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Abstract

Most RDBMSs maintain a set of histograms
for estimating the selectivities of given queries.
These selectivities are typically used for cost-
based query optimization. While the problem
of building an accurate histogram for a given
attribute or attribute set has been well-studied,
little attention has been given to the problem
of building and tuning a set of histograms col-
lectively for multidimensional queries in a self-
managed manner based only on query feedback.
In this paper, we present SASH, a Self-Adaptive
Set of Histograms that addresses the problem of
building and maintaining a set of histograms.
SASH uses a novel two-phase method to auto-
matically build and maintain itself using query
feedback information only. In the online tuning
phase, the current set of histograms is tuned in
response to the estimation error of each query in
an online manner. In the restructuring phase,
a new and more accurate set of histograms re-
places the current set of histograms. The new
set of histograms (attribute sets and memory
distribution) is found using information from a
batch of query feedback. We present experi-
mental results that show the effectiveness and
accuracy of our approach.

1 Introduction

Estimating the result size of a given query is an im-
portant problem in query optimization and approx-
imate query processing. Most RDBMSs maintain
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a set of histograms using a small amount of mem-
ory for selectivity estimation. While the problem of
building an accurate histogram for a given attribute
or attribute set has been well-studied [13, 12, 11,
16, 1, 3], little attention has been given to the more
general problem of building and tuning a set of his-
tograms collectively in a self-managed manner based
only on query feedback. Building and tuning a set
of histograms for multidimensional queries presents
several unique challenges:

1. Which sets of attributes should histograms be
built on?

2. How should the histograms be tuned to the
query workload?

3. How should the fixed amount of memory be dis-
tributed among the histograms to achieve best
overall accuracy for estimating the selectivities
of a given workload?

In addition, we want to address all these issues by
using only query feedback information without per-
forming any offline scan of the underlying database
relations.
Related Work. Most previous work [1, 3, 8, 6, 9]
studied the above issues by treating them indepen-
dently and/or assuming full access to the underlying
database relations.

The idea of using query feedback information
to update the statistics kept by the query opti-
mizer first appeared in [4] where coefficients of a
curve representing the underlying data distribution
are adapted using query feedback. Self-tuning his-
tograms [1, 3] successfully used this idea to build
and maintain individual histograms; however, nei-
ther [1] nor [3] addresses the issues of finding which
attributes to build histograms on and memory dis-
tribution among the set of histograms. Our work ad-
dresses these two important issues. Moreover, SASH
addresses how to update low dimensional histograms
using high dimensional query feedback which has not
been addressed in the literature before.



Graphical statistical models were first used for
multidimensional query selectivity estimation in [8,
6]. Getoor et al. [8] use Probabilistic Relational
Models (PRMs) for estimating the selectivities of
point queries. PRMs [8] are based on directed graph
models (Bayesian networks) and they are used in [8]
to find which attribute sets to build conditional his-
tograms on. However, the technique proposed in [8]
is based on a complete offline scan of the underlying
data. It does not address the issues of online con-
struction of histograms, memory distribution among
multiple histograms, and workload-driven tuning of
the existing histograms. Dependency-based (DB)
histograms of Deshpande et al. [6] are based on undi-
rected graph models (in particular, junction trees)
and are used for estimating the selectivity of range
queries. The technique proposed in [6] addresses the
issue of which attribute sets to build histograms on
and the issue of memory distribution among multi-
ple histograms. However, it treats these two issues
independently. Moreover, similar to the PRM-based
technique in [8], it is based on a complete offline scan
of the underlying data and does not address online
construction and workload-driven tuning.

Jagadish et al. [9] present several greedy and
heuristic algorithms for distributing memory (buck-
ets) among a set of single attribute histograms, but
does not address the problem of finding the sets of
attributes to build histograms on.

All three techniques [8, 6, 9] minimize some ob-
jective function that approximates the distance be-
tween the joint distribution associated with a set of
histograms (or statistics) and the true data distri-
bution of the database. The histograms (or statis-
tics) that they maintain are obtained by scanning
the database, and the objective functions that they
minimize require accesses to the database to be com-
puted. Because of the offline nature of these tech-
niques, they build histograms without considering
how the histograms are being used (i.e., query work-
load) and assume that all queries are equally likely to
be asked. This assumption is rarely true in practice.
Ideally, more storage resource should be spent on
storing the statistics that are relevant to the most
frequently queried portions of the underlying rela-
tions. These techniques are oblivious to workload
distribution and consequently waste precious stor-
age space in storing statistics of infrequently queried
portions of the base data. Another consequence of
the offline nature of these techniques is that the his-
tograms they built are static in the sense that, after
histograms are built, the histograms remain fixed re-
gardless of any change in the data distribution. To
ensure accuracy of the statistics when the base data
change significantly, the histograms must be rebuilt
by scanning the base data again. This rebuild ap-
proach is neither effective nor efficient because of

the scanning cost associated with the size of the
base data and the complexity associated with eval-
uating the objective functions that they minimize.
Our work overcomes these drawbacks by building
and maintaining histograms in a dynamic way based
only on query workloads.

LEO by Stillger et al. [15] takes a different ap-
proach. It uses the actual selectivity feedback from
each operator in the query execution plan to main-
tain adjustments that are used to correct the es-
timation errors from histograms. Note that LEO
does not change the histograms themselves, while
our work aims on building and maintaining better
histograms using query feedback.
Our Contributions. In this paper we present
SASH, a Self-Adaptive Set of Histograms, that ad-
dresses these three issues simultaneously. SASH is
a two-phase method for the online construction and
maintenance of a set of histograms for multidimen-
sional queries (see Figure 1). In the online tuning
phase, SASH uses the delta rule [14] to tune the cur-
rent set of histograms in response to the estimation
error of each query. The estimation error is com-
puted from the true selectivity of a query obtained
from the query execution engine, a query feedback.
In the restructuring phase, SASH searches for a new
and more accurate set of histograms to replace the
current set of histograms. We extend graphical sta-
tistical models to model a set of histograms with
memory constraints and search for the best model
given a batch of query feedback. The best model
found by SASH includes both the optimal set of his-
tograms and the corresponding optimal memory al-
location for each histogram. In other words, SASH
addresses both the problem of finding the best at-
tribute sets to build histograms on and the problem
of finding the best memory distribution (of the given
amount of memory) among the histograms. In con-
trast to previous model search methods [8, 6], SASH
does not require access to the database relations to
evaluate the candidate models (sets of histograms),
but evaluates each candidate using only query feed-
back information from a query workload. The re-
structuring phase can be activated periodically or
as needed when performance degrades. In summary,
our contributions are:
• We develop a new method to build and maintain

an optimal set of histograms using only query
feedback information from a query workload,
without accessing the base data. Because our
method is dependent only on query feedback, it
is able to adapt to workload and data distribu-
tion changes.

• We propose a unified framework that addresses
the problem of which attribute sets to build his-
tograms on, the problem of allocating memory
to a set of histograms, and the problem of tun-
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Figure 1: Workflow of SASH. The right path is for query
processing and the feedback loop is for workload-driven
selectivity estimation processing.

ing a set of histograms to the query workload.
• For a multidimensional query involving at-

tributes spanning several histograms, we show
how to perform online updates of the relevant
histograms in a principled manner using the
delta rule [14].

The rest of this paper is organized as follows. The
next section introduces basic notations. We give an
overview of SASH in Section 3. We describe the re-
structuring phase in Section 4 and the online tuning
phase in Section 5. Section 6 gives the experimen-
tal evaluation of SASH. We draw conclusions and
outline future work in Section 7.

2 Preliminaries

A database consists of a set of relations. Each rela-
tion R is a set of attributes. Since we are not dealing
with joins between relations, we simplify our presen-
tation by considering a single relation R. Without
loss of generality, let relation R = {A1, A2, . . . , Ak}.
Each attribute Ai takes real values from the value
domain Di (a discrete set of real numbers). Let Di

be indexed by {1, 2, . . . , |Di|} and let D(R) denote
the domain for a set of attributes in relation R, i.e.,
D(R) = D1 × D2 × . . . × Dk, where each Di is the
domain for attribute Ai ∈ R. The normalized fre-
quency distribution of relation R is denoted by

P (R) =
f(R)
||R||

(2.1)

where f(R) is the frequency distribution for the at-
tributes in R and ||R|| denotes the total number of
tuples in relation R. Equation (2.1) allows us to
treat frequency distributions as if they are probabil-
ities. The frequency distribution f(R) is a shorthand

for

f(R = a) = f(A1 = a1, . . . , Ak = ak)
= no. of 〈a1, a2, . . . , ak〉

tuples in relation R

where ai is the value for attribute Ai. Geomet-
rically, the tuple or vector a is a point in the k-
dimensional domain space of R (i.e., D(R)). Let
X = {A1, A2, . . . , Aj : j ≤ k} ⊂ R. The frequency
distribution for subset X can be obtained by via
marginalization,

f(X = x) = no. of 〈x0, x1, . . . , xj , . . .〉 tuples
in relation R

=
∑

b∈D(R−X)

f(R = 〈x,b〉). (2.2)

Let r be a set of real intervals constraining X. We
adopt the shorthand of X ∈ r to represent a range
query on the attributes of X. For example, if X =
{Ai} and r = {[l, h]}, then X ∈ r denotes the range
query l ≤ Ai ≤ h. Geometrically, the j intervals
in a query range r form a hyper-rectangle in the j-
dimensional domain space D(X). The selectivity of
a range query X ∈ r on relation R is therefore the
sum of all the j-dimensional points x ∈ D(X) that
are enclosed by the hyper-rectangle defined by r,

σ(X ∈ r) =
∑

x∈D(X)
x∈r

f(X = x). (2.3)

A query feedback is a tuple (X ∈ r, σ(X ∈ r))
consisting of a range query constraining the at-
tributes in the set X to the ranges in r and the true
selectivity (the number of tuples that satisfy that
query) corresponding to this query.

A histogram h is an approximation to a frequency
distribution. In the following description of SASH
and in our experiments, we have use partition-based
histograms (and in particular MHIST [13]) in or-
der to make more meaningful comparisons, even
though SASH is a general framework that does not
assume any specific histogram type. A partition-
based histogram is described by the set of attributes
attributes(h), the number of buckets nbuckets(h),
the frequency stored in each bucket, and the re-
gion of the domain space D(attributes(h)) covered
by each bucket.

3 Overview of SASH

In this paper, we propose SASH, a general frame-
work aimed at building and maintaining a set of his-
tograms that (1) covers all the attributes of interest,
(2) optimizes some performance criteria, (3) fits in a
given amount of memory, and (4) require only query



feedback information for construction and mainte-
nance. SASH is a two-phase framework to build and
maintain a set of histograms. The workflow of our
approach is shown Figure 1.

The restructuring phase takes as input a batch of
query feedback and performs a search for the opti-
mal set of histograms and the corresponding mem-
ory allocation for each histogram. The restructur-
ing phase is used to reorganize the set of histograms
either periodically or when performance degrades.
The restructuring phase can also be used to obtain
an initial set of histograms when a batch of query
feedback is available1. The restructuring phase can
be activated when sufficient query feedback has been
collected. It is not feasible to run the restructur-
ing phase after each query, because the restructur-
ing phase involves the building of new histograms.
The online tuning phase tunes the frequencies of a
set of histograms obtained from restructuring phase
using query feedback in an online manner without
changing the structure of the histogram set and the
memory allocation among histograms.

We describe the restructuring phase and the on-
line tuning phase in details in the next two sections.

4 The Restructuring Phase

The purpose of the restructuring phase is to find
the best set of histograms with respect to a given
multidimensional query workload. To that end, the
restructuring phase takes a batch of recently seen
query feedback (queries and their true selectivities)
and searches for a set of histograms that best ap-
proximates the batch of queries.

Once the type of histograms (e.g., equi-depth,
equi-width, MHIST, etc.) is chosen, a set of his-
tograms is characterized by (1) the attribute sets
on which histograms are built, (2) the frequency or
count stored in each bucket of each histogram, and
(3) the amount of memory (or number of buckets)
allocated to each histogram in the set. We describe
how SASH addresses these factors in this section.

There are two frequently used ways of choos-
ing attribute sets: (a) each set contains a single
attribute (also called the attribute-value indepen-
dence or AVI assumption), and (b) each set con-
tains all the attributes of interest from a single re-
lation (also known as the saturated model2). In
the first case, one histogram is built for each at-
tribute of interest in the database, and in the latter,
one multidimensional histogram is built for each re-

1If query feedback is not available, the set of histograms
can be initialized to a set of single attribute histograms con-
structed from the base relations.

2It is called the saturated model, because the histogram
on this set of attributes captures all possible statistical corre-
lations among all the attributes in that relation.

lation in the database. Under tight memory con-
straints, both ways are error-prone and perform
poorly for high-dimensional data with complicated
correlations [12, 7, 8, 6].

SASH’s restructuring phase models a set of his-
tograms using a junction tree graphical model with
memory constraints. Given the query feedback in-
formation of a workload, SASH searches for the best
model that fits in the specified amount of memory
and that best approximates the given query work-
load.

We first introduce the junction tree graphical
model before describing SASH’s search algorithm for
the best set of histograms.

4.1 Graphical Models
Graphical models [10] are compact representations
of high-dimensional joint data distributions. A
graphical model GM = (S, Θ) consists of a graph
S = (V,E) and a set of parameters Θ encoding
the associated distributions. The graph S encodes
the statistical dependence relationships between at-
tributes and is often called the structure of the data.
Each vertex represents an attribute and each edge
represents a statistical dependence between two at-
tributes. Using the graph S and the associated
distributions Θ, we can reconstruct the joint dis-
tribution of all the attributes losslessly. Exam-
ples of graphical models include Bayesian networks,
Markov networks, and junction trees. For the rest
of this paper, we will use the junction tree repre-
sentation; however, the techniques described in this
paper can be applied to other types of decomposable
graphical models.

In the junction tree representation, the graph
structure S is restricted to chordal graphs. An ex-
ample of a chordal graph and the corresponding
junction tree is shown in Figure 2. A chordal graph
is an undirected graph where, for every simple cy-
cle of more than three vertices, there is some edge
that is not involved in the cycle but joins two ver-
tices in the cycle (a chord). A junction tree (or for-
est) J(S) = (VJ , EJ) of a chordal graph S is a tree
(or forest) where each node corresponds to a clique
(maximal complete subgraph) in S and each edge
corresponds to a non-empty intersection between
two cliques in S. Each node in a junction tree repre-
sents a set of attributes in the chordal graph S. Let
the set of attributes associated with a node u ∈ VJ

be denoted by Cu. An edge (u, v) ∈ EJ exists iff Cu

and Cv has non-empty intersection. The set of pa-
rameters Θ associated with a junction tree consists
of a set of distributions {P (Cv) : v ∈ VJ}, one for
each node in the junction tree. Each P (Cv) is called
a clique distribution.
Selectivity Estimation Using a Junction Tree.
Given a junction tree model M = (J(S),Θ) for a set
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Figure 2: An example of a graphical model for five
attributes {A1, A2, . . . , A5}. The chordal graph has
five nodes corresponding to the five attributes. Each
edge in the chordal graph models a statistical depen-
dency between two nodes. The junction tree has three
cliques: C1 = {A1, A2, A3}, C2 = {A2, A3, A4}, and
C3 = {A3, A4, A5}. The weight of each edge in the junc-
tion tree is the number of shared attributes between the
end nodes of that edge.

of attributes R = {A1, . . . , Ak}, the joint distribu-
tion can be computed as

P (R = a) =

∏
u∈VJ

P (Cu)∏
(u,v)∈EJ

P (Cu ∩ Cv)
. (4.4)

Each of the P (Cu) terms (and the P (Cu∩Cv) terms)
is a function of the attributes in the set Cu (and
Cu∩Cv) and each function has to be evaluated using
the values in the given point a ∈ D(R) to instantiate
the attributes in Cu (and in Cu ∩Cv). If a junction
tree model is a good approximation of the joint dis-
tribution of a database, (4.4) can be used for selec-
tivity estimation. In particular, for range queries on
a subset of attributes, equations (2.2) and (2.3) can
be used with (4.4) to obtain the corresponding se-
lectivity estimates. For a query on a single table R,
(2.1) can be used to simplify (4.4) and the selectivity
can now be estimated using frequency counts:

f(R) =

∏
u∈VJ

f(Cu)∏
(u,v)∈EJ

f(Cu ∩ Cv)
. (4.5)

We have described the junction tree model in the
context of a single relation R. Since we do not con-
sider joins, a junction tree/forest model of an entire
database is simply a collection of junction trees for
each relation. The parameter set Θ for this junction
forest model is the collection of frequency distribu-
tion for each clique in this forest.

It is impractical to store the frequency distribu-
tion for each clique Cu exactly. Instead we use his-
tograms to approximate f(Cu), and we call these
histograms clique histograms. We use MHIST his-
tograms [12] in our presentation and in our experi-
ments, although other histogram techniques can be
used with minor modification.

4.2 Finding the Best Set of Histograms
The joint data distribution of a database can be de-
scribed using graphical models. A set of histograms

Restructuring Phase (Qfb, C)
C : memory constraint
m = (J(S), H, B) : histogram set model

1 J(S) ← AVI
2 H ← one bucket histograms
3 B ← vector of one’s
4 c ← size in bytes(m)

5 while (c < C) {
6 for each mstruct in S_Candidates(m) {
7 score(mstruct, Qfb)

}
8 m∗

struct ← mstruct with best score
9 for each mbucket in B_Candidates(m) {
10 score(mbucket, Qfb)

}
11 m∗

bucket ← mbucket with best score
12 m ← best scoring model

between (m∗
bucket, m∗

struct)
13 c ← size in bytes(m)

}

Figure 3: Search algorithm for the best model.
S Candidates(m) refers to the set of candidate models
obtained by making a small structural change on m and
B Candidates(m) refers to the set of candidate models
obtained by adding one bucket to some histogram in m.

that approximates the joint data distribution can
likewise be described using graphical models with
memory constraints. In particular, we extend the
junction tree representation to describe which sets
of attributes to build histograms on.

Definition 1 A histogram set model for a set of at-
tributes of interest A = {A1, A2, . . . , An} is a triple
〈J(S),H, B〉, where J(S) is a junction tree represen-
tation for the underlying chordal graph S, H is the
set of clique histograms for the vertices in J(S), B is
a set of bucket allocations that specify the number
of buckets allocated to each histogram in H, and the
attributes in all the cliques cover all the attributes
of interest (i.e., ∪u∈VJ

Cu = A).

Finding the best set of histograms for a database
can now be cast as a search for the histogram set
model that maximizes or minimizes some scoring
criterion. Our search algorithm is outlined in Fig-
ure 3. We initialize the current model m to the sim-
plest model (lines 1-3) and iteratively improve it.
The simplest model assumes attribute value inde-
pendence and builds a one-bucket histogram for each
attribute (see Figure 4 for an example). At each it-
eration of the while-loop in line 5, the algorithm ex-
plores two options: (1) making the best local change
in structure, i.e., the junction tree (lines 6-8), or (2)
adding a bucket to a histogram, but keeping the cur-
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Figure 4: An example of the AVI graphical model for
five attributes {A1, A2, . . . , A5}. The mutual indepen-
dence of the attributes is represented by the lack of edges
in the chordal graph (left). The junction tree (right) re-
duces to singleton cliques: Ci = {Ai} for i = 1, . . . , 5.

rent structure (lines 9-11). The option that gives the
best scoring model is taken (line 12) and the algo-
rithm proceeds to the next iteration. A local change
in structure is defined to be the addition of an edge
to the underlying chordal graph S that does not vio-
late the chordal graph property. Computing the set
of candidate junction trees that differ from J(S) by
one edge in the chordal graph S has been described
in [5]. Making a structural change always results in
some old clique histograms being discarded and one
new clique histogram of higher dimension being cre-
ated. The buckets of the discarded histograms are
assigned to the new histogram and in addition, the
algorithm also explores giving more buckets to the
new histogram, because it has higher dimensionality
than the discarded ones. Since the clique histograms
discarded in some iterations of the for-loop (line 6)
may be needed in future iterations, the discarded
histograms should be kept in a cache to avoid re-
computation.

At each iteration of the search (line 5), we add
buckets to either existing clique histograms or the
new one. When the (memory) size of the model
reaches the desired threshold, the search algorithm
terminates and outputs the best model that it finds.
In addition to memory constraints, we also place
a bound on the dimensionality of each clique his-
togram: candidate models with clique size greater
than a given size (typically three) are not consid-
ered [6].

4.3 Scoring Criteria

In this section we describe some of the scoring func-
tions we have used with the search algorithm out-
lined in Figure 3. Previous work on selectivity esti-
mation using graphical models [6, 8] does the evalu-
ation of candidate models against the true distribu-
tion, the database itself. Since only feedback infor-
mation for a query workload is available in our case,
scoring functions that are based on the Kullback-
Liebler divergence from the true distribution cannot
be used. Candidate models will have to be evalu-
ated based on the information in the batch of query
feedback. Two scoring techniques are outlined next.

Standard Error Measures. A candidate model
m′ can be evaluated based on its selectivity estima-
tion performance on the queries in the batch of query
feedback. Selectivity estimation performance can be
measured using a variety of error measures [16]. Two
examples are the 2-norm of the absolute error,

scoreabs2n(m′,Qfb) =
[

1
N

∑
(q,σ)∈Qfb

|σ̂m′(q)− σ|2
] 1

2

,

where N is the number of query feedback tuples in
the query feedback batch Qfb, and the 1-norm of the
relative error,

scorerel1n(m′,Qfb) =
1
N

∑
(q,σ)∈Qfb

|σ̂m′(q)− σ|
max(1, σ)

.

Minimum Description Length (MDL). Using
the MDL principle [2], we can evaluate a candi-
date model m′ by the number of bits required to
encode the selectivity information in the batch of
query feedback using m′. Given this encoding, the
true selectivities in the batch of query feedback can
be losslessly reconstructed. Since m′ provides esti-
mates to the true selectivities, we only need to en-
code the estimation errors and the model m′ itself.
The decoder can use the model m′ to estimate the
selectivity of each query in the batch and use the
estimation errors to recover the true selectivity. Let
e1, e2, . . . , eN be the estimation errors of model m′

for the batch of query feedback Qfb (where N is the
number of query feedback tuples in Qfb), and let
p(e) be the empirical probability distribution of the
estimation errors,

p(e) =
no. of ei with value e

N
.

A reasonable encoding of the estimation errors is
to encode the empirical distribution p(e) of the er-
rors and encode each error ei using log 1/p(ei) bits.
Hence, our MDL score is

scoremdl(m′,Qfb) = k × size in bytes(m′)

+
∑
e∈E

[1 + log(|e|+ 1) + log(p(e)×N + 1)]

+
N∑

i=1

log
1

p(ei)
,

where E is the set of distinct error values (dis-
tinct ei’s). The quantity size in bytes(m′) denotes
the amount of memory used to store the histogram
set model m′ without any compression. The MDL
encoding of the model m′ therefore requires less
space and we approximate the encoding length by
k× size in bytes(m′), where k is some constant. We



set k to 1/4 in our experiments3. The distribution
p(e) is encoded as a sequence of 〈e, p(e)〉 pairs. Each
error value e requires one bit to encode the sign and
roughly log(|e| + 1) bits to encode the magnitude,
since |e| can be zero. Each probability value p(e)
requires roughly log(p(e)×N + 1) bits.

4.4 Learning Clique Histograms from Query
Feedback

We have described our search algorithm for the best
histogram set model. In this section we address the
problem of building a set of histograms from a batch
of query feedback given a fixed model. This problem
differs from that addressed in [1, 3] in that we con-
sider multi-attribute queries whose query attributes
are not covered by a single histogram, whereas [1, 3]
assumes that the attributes of each query is cov-
ered by exactly one multidimensional histogram. For
example, [1, 3] do not address how to build two
one-dimensional histograms for attributes A1 and
A2 given two dimensional queries on attributes A1

and A2. We show how to build low-dimensional
histograms from high-dimensional queries using the
delta rule [14].

A histogram h that approximates the frequency
distribution of a set of attributes attributes(h)
consists of a set of buckets B(h) indexed by
{1, 2, . . . , |B(h)|}. Each bucket i corresponds to
a particular partition box (i) of the domain space
for attributes(h) and is associated with ci, the fre-
quency count of tuples that occur in that partition.

The selectivity of a range query Q = X ∈ r, such
that X ⊆ attributes(h), is given by the sum of the
counts of all the buckets that overlap with the range
constraints,

σ̂(X ∈ r) =
|B(h)|∑
i=1

αi × ci,

where {1, . . . , |B(h)|} is the set of bucket indices for
histogram h, and each αi is the fraction of overlap
between the bucket i and the query range,

αi =
box (i) ∩ r

box (i)

If the query attributes X is a proper subset of
attributes(h), the attributes that are not in the
query are marginalized out in the same way as com-
puting a marginal probability distribution (Equa-
tion (2.2)).

Consider the example histogram in Figure 5. The
selectivity of two dimensional query Q2 is

σ̂(X1 ∈ [2, 4], X2 ∈ [2, 3.5]) = c8 +
1
2
c4 +

1
2
c3.

3This value of k is obtained via experimentation.
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Figure 5: An example of a two dimensional histogram.

The selectivity of one dimensional query Q1 is

σ̂(X1 ∈ [0, 1.5]) = c1 +
1
2
c2 +

1
2
c7 +

1
4
c6 +

1
6
c5.

If the set of query attributes is not a subset of any
histogram attributes, the query selectivity needs to
be computed using the graphical model. In our case,
a junction tree model J(S) = (VJ , EJ) is used. Let
V ′ = {v ∈ VJ : v ∩ X 6= ∅} be the set of cliques
that contain some of the query attributes and E′ =
{(u, v) ∈ E : v, u ∈ V ′} be the set of edges that have
the nodes in V ′ as endpoints. The selectivity of the
range query X ∈ r can be computed as,

σ̂(X ∈ r) =
∏

u∈V ′ σ̂(Cu)∏
(u,v)∈E′ σ̂(Cu ∩ Cv)

. (4.6)

Each numerator term σ̂(Cu) is computed from the
clique histogram for attribute set Cu at the values
specified in r, and each denominator term σ̂(Cu∩Cv)
is computed from the clique histogram for Cu by
marginalizing out the attributes in Cu−Cv and set-
ting the values of the attributes in Cu∩Cv with cor-
responding values in r. Since each term is computed
from a histogram, it is a sum of bucket frequencies.
The buckets that are included in the sums are those
that overlap with the query range r.

Suppose that the partitioning of the domain space
by a clique histogram is fixed and we want to up-
date the frequency count cb of a particular bucket b
of that histogram in response to an estimation error
in a query X ∈ r. Let σ be the true selectivity of
this query and σ̂ be the selectivity of this query es-
timated by the model. The frequency for bucket b
can appear at most once in the numerator and pos-
sibly many times in the denominator (in the follow-
ing formula l times); hence, the estimated selectivity
(Equation (4.6)) can be expressed in terms of cb as

σ̂ =
α0cb + k0∏l

i=1(αicb + ki)
× ρ (4.7)

=
p0∏l
i=1 pi

× ρ (4.8)



where ρ denotes the rest of the numerators and de-
nominator terms that do not involve the bucket b,
each αj denotes the fraction of overlap of bucket b
with the query range, each kj denotes the rest of the
bucket frequencies being summed, and each pj is a
shorthand for αjcb + kj . We use the delta rule [14]
(gradient descent method) to update the frequency
count cb of bucket b in response to an estimation er-
ror σ̂ − σ. The delta rule states that for an error
function E(cb), the update to the variable cb should
be proportional to the negative gradient of E(cb)
with respect to cb. Using the delta rule to minimize
the squared error,

E(cb) = (σ̂ − σ)2,

we update the bucket frequency cb in proportion to

∂E(cb)
∂cb

= 2(σ̂ − σ)
∂σ̂

∂cb
(4.9)

where
∂σ̂

∂cb
=

α0σ̂

p0
−

l∑
i=1

αiσ̂

pi
. (4.10)

Hence, given a query feedback with true selec-
tivity σ and estimated selectivity σ̂, we can update
each bucket b that is involved in the selectivity esti-
mation computation. For each bucket b, we compute
l, the number of times the frequency of b is used in
the denominator, and we update the frequency of b
using

c
(n+1)
b = c

(n)
b − γ

∂E(cb)
∂cb

= c
(n)
b − 2γ(σ̂ − σ)

[
α0σ̂

p0
−

l∑
i=1

αiσ̂

pi

]
,

(4.11)

where γ is a tunable parameter called the learning
rate, each p0 corresponds to a σ̂(C) term (in Equa-
tion (4.6)) that uses bucket b and each pj , j > 0
corresponds to a σ̂(Cu ∩ Cv) term that uses bucket
b in (4.6). For a batch of query feedback, we iterate
through the batch a fixed number of times, applying
the update rule in (4.11) (see Figure 6).

The update rule in (4.11) learns the bucket fre-
quencies of a clique histogram assuming that the set
of buckets (i.e., the partition) is fixed. To find a
suitable partition, we search in a restricted set of
partition schemes for the partition that minimizes
the squared error (with respect to a batch of query
feedback). In the case of MHIST, we always split a
bucket into two equal halves. The region covered by
a bucket is d-dimensional, and hence there are d pos-
sible splits. The algorithm for learning a MHIST his-
togram (both partitioning and bucket frequencies)

Learn_bucket_freq(b_set, Qfb)
b_set : set of buckets
Qfb : set of query feedback
niter : no. of update iterations

1 for i=1 to niter do {
2 for each q in Qfb involving b_set do {
3 for each bucket b in b_set do {
4 update b.freq using Equation (4.11)

}
}

}

Figure 6: Algorithm for updating the frequency of a set
of buckets (from the same histogram).

Learn_MHIST(h, nB, Qfb)
h : a one bucket clique histogram
nB : the target no. of buckets
Qfb : set of query feedback

1 while (h.nbuckets < nB) {
2 for each bucket b in h do {
3 for each dimension d do {
4 (b’,b’’) ← split b at the

mid point along d
5 Learn_bucket_freq({b’,b’’},Qfb)
6 score(b,d) = score this split

}
}

7 find the (b*,d*) with the best score
8 apply the split (b*,d*) on h
9 h.nbuckets++

}

Figure 7: Algorithm for building a MHIST histogram
from a batch of query feedback.

from a batch of query feedback is outlined in Fig-
ure 7. Basically, in each iteration of the while-loop
(line 1), we score each candidate split (line 4-6) and
choose the best candidate split to apply on the his-
togram. A candidate split is completely specified by
the bucket to split and the dimension to split. Line 4
does not actually perform the split in the histogram,
but simulates a split by returning the two buckets
that would have resulted from the split.

5 The Online Tuning Phase

Once the restructuring phase has established a set
of histograms that is locally optimal based on the
previous batch of query workload, the online phase
continually tunes the bucket frequencies of this set
of histogram to ensure adaptivity to changes in the



Online Update(〈J(S), H, B〉, 〈q, σ〉)
〈q, σ〉 : query feedback
〈J(S), H, B〉 : current histogram set model

1 for each h in H involved in q do {
2 for each bucket in h involved in q do {
3 update b.freq using Equation 4.11

}
}

Figure 8: Algorithm for online update in response to a
query feedback.

current query workload.
The online update algorithm is based on the up-

date rule given in (4.11) and is outlined in Figure 8.
Given a query feedback (q, σ(q)), we update all the
histograms that are involved in the computation of
the selectivity estimate σ̂(q).

The complexity of the online update algorithm is
bounded by the size of the set of histograms, which
reside in a small constant amount of memory space.
The overhead of the online update is therefore not a
significant cost compared to the potential improve-
ment in estimation accuracy.

6 Experimental Evaluation

In this section, we describe our experiments and
present experimental results. Although we experi-
mented with both synthetic and real data, we only
present results for the real data in this paper in the
interest of space.
Real Data. We use data from the Current Pop-
ulation Survey (CPS) of the US Census Bureau
(www.census.gov) as in [5]. This data set consists of
the following attributes from the Person Data Files
of the March (2001) Supplement: race, native coun-
try of sample person, native country of mother, na-
tive country of father, citizenship and age. There
are 128821 tuples, of which 13824 are distinct.
Query Generation. Our query workload genera-
tor takes as input a pair of normal distribution pa-
rameters (µ, σ) for each attribute Ai, where µ is the
most frequently queried value of Ai and σ is the stan-
dard deviation that controls how skewed the query
workload is going to be. For our experiments, each
µ is randomly chosen. A query is generated by ran-
domly picking the relation R to be queried, the num-
ber of attributes d to be queried, and the d attributes
from relation R. For each of the d attributes, the
low endpoint is picked randomly according to the
normal distribution specified for the attribute. The
high endpoint is picked using the uniform distribu-
tion from between the low endpoint and the maxi-

mum value for that attribute. The true selectivity of
the query is evaluated using the actual data distribu-
tion. For our experiments, we generated workloads
of 5000 queries each using the skew parameters from
Table 1. All the queries have positive selectivity.
Comparisons. We compare the performance of five
algorithms. DBHist is the method proposed in
[6] that we extended to optimize the bucket alloca-
tion over all the clique histograms in the database.
SASH-avi assumes attribute value independence
and builds one MHIST histogram for each attribute.
SASH-sat (‘saturated’) builds one MHIST his-
togram for each relation. Both SASH-avi and
SASH-sat use our method to learn the MHIST and
optimize the bucket allocation using the 2-norm ab-
solute error score except that they assume a fixed
structure S. In the case of SASH-avi, each clique
contains one attribute, and in the case of SASH-
sat, each clique contains all the attributes in a re-
lation. SASH-mdl uses our search algorithm with
the MDL scoring function. SASH-abs2 uses our
search algorithm with the 2-norm absolute error
scoring criterion. In our implementation of the re-
structuring phase of the SASH algorithms, we have
used a grid histogram to extract information from
the query workload first. The Learn MHIST algo-
rithm (Figure 7) then uses the grid histograms to
compute the bucket frequencies of the split buckets.
Error Measures. We measure the performance of
a set of histograms by their estimation errors on a
query workload. We use the 1-norm and 2-norm of
the absolute errors, where the p-norm absolute error
is defined as,

||eabs||p =
(

1
N

N∑
i=1

|σ̂i − σi|p
)1/p

.

Absolute errors vary over different datasets. To
make the results more meaningful we normalize the
{1,2}-norm absolute errors using the largest selec-
tivity in the query workload [16].

6.1 Restructuring Phase Performance
We evaluate how well the restructuring phase is able
to learn the data distribution from a batch of query
feedback. For a given query workload, we run the
restructuring phase and measure the estimation er-
rors for that given workload when the restructuring
phase has completed.
Varying workload skew. We vary the skew lev-
els (the standard deviation parameter in workload
generation) of the workload to determine the per-
formance of the restructuring phase over workloads
of different skew levels. Workload 0 has query ranges
drawn uniformly from the domain space. Workloads
1, 2, and 3 have query ranges drawn using a Gaus-
sian distribution with decreasing standard deviation



Census Data Attribute domain size wkld 0 wkld 1 wkld 2 wkld 3
race 4 Uniform 0.5 0.25 0.125
native country of person 113 Uniform 10 5 2.5
mother’s native country 113 Uniform 10 5 2.5
father’s native country 113 Uniform 10 5 2.5
citizenship 5 Uniform 0.5 0.25 0.125
age 91 Uniform 9 4.5 2.25

Table 1: The skew parameters (standard deviation) used for generating the four multidimensional query workloads
for the restructuring phase.

(a) 1-norm (b) 2-norm

Figure 9: Normalized absolute error performance for four query workloads with increasing workload skew. All
methods are given 1500 bytes of memory. Workload 0 has queries drawn uniformly from the census data and
workload 1, 2, and 3 have queries that are increasingly skewed.

(hence increasing skew). Figure 9 shows the perfor-
mance of SASH with 1500 bytes of memory over the
four different workloads. SASH is consistently more
accurate than the offline DBHist over the different
workload skew levels. Moreover, SASH-abs2 is al-
ways better than using the AVI assumption (SASH-
avi).

Varying memory constraint. For workload 3,
Figure 10 shows the performance of SASH as the
memory constraint is varied. SASH is consistently
better than DBHist regardless of memory con-
straints.

6.2 Online Tuning Phase Performance.

We evaluate the online tuning phase by the esti-
mation errors of the set of histograms over work-
loads that differ in varying degrees from the work-
load used in the restructuring phase. The similar-
ity of two workloads Q1 and Q2 are measured by
the volume of intersection of the minimum bound-
ing (hyper-)rectangles (MBRs) of the two workloads

divided by the volume of the union of the two MBRs,

similarity(Q1, Q2) =
vol(MBR(Q1) ∩MBR(Q2))
vol(MBR(Q1) ∪MBR(Q2))

.

We can think of a multi-attribute range query
as a hyper-rectangle in high dimensional space.
The MBR of a workload is therefore the smallest
hyper-rectangle that encloses all the query hyper-
rectangles in the workload.

We run the online tuning phase using the his-
togram sets that were obtained by running the re-
structuring phase on workload 2 of our restructur-
ing phase experiments. All the histogram sets are
roughly 2000 bytes in size. The learning rate used
is 0.0001. Three online workloads of 5000 queries
each were generated with the same skew parame-
ters as the training workload. The similarity scores
of the online workloads with respect to the training
workload are 66% for workload 1, 89% for workload
2, and 91% workload 3. We measure the 1-norm
of the absolute errors (average absolute errors) over
the entire online workload as SASH performs on-
line tuning in response to the estimation error of
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Figure 10: Normalized absolute error performance on workload 3 for different memory constraints. Note that the
vertical ordering of labels in the legend is the same as the vertical ordering of the curves for memory greater than
200 bytes. We have truncated the DBHist curve and zoomed in on the SASH curves in the 2-norm plot to show the
relative performance of the SASH methods.
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Figure 11: Online performance of SASH for three online multidimensional query workloads that differ in varying
degrees from the workload used in the restructuring phase.

each query in the online workload. Figure 11 shows
the online performance of SASH for four time slices.
Time slice 0 gives the performance before any on-
line tuning has been performed. Time slices 2000,
4000, and 5000 give the performance after the on-
line tuning phase has seen 2000, 4000, and 5000
queries respectively. Note that since DBHist is
static, its online performance does not improve with
time. SASH consistently outperforms DBHist over
the different online workloads. We have found that
the histogram sets obtained from SASH-mdl re-
structuring phase tend to perform better than those
from SASH-abs2 during online tuning. The on-
line performance of SASH-abs2 tends to fluctu-
ate more (as evidenced in Figure 11) compared to
SASH-mdl. SASH-mdl seems to be better at

capturing the correlations between attributes. Once
correlations are sufficiently captured in the multidi-
mensional histograms, online tuning is very effective
in tuning the histograms to decrease the overall es-
timation errors (see Figure 12).

7 Conclusion

We have proposed SASH as a novel two-phase
method that builds and maintains an optimal set
of histograms using only query feedback informa-
tion from a multidimensional query workload, with-
out scanning the database. For queries involving
attribute sets that span several histograms, we have
shown how to perform online updates of the rele-
vant histograms in a principled manner using the
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delta rule. SASH has also provided a unified frame-
work that addresses the problem of which attribute
sets to build histograms on, the problem of allocat-
ing memory to a set of histograms, and the problem
of tuning a set of histograms to the query workload.

SASH has exposed many interesting issues. We
have used one type of histograms in this paper
(namely, MHIST) to facilitate comparisons. As fu-
ture work, we plan to explore the use of other his-
togram techniques (such as wavelet histograms) in
SASH. The restructuring phase currently finds a new
set of histograms from scratch. We plan to investi-
gate how to incorporate the information in the cur-
rent set of histograms when doing restructuring. In
this paper, we have also used a homogeneous set of
histograms, i.e., all the histograms are of the same
type. Since some histogram types are more suited to
certain distributions than others, another direction
for future work is to use a set of histograms that
need not all be of the same type. SASH would need
to optimize the heterogeneous set of histograms over
the space of histogram types as well.
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