted
index entry for that keyword and return the list of doc-
ument IDs. If positional information is required (e.g.,
single keyword queries with positional constraints), the
actual word positions can be computed from each
〈keyword, doc id , landmark id , offset〉 tuple returned
from the inverted index. To do that we retrieve the ac-
tual positions of the landmark IDs from the landmark
directory of each document containing that keyword.

Phrase queries. Some search engines have assigned
unique word IDs for common phrases as well and in-
dexed them as if they were single words. Using that
approach, a query using a common phrase is the same
as a single keyword query.

We consider the other case, when the phrase is not
mapped to a word ID. Without loss of generality we con-
sider a phrase query of two keywords. The 2-keyword
phrase query is first processed as two separate single
keyword queries. If positional information is required
(e.g., a phrase query with constraints on where the phrase
occurs in the document), then the actual word position
is computed for each keyword in the same way as for
processing single keyword queries. The position infor-
mation is then used to filter out documents where the
two keywords are not adjacent to each other.

If positional information is not required, we can per-
form the filtering of the non-adjacent occurrence tuples
without accessing the landmark directory at all. We
store an additional field in the last word occurrence
of every block. The additional field stores the ID of
the next landmark. Given a phrase query (key1 key2),
we obtain the tuples corresponding to the occurrence
of each keyword independently. Tuples with the same
document ID are grouped together and we determine
if two tuples, 〈key1, doc id , landmark id1, offset1〉 and
〈key2, doc id , landmark id2, offset2〉 for keywords key1

and key2, respectively, form a phrase as follows: If
landmark id1 is equal to landmark id2 and the differ-
ence between offset1 and offset2 is 1, they form a phrase.
If landmark id1 is not equal to landmark id2, we check
if the offset for key2 is zero. If it is zero and the tuple for
key1 has the additional next landmark field that is equal
to landmark id2, then they form a phrase. Otherwise
the two tuples do not form a phrase.

Approximate nearness queries. If fine grain posi-
tional information is not needed, the inverted index can
just store the landmark IDs without the offsets. This
results in significant time and space savings, since only
the landmark IDs need to be updated. Each posting
in the inverted index will then store the information
〈word id , doc id , landmark id〉. Each landmark ID en-
codes an approximate position with a bounded error
(which is the block size).

AND-queries. For a query that contains conjunc-
tions of multiple keywords, we retrieve the tuples for
each keyword as if they are single keyword queries. These
tuples are then filtered with the tuples corresponding
to the most selective keyword3. The detailed analysis is
defered to the full paper.

2.5 Landmarking Policy

A landmarking policy describes how landmarks are

3The keyword with the smallest frequency.

chosen in a document. Example landmarking policies
are fixed size partitioning, HTML/XML tags, metadata,
and semantic structure of document.

Fixed size partitioning. The simplest landmark-
ing policy is fixed size partitioning: the size of every
block is fixed at the time of index construction. When
a piece of text is inserted, the landmarking policy has to
decide whether to make a block bigger or to split a block.
Fragmentation could occur after a large number of up-
dates, and defragmentation or index rebuild should be
performed when update performance degrades. Since
content changes in the updated documents are small,
fragmentation would not occur frequently.

In fixed size landmarking, the landmarks are not in-
herent in the structure of the document. A brute-force
diff is required to generate the edit transcript that is
used to figure out how the landmarks shift between the
two versions of a document.

HTML/XML tags. HTML tags such as the para-
graph tag (<p>) can also be used as landmarks. In con-
trast to the fixed size policy, the landmarks in this case
are inherent in the document. A more efficient, block-
based, approximate diff procedure could be used in-
stead of the brute force diff. For example, we could
hash each block of the original and new versions and do
the diff on the substantially smaller sequence of hashed
values.

How should we choose tags for landmarking? Linear-
time heuristics can be used to check which tags (or
combinations of tags) that are suitable as landmarks.
A brief description of the landmarking tags being used
will then be stored together with the landmark direc-
tory. XML tags can be used in similar way.

3. Experimental Evaluation
In this section we describe the experiments used to

evaluate our landmark-diff method. We measure the
number of inverted index update operations generated
by our method and compare it with that of the forward
index method. We also measure the time to generate
those operations, the time to apply those operations to
the inverted index, and the time to bring the inverted
index up-to-date.

Through our experiments, we answer four important
questions about the performance of our landmark-diff
method:

1. Does the landmark-diff method significantly re-
duce the number of edit operations on the inverted
index compared to other methods (e.g., forward
index method)?

2. Does the reduction in the number of inverted in-
dex update operations actually translate to sav-
ings in real execution time when applying these
operations?

3. Does generating update operations using the
landmark-diff method require more time than other
methods?

4. Does the landmark-diff method provide a more
efficient solution for the general inverted index
maintenance problem than complete rebuild method,

especially when the change between two consecu-
tive samples is large?

Our Implementation. We implemented our text
indexing system in C. Two implementations of the in-
verted index have been used: the binary tree where each
node corresponds to a posting, and a b-way search struc-
ture implicitly represented by a linear array of postings.
We discuss a B-tree representation in Section 3.5 which
will take better advantage of our landmark-diff method
when updates are very frequent and therefore very small
in magnitude. Linear arrays are used for the landmark
directory and forward indexes, since these are small data
structures. Besides the landmark-diff update method,
the forward index update method is also implemented
for comparison.

Landmarking Policy and Block Size. Fixed size
partitioning is used to choose landmarks. Intuitively,
the square root of the average document size is a good
block size4. For the experiments we present, a default
block size of 32 words is chosen since the average doc-
ument size is roughly 1000 words. We also measured
the minimum number of inverted index edit operations
required for different block sizes (using data set I de-
scribed below) and verified that as the block size gets
smaller the number of operations decreases at the ex-
pense of increasing landmark directory size and num-
ber of landmark directory update operations. Figure 5

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 D

oc
um

en
ts

�

Cumulative #Update Ops (%)

Cumulative Distribution of #Update Ops

blk size = 64
blk size = 32
blk size = 16

blk size = 8
blk size = 4
blk size = 2

Figure 5: Cumulative distribution of documents

with respect to the number of inverted index update

operations for different block sizes.

shows the distribution of the documents with respect to
the number of inverted index edit operations normalized
by the sum of the sizes of the old and new documents.
We do not use extremely small block sizes, because as
block size gets smaller, the size of each landmark di-
rectory grows larger and the cost of manipulating the
landmark directory increases as well.

Performance Measures. We evaluate the perfor-
mance of our landmark method using four measures:

1. the number of index update operations (Table 1),

2. the time to perform those operations (Table 2),

3. the time to generate those operations (Table 3),

4The reasoning is similar to a 2-level B-tree where the
number of blocks and the block size is ‘balanced’.

Data C(docs) ∆C(docs) Fwd. Index Landmark

I 37,641 10,743 10,501,047 3,360,292

IIa 2,026 1,209 1,109,745 330,695
IIb 5,456 1,226 1,566,239 350,802
IIc 5,335 3,096 1,855,618 534,088
IId 5,394 1,278 1,426,163 378,661
IIe 5,783 1,605 1,762,018 539,594

Table 1: The number of update operations gener-

ated by the update methods in our experiments. The

symbol C denotes the number of common documents

(|Sn ∩ Sn+1|) and the symbol ∆C denotes the portion

of C that has changed.

4. the time to bring the inverted index up-to-date
using the partial rebuild method (Table 4).

An edit operation is defined to be a delete posting or
insert posting operation. The number of edit operations
on the inverted index is a natural performance measure,
since the goal of a good update method is to reduce the
number of edit operations on the inverted index. More-
over, unlike the execution time, the number of edit op-
erations depends neither on the implementation of the
system nor on the hardware architecture. The number
of edit operations is therefore a good measure of update
performance across different search engine architectures
and implementations.

Data Set. Two sets of data are crawled from the
web. Data Set I consists of two samples of the web
crawled from 100 seed web sites. The time between the
start of the two web crawls is 71 hours and the recursion
depth is limited to 5 levels. The first sample has 63,336
documents and the second has 64,639 documents with
37,641 documents common to both. Each sample con-
tains about 1.5 GB worth of HTML files. Data Set II
consists of 6 samples of the web crawled from 5 seed web
sites (www.cnn.com, www.ebay.com, www.yahoo.com,
espn.go.com, and www.duke.edu). The sampling inter-
val is 12 hours and the recursion depth is 5 levels. Note
that 4 out of the 5 listed web sites have content that is
dynamic and fast changing.

Document Preprocessing. Every HTML file is
preprocessed into a canonical form by stripping off HTML
tags, scripting code, JAVA code, and extra white space.
Every letter in each word is capitalized so that different
capitalizations do not result in different word IDs. If
the canonical form of a file has less than 10 words, it is
discarded.

3.1 Number of Update Operations

We investigate the number of the inverted index up-
date operations generated by the forward index method
and our landmark-diff method on two data sets. Fixed
size landmarking policy is used with a block size of 32
words. Our results in Table 1 show that the landmark-
diff method generates significantly less update opera-
tions on the inverted index than the forward index
method (which represents the best of the naive meth-
ods). The performance of the landmark-diff update
method is consistent over a broad range of web sites
including web sites with fast changing content. We in-
dicate in Section 3.5 that this measure will mirror real-

Method |Sn| No. Update Ops. Time (s)

Fwd. Index 63,336 10,501,047 28.3
Landmark 63,336 3,360,292 9.2

Table 2: Time required to apply the update opera-

tions on a binary tree implementation of the inverted

index. The symbol |Sn| denote the number of doc-

uments in the index and corresponds to the index

size.

Generation Time (s)

Method No. Update Ops C ∆C
Fwd. Index 10,501,047 148.9 18.9
Landmark 3,360,292 17.5 7.5

Table 3: The time (in seconds) required to gen-

erate the inverted index update operations for

the landmark-diff method and the forward index

method. The C column gives the required time if

all the common files (37,641) have to be checked and

processed. The ∆C column gives the required time,

if incremental crawling is used and the system know

a priori whether a common file has been modified

since the last crawl.

world performance when updates are frequent.

3.2 Update Time
Do these reductions in the number of inverted index

update operations actually translate to savings in the
time to apply these operations? We measure the exe-
cution time for applying the update operations gener-
ated by the forward index method and the landmark-diff
method to a binary tree implementation of the inverted
index for data set I. The experiment is performed on
a Sun Blade-1000 computer running SunOS 5.8 with 4
GB of ram. We measure the elapsed time for updating
the inverted index given the inverted index and the edit
operations generated by the two update methods. Our
results as summarized in Table 2 show that a reduction
in the number of update operations does translate to a
proportional reduction in the time required to update
the inverted index. Updating the landmark directory re-
quires only one linear pass and is done at the same time
as generating the update operations (see Section 3.3).

3.3 Time for Generating Update Operations
Does generating update operations using the landmark-

diff method require prohibitively more time than other
more naive methods? We measured the time used to
generate the update operations for data set I using the
same configuration as in Section 3.2. Table 3 sum-
marizes our results. Recall that the forward index re-
quires reading two files, the old and the new document,
and creating forward indexes for the two files. The
landmark-diff method requires reading the two files in
order to perform a diff and in order to generate update
operations for postings that have shifted due to edits.
The time of the diff operation is remarkably fast com-
pared to the construction of the forward indexes. Even
if the landmark directory is stored on disk, the addi-
tional time required to read it into memory is still small
compared with reading a document, since it is much
smaller in size.

7.05

7.1

7.15

7.2

7.25

7.3

7.35

0 10 20 30 40 50 60 70

T
im

e
(s

ec
on

ds
)

�

Landmark Size (# words)

Processing time vs Landmark Size

Data I

Figure 6: Landmark size versus time to generate

update operations for common documents that have

changed.

updated inverted index
MERGE

Bitmap of
deleted
docIDs

old inverted index

Landmark
diff method

∆ (sorted)

Sort

Partial Rebuild Method

�

New docs
(sorted)

�

Figure 7: The schematic diagram for the partial
rebuild method. Our landmark-diff method pro-
duces a list of update operations ∆ which is then
sorted. The new documents are processed into
a sorted list of postings D to be inserted. The
doc ids of the deleted documents are stored in a
bitmap. These three data structures are merged
with the old inverted index in a linear pass.

We also investigated how the landmark size affects
the time required to generate the update operations for
the common documents (data set I) that have changed
(see Figure 6). Smaller landmark size results in less
update operations (since changes in the document are
more localized) and therefore less processing time to
generate those update operations. However, extremely
small landmark size (a size of 4 words in this case) pro-
duces big landmark directories that require more time
to manipulate.

3.4 Partial Rebuild Using Landmark-diff

For changes in common documents, we have shown
that the landmark-diff method results in a speedup fac-
tor of 2 over the forward index method. One may sus-
pect that the speedup is only for the cases when the
changes between the two consecutive samples are small,
and when the changes are large, complete rebuild may
perform better. We now show how the landmark-diff
method can be used with the partial rebuild method
(see Section 2.3) to solve the general inverted index up-
date problem more efficiently than the complete rebuild
method.

The inverted index is implemented as a sorted array
of postings residing on disk (searching can be accom-
plished using an implicit complete B-way tree similar to
a binary heap implemented as an array). Deleted doc-

No. of docs No. of postings

D 25,695 -
C 37,641 58,575,596
∆C 10,743 -
∆ - 3,360,292
N 26,998 43,366,308
Partial Rebuild 513.8 s
Complete Rebuild 1113.7 s

Table 4: Running time performance of the partial

rebuild method using landmark-diff and the com-

plete rebuild method. The symbols D, C, ∆C, ∆ and

N denote the deleted documents, the common doc-

uments, the common documents that have changed,

the update operations for the common documents

and the new documents that have been inserted. We

give the sizes of these sets in units of documents as

well as postings.

ument IDs are stored in a bit map in memory. Inserted
documents are read and their postings are stored in a
sorted array in memory. The update operations for the
common documents are generated using our landmark-
diff method, sorted, and stored on disk. The old in-
verted index, the bit map, the array of new postings,
and the sorted update operations are merged (in a fash-
ion similar to mergesort) into an updated inverted index
on disk (see Figure 7).

This partial rebuild using landmark-diff method is ap-
plied on data set I and the results are summarized in
Table 4. The partial rebuild using landmark-diff method
results in a speedup of 2 over a complete rebuild of the
index using k-way mergesort even for two samples that
are 71 hours apart and thus have a large number of
changed common documents and inserted documents.

3.5 Discussion
Updating inverted indexes given a new sample of the

web involves four sets of items:

1. the postings of deleted documents D,

2. the postings for inserted/new documents N ,

3. the postings for common documents C, and

4. the update operations ∆ for C.

The existing inverted index (consisting of C and D)
has to be ‘merged’ with the sets D, N and ∆, so that
D is deleted, N is inserted, and ∆ is applied to the in-
verted index (the alternative is to rebuild from scratch).
The set D can be processed very efficiently by stor-
ing the doc ids using a bit map. Updating the index
with ∆ can be done very efficiently using our landmark-
diff method (three times faster than the forward index
method). The efficiency of incorporating N to the in-
verted index will depend on the size of N .

The partial rebuild using landmark-diff exploits the
following two facts to achieve the factor of two speedup:
(1) the large N (relative to C) can be processed in a se-
quential manner very efficiently; (2) our landmark-diff
method produces a very small ∆ relative to C very ef-
ficiently. The goal of this paper is to investigate fast
incremental update of inverted index. As the sampling

interval decreases, the sizes of N and ∆ also decrease
relative to C [7]. In the limit, N will be very small
and random access updates to an inverted index imple-
mented as a B-tree will be faster than an array imple-
mentation. A similar trade-off between random access
data structures and stream-based processing has been
observed in the processing of spatial joins [1]. There-
fore, the speedup in incremental update time using a
B-tree implementation approaches

|C|+ |N |+ |∆|
|N |+ |∆|+ |D| (3.1)

compared with a complete rebuild. We have showed
in Table 4 that the array-based partial rebuild using
landmark-diff is twice as fast as complete rebuild for
a relatively large update interval of 71 hours. As the
update interval gets smaller, the speedup will be more
significant and even more dramatic if we use a B-tree
implementation of the inverted index.

4. Conclusion

Keeping web indexes up-to-date is an important prob-
lem for research and in practice. Naive update meth-
ods such as index rebuild is inadequate in keeping the
inverted index up-to-date especially in the context of
in-place, incremental crawling. That web document
changes are generally small and clustered, motivates the
use of incremental update algorithms based on diff.
However, storing positional information in the inverted
index presents a problem in using the diff approach.
The landmark representation that we proposed allows
the diff approach to be used to efficiently update in-
verted indexes that store positional information. Our
experiments show that our method results in significant
savings in the number of edit operations performed on
the inverted index and hence in the update time. We
further showed how the landmark-diff method can be
used with partial rebuild to update inverted index in
half the time it takes to rebuild the index from scratch.

5. REFERENCES

[1] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel,
J. Vahrenhold, and J. S. Vitter. A unified
approach for indexed and non-indexed spatial
joins. Proceedings of the 7th Intl. Conf. on
Extending Database Technology (EDBT ’00),
1777:413–429, 2000.

[2] Ricardo Baeza-Yates and Berthier Ribeiro-Neto.
Modern Information Retrieval. Addison-Wesley,
1999.

[3] R. S. Boyer and J. S. Moore. A fast string
searching algorithm. Communications of the
ACM, 20:762–772, 1976.

[4] Brian Brewington and George Cybenko. Keeping
up with the changing web. IEEE Computer,
33(5):52–58, May 2000.

[5] Eric W. Brown, James P. Callan, and W. Bruce
Croft. Fast incremental indexing for full-text
information retrieval. In 20th Intl. Conf. on Very
Large Data Bases, pages 192–202, 1994.

[6] Junghoo Cho and Hector Garcia-Molina.
Estimating frequency of change. Submitted for
publication, 2000.

[7] Junghoo Cho and Hector Garcia-Molina. The
evolution of the web and implications for an
incremental crawler. 26th Intl. Conf. on Very
Large Data Bases, 2000.

[8] C. Clarke and G. Cormack. Dynamic inverted
indexes for a distributed full-text retrieval system.
Tech. Report CS-95-01, Univ. of Waterloo CS
Dept., 1995.

[9] C. Clarke, G. Cormack, and F. Burkowski. Fast
inverted indexes with on-line update. Tech. Report
CS-94-40, Univ. of Waterloo CS Dept., 1994.

[10] Doug Cutting and Jan Perdersen. Optimizations
for dynamic inverted index maintenance.
Proceedings of SIGIR, pages 405–411, 1990.

[11] W. Frakes and R. Baeza-Yates, editors.
Information Retrieval: Data Structures and
Algorithms. Prentice-Hall, 1992.

[12] D. E. Knuth, J. H. Morris, and V. B. Pratt. Fast
pattern matching in strings. SIAM Journal of
Computing, 6:323–350, 1977.

[13] Steve Lawrence and C. Lee Giles. Accessibility of
information on the web. Nature, 400:107–109,
1999.

[14] Quanzhong Li and Bongki Moon. Indexing and
querying xml data for regular path expressions. In
27th Intl. Conf. on Very Large Data Bases, pages
361–370, 2001.

[15] Lipyeow Lim, Min Wang, Sriram Padmanabhan,
Jeffrey Scott Vitter, and Ramesh C. Agarwal.
Characterizing web document change. In Advances
in Web-Age Information Management, 2nd Intl.
Conf., WAIM 2001, pages 133–144, 2001.

[16] Udi Manber and Sun Wu. GLIMPSE: A tool to
search through entire file systems. In Proceedings
of the Winter 1994 USENIX Conf., pages 23–32.
USENIX, 1994.

[17] Sergey Melnik, Sriram Raghavan, Beverly Yang,
and Hector Garcia-Molina. Building a distributed
full-text index for the web. Proceedings of the 10th
Intl. WWW Conf., 2001.

[18] Lawrence Page and Sergey Brin. The anatomy of
a large-scale hypertextual web search engine.
Proceedings of the 7th Intl. WWW Conf., pages
107–117, 1998.

[19] Anthony Tomasic, Hector Garcia-Molina, and
Kurt Shoens. Incremental updates of inverted lists
for text document retrieval. Proceedings of 1994
ACM SIGMOD Intl. Conf. of Management of
Data, pages 289–300, May 1994.

[20] Ian H. Witten, Alistair Moffat, and Timothy C.
Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Morgan
Kaufmann Publishers, Los Altos, CA 94022, USA,
second edition, 1999.

[21] Chun Zhang, Jeffrey F. Naughton, David J.
DeWitt, Qiong Luo, and Guy Lohman. On
supporting containment queries in relational
database management systems. In Proceedings of
2001 ACM SIGMOD Intl. Conf. of Management
of Data, pages 361–370, 2001.

