
Linkage Query Writer

Oktie Hassanzadeh, Reynold Xin,
Renée J. Miller

University of Toronto

{oktie,rxin,miller}@cs.toronto.edu

Anastasios Kementsietsidis, Lipyeow Lim,
Min Wang

IBM T.J. Watson Research Center

{liplim,akement,min}@us.ibm.com

ABSTRACT
We present Linkage Query Writer (LinQuer), a system for
generating SQL queries for semantic link discovery over re-
lational data. The LinQuer framework consists of (a) LinQL,
a language for specification of linkage requirements; (b) a
web interface and an API for translating LinQL queries to
standard SQL queries; (c) an interface that assists users in
writing LinQL queries. We discuss the challenges involved in
the design and implementation of a declarative and easy to
use framework for discovering links between different data
items in a single data source or across different data sources.
We demonstrate different steps of the linkage requirements
specification and discovery process in several real world sce-
narios and show how the LinQuer system can be used to
create high-quality linked data sources.

1. INTRODUCTION
Discovering links between different entities in data sources

is a challenging task and an attractive research area. Exis-
tence of links add value to data sources, enhance data ac-
cess and information discovery, and allow or enhance many
increasingly important data mining tasks [3]. When data
sources are not linked, they resemble islands of data (or
data silos), where each island maintains only part of the
data necessary to satisfy a user’s information needs. Pen-
etrating these silos to both understand their contents and
understand their potential semantic connections is a daunt-
ing task. What users and data publishers need is automated
support for creating referential links between data that re-
side in different sources and that are semantically related.
Finding such links often requires the use of approximate
matching (to overcome syntactic representational differences
and errors) and semantic matching (to find specific semantic
relationships). Furthermore, both types of matching must
be tightly integrated to accommodate for the tremendous
heterogeneity found in the data that reside in today’s infor-
mation systems.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Figure 1: Sample entities from a clinical tri-
als database interlinked with several related data
sources.

In spite of their importance, research in finding such se-
mantic links has mainly focused on a more restricted ver-
sion of the problem, namely, on entity resolution, i.e., the
identification of entities in disparate sources that represent
the same real-world entity (see [2] and references therein).
More recently, there has been interest in finding other types
of semantics links. The general problem investigated in Lin-
Quer is the discovery of links between entities that may re-
fer to the same or semantically related real-world entities.
Consider, for example, a scenario in which a data publisher
wants to publish an online data source of clinical trials with
links to other online medical data sources, and a related sce-
nario where a clinician needs to link patient records from an
Electronic Medical Record (EMR) database to the related
clinical trials. Figure 1 shows a sample of the entities in the
data sources in these scenarios as well as several typed links
that could be found between these entities.

In the absence of globally unique identifiers, and without
automated support for link discovery, users must experiment
with a myriad of different linkage methods to find one that
suits their needs. In Figure 1, matching the patient visit
with the clinical trial requires matching “Beta Thalassemia”
with “Thalassaemia” using the semantic knowledge from a
medical source (such as the popular NCI thesaurus) that
“Beta Thalassemia” is a type of “Thalassemia” along with
a semantic matching technique such as Oracle’s ontology-
based matching [1], and then matching “Thalassemia” with
“Thalassaemia” using approximate string matching. Fur-
thermore, the locations “Westchester Med. Ctr” from the
patient visit and “Columbia University” from the trial can

be matched based on additional geographical information
(possibly using a source of geographical information such as
GeoNames1) that states that both locations are in the same
state (New York) or within a certain distance.

To overcome these challenges, we have developed Linkage
Query Writer (LinQuer), a generic and extensible frame-
work for integrating link discovery methods. Our goal is to
facilitate experimentation and help users find and tune the
link discovery methods that will work best for their domain
and application. Our framework permits the discovery of
links between autonomous relational sources. We introduce
LinQL, an extension of SQL that integrates querying with link
discovery methods. A query written in LinQL identifies (a)
a set of source data; (b) a set of target data; and (c) a set
of methods(s) to use in finding links between the specified
source and target data. Our framework includes a variety of
native link discovery methods and is extensible to additional
methods, written as user-defined functions (UDF). This per-
mits users to interleave declarative queries with interesting
combinations of link discovery requests. The link discovery
methods may be syntactic (approximate match or similarity
functions), semantic (using ontologies or dictionaries to find
specific semantic relationships), or a combination of both.

In this demonstration, we seek to show several key aspects
of the LinQuer framework.

• We show that by integrating ad hoc querying and a
rich collection of link discovery methods, our frame-
work supports interactive application and evaluation
of link discovery. A common way to use our frame-
work would be to declaratively specify a portion of the
data of interest and invoke one or more link discovery
methods. The results can be evaluated by a user or
automated technique to help in refining or comparing
different methods.

• We show how our declarative specification is translated
into SQL code. Often, such programs are implemented
using programming languages like Java or C by third-
party developers, and are automatically invoked with
arguments defined through the declarative specifica-
tion. As such, for the data publishers these programs
act as black-boxes that sit outside the data publishing
framework and whose modification requires the help of
these developers. We address these shortcomings by
providing a native SQL implementation for a number
of link discovery algorithms. Such native, declarative
implementations make the methods highly extensible
and customizable.

• In order to show the effectiveness of our framework,
we have applied our framework to finding links be-
tween a real clinical trial data source and several other
data sources including patient data and Wikipedia ar-
ticles. We show the summary of the results of exten-
sive experimentation we have performed for this ap-
plication. The result of applying the LinQuer system
is also showcased in the context of the Linked Clini-
cal Trials (LinkedCT) project2, a linked data source of
clinical trials, which contains a large number of links
to other data sources of medical information.

1http://www.geonames.org.
2http://linkedct.org

linkspec stmt:= CREATE LINKSPEC linkspec name
AS link method opt args opt limit;

linkindex stmt:= CREATE LINKINDEX opt idx args

linkindex name ON table(col)
USING link method;

link method:= native link | link clause expr | UDF;

native link:= synonym | hyponym | stringMatch;

link clause expr:= link clause AND link clause expr

| link clause OR link clause expr

| link clause;

link clause:= LINK source WITH target

USING link terminal opt limit;

link terminal:= native link | UDF | linkspec name

opt limit:= LINKLIMIT number;

Figure 2: The LinQL grammar (main components)

2. THE LINQUER SYSTEM
The LinQL Language We introduce the syntax (gram-
mar) and semantics of the LinQL declarative link specifica-
tion language. We discuss the characteristics of the link
finding primitives required by a flexible framework that is
capable of effective link discovery in many real world sce-
narios, and show how LinQL supports such primitives. Al-
though the linkage specification elements we discuss below
are expressible in a number of different languages and nota-
tions (e.g., RDF/XML, N3, NTriples), in our framework we
choose for consistency an SQL-like syntax.

A link specification, or linkspec for short, defines the con-
ditions that two given values must satisfy before a link can
be established between them. In more detail, a linkspec is
defined using the grammar of Figure 2 (we omit here the
full grammar and only present its main components). As
shown in the figure, a CREATE LINKSPEC statement defines a
new linkspec and accepts as parameters the name of the de-
fined linkspec and the names of the relation columns whose
values need to be linked. To create such links, our frame-
work provides several native (or built-in) methods includ-
ing synonym, hyponym, and a variety of string matching
methods. The native string matching methods are based on
state-of-the-art string similarity predicates that can be im-
plemented in SQL (refer to the web interface for a list of all
the supported similarity predicates). Such native methods
can be used as such or they can be customized by setting
their parameters.

A link specification can also be defined in terms of link
clause expressions. Link clause expressions are boolean com-
binations of link clauses, where each link clause is seman-
tically a boolean condition on two columns and is specified
using either (a) a native method; (b) a user-defined function
(UDF); or (c) a previously defined linkspec. Note the mutual
recursive nature of linkspecs and link clauses. A linkspec can
be defined using link clauses while a link clause can be speci-
fied using previously defined linkspecs. The LINKLIMIT allows
the users to limit the number of links and only consider k

results, or the top-k where ordering is possible.
Similar to SQL index definitions, a link index can be de-

Figure 3: A snapshot of the LinQL query translator
interface.

fined to speed up the linkage query execution. When a link
index is defined, the output SQL query will contain a set of
preprocessing queries that should be run prior to the other
queries. These queries basically materialize the views that
are needed in order to run linkage queries. This is particu-
larly useful when the data in a table is static where prepro-
cessing can significantly reduce the query execution time.
From LinQL to SQL Irrespective of the language used, a
declarative specification must be translated into some form
of a program that finds the links between the source and
target data. As stated earlier, we provide native SQL im-
plementation for the link discovery algorithms within our
framework. This approach has several advantages including
the ability to (a) easily implement this framework on exist-
ing relational data sources with minimum effort and without
any need for externally written program code; (b) take ad-
vantage of the underlying DBMS optimizations in the query
engine while evaluating the SQL implementations of the link
finding algorithms; and (c) use specific efficiency and func-
tionality enhancements to improve the efficiency of these
algorithms. Our implementation is built upon the exten-
sion and combination of our work on approximate selection
predicates [4] and ontology-based keyword search [5].
Web Interface and API We provide an easy-to-use web
interface and API for translation of LinQL queries to stan-
dard SQL queries. The interface is available at
http://dblab.cs.toronto.edu/project/linquer. Our cur-
rent implementation generates SQL output for IBM DB2 and
MySQL, although the output queries can easily be modified
to support any relational DBMS. We also provide an inter-
face that assists users in writing LinQL queries. Figure 3
shows a snapshot of a simple LinQL query translation on the
web interface.

3. DEMONSTRATION USE CASES
In this demonstration, we will go through different steps

of link discovery in several interesting real world application
scenarios and report the results of applying our framework
in an important health care domain. The main goal is to
show the applicability of our framework in a variety of link-

age needs in our example scenarios and prove the need for
the functionality of all the components in our framework.
These scenarios are built around an online database of clin-
ical trials published on ClinicalTrials.gov. This database is
a registry of federally and privately supported clinical tri-
als conducted in research centers all around the world. It
contains detailed information about the trials, including in-
formation about the conditions associated with the trials,
their eligibility criteria and locations. The main clinical tri-
als database in our experiments contains information about
61,920 trials. This database was obtained on September
2008 from the online website in XML format. Using the
functionality of DB2 as a hybrid relational-XML DBMS, we
stored all the data in relational tables.

Other datasets that we use in our linkage scenarios in-
clude a database of patient visits from Electronic Medical
Records (EMRs), the list of Wikipedia entries (article ti-
tles) about disease and drugs, DailyMed3 (published by the
National Library of Medicine, providing high quality infor-
mation about marketed drugs), Diseasome4 (containing in-
formation about 4,300 disorders and disease genes linked by
known disorder-gene associations for exploring known phe-
notype and disease gene associations) and DrugBank5 (a
repository of roughly 5,000 FDA-approved drugs). We also
use the National Cancer Institute (NCI)’s thesaurus as a
source of semantic information about medical terms. Due
to privacy issues associated with EMR records, our patient
visits database is synthetic, generated using a data generator
that resembles real EMR records in a hospital. The diagno-
sis and prescription values are randomly picked by the data
generator from NCI terms. The data generator also gener-
ates an additional column with a small random string error
in the diagnosis field. The string error injected in the string
resembles real errors and typos occurred in string databases,
e.g., replacing a character with another character close to it
on a standard keyboard, or swapping two characters or word
tokens.
Scenarios We show the application of the LinQuer system
in the following scenarios: Linking (1) from the diagnosis
in the patient visits to trial conditions, (2) from trial con-
ditions to diseases in Wikipedia, (3) from trial conditions
to diseases in Diseasome, (4) from the prescriptions in the
patient visits to trial interventions, (5) from trial interven-
tions to drugs in Wikipedia, (6) from trial interventions to
drugs in DrugBank, (7) from trial interventions to drugs in
DailyMed, and (8) finding trials related to each other based
on similarity in the title of their publications.
Link Discovery Steps In our demonstration, we will illus-
trate a few ways in which LinQuer could be used in design-
ing a link discovery solution for the scenarios above. Con-
sider our first scenario in which the goal is to find links
to clinical trials from patient visits. In prototyping a so-
lution, a user may select a subset of patient visits (in our
example, 1,000 visits) to use in evaluating different link al-
ternatives. Assume that patient visits are stored in table
visits where its column diagnosis contains the diagno-
sis associated with the particular patient’s visit, the table
condition stores each trial’s conditions in its column name,
and the table ont stores the synonym information from the

3From http://dailymed.nlm.nih.gov.
4From http://www.ncbi.nlm.nih.gov/omim.
5From http://drugbank.ca.

NCI thesaurus with column src containing concept IDs and
column tgt containing the terms. Two terms are synonyms
if they have the same concept ID. One way of using LinQuer
is described below.

• The records that match with a simple exact match-
ing can be obtained using a simple SQL query that
matches visits.diagnosis with condition.name. This
query returns only 33 matches in this case, linking 2
out of 1,000 patient visit records to the trials. This is
due to the string errors in visits.diagnosis values.

• The next step a user could try is to use an approximate
string matching predicate with a low similarity thresh-
old to observe the results. A low threshold will give
high recall (but possibly low precision) on the discov-
ered links. The user then manually inspects a subset
of the links returned. The user can judge the qual-
ity of the links by a partial knowledge of the type of
the links required. If there are too many unwanted
links, she can increase the threshold. If she sees miss-
ing links, she can lower the threshold or try a new type
of link method to see if there are links that are not be-
ing found. In this case, using the weighted Jaccard
[4] native string matching method, and inspecting 100
linked records, the accuracy (percentage of the links
between diagnosis and conditions that are considered
correct matches) was 91% for threshold 0.7 and 40%
for threshold 0.4. Interactively, the user can change
the threshold to retrieve a high number of links she
considers relevant (without having too many incorrect
links).

• Let’s assume that the user has found a threshold for
string matching that gives a good accuracy on the
user’s test data. (S)he may notice from the inspec-
tion of the discovered links, that the string matching
is not finding links based on synonyms. The next step
then may be to use the semantic information in the
NCI thesaurus to improve the matching using synonym
and hyponym matching. The semantic matching that
is only based on synonyms results in 147 links to 104
distinct trials, out of which 69 links to 24 distinct tri-
als could not be found using exact or string matching.
Repeating the above query with semantic matching
based on hyponyms of depth 2 from NCI results in 68
additional links to 21 distinct trials.

• Continuing the analysis, the user notices that some
synonyms are still not being found because they con-
tain errors. Hence, (s)he decides to combine the ap-
proximate string matching with the semantic link dis-
covery by writing the following LinQL code.

CREATE LINKSPEC mixmatch

AS LINK src WITH tgt

USING synonym;

AND

LINK src WITH ont.tgt

USING weightedJaccard

SELECT v.*, c.*

FROM visits v, condition c

WHERE LINK v.diagnosis WITH c.name

USING mixmatch

Using combined string matching and semantic match-
ing results in 173 links to 120 distinct trials, 26 more
links to 16 more distinct trials when compared with
matching based on synonyms only.

• Now, depending on the results of the above steps, the
user can write a single query for the linkage needs spe-
cific to this application. Here we choose to combine
exact matching, string matching, semantic matching
based on synonyms and hyponyms, and mixed seman-
tic matching allowing string errors. This can all be
expressed using a single LinQL query. The combined
approach results in 1,255 links from 383 visit records
to the related clinical trials.

Summary of the results The table below shows the num-
ber of links found using exact matching, string matching
(using parameter settings that result in above 80% accu-
racy), semantic matching, and a combination of string and
semantic matching methods in the scenarios described above
using the LinQuer framework. Our demonstration will walk
through a similar scenario and allow users to experiment
with different LinQL queries for tailoring the link discovery.

Scenario Exact String Semantic Combined

1 33 1,102 173 1,255
2 164 333 173 342
3 232 778 301 830
4 318 806 4225 6630
5 8,442 9,716 10,630 11,527
6 9,867 11,865 12,127 23,493
7 14,257 24,461 27,685 39,396
8 11 2,074 — 2,074

4. CONCLUSION
In this demonstration, we will present a declarative exten-

sible framework for link discovery from relational data. We
will show how a simple specification language, LinQL, can
be used for specification of linkage requirements in a variety
of user and domain needs, and how LinQL queries can be
translated into standard SQL queries. We will demonstrate
the effectiveness of our approach in several link discovery
scenarios in a real world health care application. Our focus
has been on developing efficient techniques that can handle
large data sets, but also on usability. We illustrate how a
user can interactively experiment with and customize differ-
ent link methods to better understand what are the most
effective methods for her domain. We show how our frame-
work can significantly enhance the process of publishing a
high-quality data source with links to other data sources on
the web.

5. REFERENCES
[1] S. Das, E. I. Chong, G. Eadon, and J. Srinivasan.

Supporting Ontology-Based Semantic Matching in
RDBMS. In Proc. of the 13th Int’l Conf. on Very Large
Data Bases (VLDB’04), pages 1054–1065, 2004.

[2] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate Record Detection: A Survey. IEEE
Transactions on Knowledge and Data Engineering,
19(1):1–16, 2007.

[3] L. Getoor and C. Diehl. Link Mining: A Survey.
SIGKDD Explor. Newsl., 7(2):3–12, 2005.

[4] O. Hassanzadeh. Benchmarking Declarative
Approximate Selection Predicates. Master’s thesis,
University of Toronto, 2007.

[5] A. Kementsietsidis, L. Lim, and M. Wang. Supporting
Ontology-based Keyword Search over Medical
Databases. In Proc. of the AMIA 2008 Symposium,
pages 409–413, 2008.

