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Abstract

The extensible mark-up language (XML) is

gaining widespread use as a format for data

exchange and storage on the World Wide

Web. Queries over XML data require ac-

curate selectivity estimation of path expres-

sions to optimize query execution plans. Se-

lectivity estimation of XML path expression

is usually done based on summary statis-

tics about the structure of the underlying

XML repository. All previous methods re-

quire an o�-line scan of the XML reposi-

tory to collect the statistics. In this paper,

we propose XPathLearner, a method for es-

timating selectivity of the most commonly

used types of path expressions without look-

ing at the XML data. XPathLearner gath-

ers and re�nes the statistics using query

feedback in an on-line manner and is espe-

cially suited to queries in Internet scale ap-

plications since the underlying XML repos-

itories are likely to be inaccessible or too

large to be scanned entirely. Besides the

on-line property, our method also has two

other novel features: (a) XPathLearner is

workload aware in collecting the statistics

and thus can be dramatically more accurate

than the more costly o�-line method under

tight memory constraints, and (b) XPath-

Learner automatically adjusts the statistics

using query feedback when the underlying

XML data change. We show empirically

the estimation accuracy of our method us-

ing several real data sets.
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1 Introduction

The extensible mark-up language (XML)[3] is be-

coming ubiquitous as a data exchange and storage

format. Almost all commercial RDBMSs include

some support for XML data; other systems such as

Xyleme [18], Niagara [15] and Lore [9] are specially

designed to store and query XML data on the web.

Consider an example query expressed in the

XQuery language taken from the XQuery speci�ca-

tion [5]:

FOR $b IN document("*")//book

WHERE $b/publisher = "Morgan Kaufmann"

AND $b/year = "1998"

RETURN $b/title

This query �nds the titles of all books pub-

lished by Morgan Kaufmann in the year 1998. For

the example data shown in Figure 1, it returns

the book title \Cooking". The XQuery function

document("*") indicates that all XML documents

in the repository should be searched for the path

//book [8].

EÆcient query processing over XML data

requires accurate estimation of the selectivi-

ties of the path expressions contained in the

query. For example, for the query above, we

need to know the selectivities of the path expres-

sions //book/publisher="Morgan Kaufmann",

//book/year="1998" and //book/title in op-

timizing the query execution plan. In RDBMSs

that support XML data, these selectivities are

used to evaluate the cost of di�erent join plans.

In systems that use a tree-like data model (e.g.,

[9]), these selectivities are used to evaluate the

cost of di�erent search and traversal plans [14].

In both scenarios, estimating selectivities of path

expressions is essential to XML query optimization

and the eÆciency of the query processing is highly

dependent upon the accuracy of the estimation.

The most commonly used path expressions in

XML queries can be classi�ed into three types.

Path expressions consisting of tags only (e.g.,

//book/title) are called simple path expressions.



year

author
title

book book

DBLP

article
title

author

year

title

author

author

year

publisher

publisher

Springer

1999

Tim

Art Cooking

Jim

Tim

1998

Morgan Kaufmann

2000

John

DBMS

Figure 1: An example XML data tree. Tag names are
in bold and data values are in italics.

Path expressions ending in a data value (e.g.,

//book/year="1998") are called single-value path

expressions. The XML speci�cation also al-

lows multiple tag-value bindings in a path (e.g.,

//chapter="2"/section="3"). We call such path

expressions multi-value path expressions.

Selectivity estimation of XML path expressions is

usually done based on the statistics about the struc-

ture of the XML data at query optimization time.

The main challenges in collecting and storing these

statistics are as follows:

� How to obtain the structure of the XML data?

All previous work adopts an o�-line approach

of scanning the entire XML repository [1, 14].

However, this o�-line scanning approach is not

possible or feasible when we consider Internet-

scale applications since an Internet-scale repos-

itory is either inaccessible or too large to be

scanned entirely.

� How to capture the statistics for the selectivities

of di�erent types of XML path expressions using

a small amount of memory ? State-of-the-art

techniques proposed in [1, 6] are unsatisfactory

either because they are limited to the selectivity

of simple path expressions only [1] or they are

not space eÆcient [6].

� How to use the limited storage space in the most

e�ective way? Ideally, more storage resource

should be spent on storing the statistics that

are relevant to the most frequently queried por-

tions of the XML repository. All previous work

are oblivious to workload distribution and con-

sequently wastes precious storage space in stor-

ing statistics of infrequently queried portions of

the repository.

� How to incrementally update the statistics

when the underlying XML data change? The

XML repositories in Internet scale applications

are constantly changing. To ensure accurate

XML path selectivity estimation, the statistics

must keep up with the change. However, the

o�-line periodic scan use by previous work to

obtain new statistics is not e�ective and ineÆ-

cient because of the size of the repositories and

the scanning cost.

In this paper, we present XPathLearner, a novel on-

line learning method for estimating the selectivity of

XML path expression. Our XPathLearner assumes a

Markov model [14, 1] of path selectivities and learns
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Figure 2: Workow of XPathLearner. The top path is
for query processing and feedback loop is for workload-
driven selectivity estimation processing.

this model from query feedback using error reduction

strategies. Two such strategies are presented: the

heavy-tail rule and the delta rule. Learning from a

batch of query feedback tuples is also explored. Our

XPathLearner overcomes the limitations of previous

work and has the following properties:

� Instead of scanning the XML data XPath-

Learner collects the required statistics in an

on-line manner from query feedback information

(see Figure 2).

� XPathLearner learns both tag distribution and

value distribution from query feedback. It is

designed to estimate the selectivity of all three

types of common path expressions. It can also

estimate the selectivity of a path expression

containing a simple wildcard.

� XPathLearner is workload-aware in collecting

the statistics. The allocated storage space is

used in the most e�ective way since more statis-

tics are collected for more frequently queried

portions of the XML data.

� XPathLearner automatically adapts to chang-

ing XML data, because the statistics are re�ned

on-line according to the most current query

feedback. XPathLearner incurs a small over-

head in updating the statistics using query feed-

back, but this cost is o�set by an increase in

accuracy for selectivity estimation.

Since query feedback provides only partial infor-

mation about the path selectivity distribution, we

would expect that an on-line method using query

feedback to be less accurate than an o�-line method.

In our experiments we show that not only does

XPathLearner come close in accuracy to the o�-line

method in general, but sometimes surpasses the o�-

line method, because of its workload-driven nature.

The rest of the paper is organized as follows. In

the next section, we review related work. Section 3

formulates the on-line XML path selectivity estima-

tion problem. Section 4 presents our approach: the

representation, the learning strategies, and the data

structures. We present our experimental evaluation

in Section 5 and draw conclusions in Section 6.

2 Related Work

To estimate the selectivities of XML path expres-

sions, the Lore system stores statistics of all distinct

paths up to length m, where m is a tunable pa-



rameter [14]. Selectivity of paths longer than m are

estimated assuming the Markov property (see Equa-

tion 1 of Section 4.1). The paths stored include both

tags and data values, but no further summarization

is performed. Since the number of possible data val-

ues in a big XML repository can be extremely large,

the number of distinct paths with data values can

be extremely large as well. The space requirement

of the statistics used in the Lore system is there-

fore prohibitive for large repositories. Our XPath-

Learner overcomes this problem by using two data

structures: one for the selectivities of paths involv-

ing tags only and the other for the selectivities of

paths involving data values. For the paths involving

data values, those with very high selectivity values

are stored exactly and the rest are aggregated into

buckets resulting in signi�cant savings in space.
1

Aboulnaga et al. extended the idea used by the

Lore system in their Markov table method [1]. The

Markov table method consists of a set of pruning and

aggregation techniques on the statistics used in the

Lore system and is therefore an improvement over

the method used in the Lore system because it re-

duces the space requirement. One limitation of the

Markov table method is that paths with data values

are not considered (i.e., it can only estimate selec-

tivity of the simple path expression). This limita-

tion is serious, because the selectivity of paths with

data values is crucial in optimizing XML queries

that have large top-down search space and highly

selective data values. For such queries, a bottom-up

search plan is more cost-e�ective than a top-down

search [14]. For the XML data in Figure 1, the

query \�nd the title of all books authored by Jim" is

an example. The path expression //author="Jim"

is more selective than //book. Our method aims

to overcome this limitation by storing statistics for

paths with data values while keeping the space re-

quirement low.

Aboulnaga et al. also proposed a tree-based

method known as path tree[1] for estimating the se-

lectivity of XML paths without data values. A path

tree is a summarized form of the XML data tree.

(We will de�ne path trees more formally in Sec-

tion 3.) Tree pruning and aggregation techniques

are proposed to manage the space requirement of

the statistics stored in a path tree. Their experi-

ments show that the path tree method is inferior to

the Markov table method for real data sets.

Chen et al. proposed another o�-line tree-based

method for estimating XML subtree selectivity [6].

A suÆx tree based data structure is used to store

the statistics of the XML data obtained from scan-

ning the repository. Pruning and aggregation tech-

niques are proposed to compress this data structure.

However, the space requirement of their summa-

1The way we store the statistics for paths involving data
values is similar to a compressed histogram in traditional
RDBMSs [17].

rized data structure is especially large for XML data

with long data values. Subtree selectivity estimation

involves estimating the selectivity of a query that

matches a subtree in the XML data tree as opposed

to matching a single path. Subtree queries contain-

ing data values and substrings of the data values are

considered in their work. The problem of subtree

selectivity estimation is signi�cantly more general

than the path selectivity problem that our method

addresses, but even if the technique in [6] is modi�ed

for path expressions containing tags only, Aboulnaga

et al. show that their Markov table method is supe-

rior in accuracy [1].

The XML path selectivity estimation methods

proposed in [1], [6] and [14] are essentially sum-

marization techniques for statistics that have been

gathered after scanning the repository. These o�-

line methods share several limitations. The require-

ment of an o�-line scan limits the use of these meth-

ods on large (especially Internet-scale) repositories.

They are not tuned to the workload distribution:

the workload may only query a small portion of the

XML data and hence a small portion of the statis-

tics stored in the allocated space. The repository

needs to be rescanned whenever the data in the

repository change suÆciently. Our XPathLearner

overcomes these limitations by learning the statistics

from query feedback in an on-line manner. Keeping

statistics gathered from query feedback ensures that

the allocated space is used to store statistics that are

up-to-date and relevant to the query workload.

Selectivity estimation using statistics gathered

from query has been proposed in [2, 4] for relational

data. Tree-structured data such as XML present

new challenges. Whereas the self-tuning histograms

of [2, 4] capture continuous distribution over numeric

attributes, a corresponding self-tuning XML path

selectivity estimator needs to capture a discrete dis-

tribution over a set of non-numeric path labels. In

the continuous case, self-tuning histograms (such as

[2, 4]) can start with a uniform distribution over a

large interval and re�ne this distribution by creat-

ing �ner partitions of this interval. In contrast, a

self-tuning XML path selectivity estimator does not

have an interval to start with and needs to learn

each and every path label in the data. Even if a

Markov model is imposed on the tree data to sim-

plify the distribution entailed by the tree data, [11]

has shown that learning a Markov model is hard.

In the o�-line XML path selectivity estimation

domain, Aboulnaga et al. [1] and McHugh et al.

[14] use estimation techniques based on the Markov

model. An order m� 1 Markov model assumes that

the selectivities of all the paths whose lengths are

less than or equal to m capture all the required

statistics. The experiments in [1] show that, in prac-

tice, �rst and second order Markov models are suf-

�cient to capture the path selectivity statistics with

little loss in information. Our method assumes the
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Markov model, but di�ers from previous work in

that our method (1) gathers statistics in an on-line

manner without scanning the repository, (2) handles

the three types of common query path expressions,

and (3) is workload-aware.

3 Problem Formulation

In this section, we introduce basic terms and formu-

late the XML path selectivity problem. In particular

we introduce the di�erent types of path expressions

and de�ne their corresponding selectivities.

An XML document is structurally a tree (we ig-

nore IDREFs) where each node is associated with a

tag or a value. In practice, values are almost always

associated with leaf nodes. An XML data tree is a

huge tree constructed either by merging the roots of

all the XML documents if the tag associated with

the root of each document is the same or by intro-

ducing a super root as the parent of the root node of

each XML document. An XML data tree represents

a repository of XML documents (see Figure 4).

A simple path expression p of length jpj is a

sequence of tags ht1; t2; : : : ; tjpji, ti 2 �, where

� is the set of all possible tag names. The tag

sequence in a path expression encodes a naviga-

tional path through the XML data tree where each

pair in the sequence (ti; ti+1) correspond to a (di-

rected) edge with the tags (ti; ti+1) in the XML data

tree. Using XPath notation, such a navigational se-

quence can also be written as ==t1=t2= : : : =tjpj (e.g.,
//book/title). We will use as shorthand, where

there is no confusion, the string t1t2 : : : tjpj to repre-

sent ==t1=t2= : : : =tjpj.

A multi-value path expression is a simple path

expression where values are associated with one or

more tags in the path expression.
2
A special case of

a multi-value path expression is a single-value path

expression where only the last tag in the path is

associated with a value.

Consider the XML data tree shown in Figure 4.

The path //B/C/D is a simple path expression; the

path //B/C=v4/D=v3 is a multi-value path expres-

sion, and the path //B/C/D=v3 is a single-value

path expression.

We denote the selectivity of a (simple, multi-value

or single-value) path expression p as �(p). The se-

lectivity of a simple path expression p is de�ned to

be the number of paths in the XML data tree that

match the tag sequence in p. The selectivity of a

single-value path expression is similar to that of sim-

ple path expressions except that the navigational

path ends in a value instead of a tag in the XML

data tree. The selectivity of a multi-value path ex-

pression p is de�ned to be the number of subtrees

that matches the tag and value sequence in p.

The path expressions that we consider in this pa-

per are allowed to contain one wildcard. In this pa-

per, we restrict each wildcard (`*') to match a single

tag. Moreover we do not consider path expressions

beginning or ending with a wildcard.
3
The selec-

tivity of a path expression p with a single wildcard is
the sum of the selectivities of all the (non-wildcard)

path expressions that are possible matches to p. Ex-
ample selectivities are given in Figure 4.

A query feedback is a tuple (p; �(p)) consisting of a
path expression and its corresponding true selectiv-

ity. Our de�nition of query feedback assumes min-

imal information about the query execution engine.

It is possible to obtain more feedback information

from the query execution engine. The amount of

information we can obtain depends upon the under-

lying data storage model and the query plan used

by the execution engine. For example, using the

Lore model and a top-down plan, the query execu-

tion engine can provide as feedback the selectivities

of all pre�xes of the given path. Since XML storage

and retrieval technology is still evolving, we assume

minimal feedback information in this paper. We now

de�ne the problem addressed in this paper more pre-

cisely.

Problem Statement: Estimate the selectivity of

a given path expression (simple, single-value,

multi-value), given that statistics can only be

obtained from query feedback and given only a

�xed amount of space (memory) to store these

statistics.

2A multi-value path expression is a special case of a twig
[6].

3We are investigating the extensions for more complicated
wildcards in ongoing work.
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4 Learning Path Selectivities

Solving the on-line XML selectivity estimation prob-

lem involves choosing a representation for the statis-

tics and designing algorithms to update/re�ne the

representation using information from query feed-

back. Our XPathLearner uses the Markov histogram

representation. In this section we describe in de-

tail the Markov histogram representation, the data

structures it requires, and the on-line re�nement al-

gorithms. We also describe the path tree representa-

tion, because it is used in query workload generation

and it can be viewed as an intermediate represen-

tation when transforming an XML data tree to a

Markov histogram representation.

4.1 Representation

Path trees. Path trees were �rst described in [1].

A path tree summarizes an XML data tree by ag-

gregating every sibling having the same tag into a

single node annotated by a count of the number of

occurrences in the original XML data tree (see Fig-

ure 5 for an example). With respect to the selectiv-

ity of simple path expressions and single-value path

expressions, path tree is a lossless summary of the

XML data tree, but with respect to subtree selectiv-

ity (e.g., multi-value path expressions), path tree is

lossy. For example, consider paths ABC and ABD

in Figure 5. It is not possible to determine whether

a subtree ABfC,Dg exists in the original XML data

tree by looking only at the path tree.

Using a path tree, we can estimate the selectiv-

ity of a simple or single-value path expression p by

summing the counts of all the nodes whose root-to-

node paths contain p as a suÆx. Observe that the

counts of di�erent nodes (whose root-to-node paths

contain p as a suÆx) contribute to the selectivity of

the path expression p. Given a query feedback tu-

ple, we want to use it to learn/re�ne the counts of all

relevant root-to-node paths. However, the learning

process for XML data is much more diÆcult than

that for numeric attributes addressed in [2, 4]. For

numeric attribute, when a query feedback (in terms

of a range query and its corresponding real selec-

tivity) is given, we know for certain that all the

buckets overlapping the query range contribute to

the estimation error (i.e., the di�erence between the

real selectivity and the estimated selectivity). The
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count(s) of these buckets can be re�ned in a straight-

forward way using heuristics [2, 4]. For XML data, it

is not clear to which root-to-node paths to attribute

the estimation error when we try to update or re�ne

the path tree using query feedback. For example,

consider Figure 5. Suppose our XPathLearner pre-

dicts that the selectivity of the path CD is 2, but

the query feedback is (CD, 6). How much of this

estimation error of 6 � 2 = 4 is due to the root-to-

node path ABCD and how much of it is due to the

root-to-node path ACD?

Markov Histograms. The Markov model has

been used for XML path selectivity estimation in [14,

1]. The histogram that we use also assumes the

Markov model and we call it the Markov histogram.

An order (m�1) Markov histogram is a table storing

a set of distinct paths in the XML data up to length

m along with their corresponding selectivities. For

simplicity of presentation we consider m = 2 in this

paper; however, the methods we described can be

easily generalized to higher order Markov models. A

�rst-order Markov histogram is conceptually a sum-

mary graph of the path tree where all nodes with

the same tag are merged into one node and counts

are associated with the incoming edges of the sum-

mary graph. The �rst order Markov histogram is

the edge list representation of this summary graph

(see Figure 6). A Markov histogram summarizes the

path tree using the assumption that the occurrence

of a particular tag in a path expression is dependent

only on the m � 1 tags that occur before it in that

path expression. This assumption has been shown

to hold for many real XML data sets for m = 2 or

m = 3 [1, 6, 10].

Using a �rst-order Markov histogram, the selec-

tivity of a simple path expression p = t1t2 : : : tn can

be estimated by

�̂(t1t2 : : : tn) =

 
n�1Y
i=1

P [tijti+1]

!
� P [tn]�N (1)

where N is the total number of nodes in the XML

data tree, P [tijti+1] is the probability of tag ti oc-
curring before tag ti+1 conditioned upon observ-

ing ti+1, and P [ti] is the probability of tag ti oc-
curring in the XML data tree. Since P [tijti+1] =
f(ti; ti+1)=f(ti+1) and P [ti] = f(ti)=N , where f(p)
is the count of path p (jpj � m) maintained by our



Markov histogram, we can rewrite

�̂(t1t2 : : : tn) =

 
n�2Y
i=1

f(ti; ti+1)

f(ti+1)

!
� f(tn�1; tn) (2)

Also note that in the o�-line case, the count of a

length-1 path f(ti) is the sum of the count of all the

length-2 paths having ti as a suÆx:

f(ti) =
X

�2ftag/value namesg

f(�; ti): (3)

This equation is not true in the on-line case, be-

cause not all length-2 paths have been learnt at a

given time and for those that have been learnt, the

corresponding f(�; ti) values are not necessarily the
exact values.

Our method assigns by default a selectivity of 1 to

a negative query path, i.e., the query path contains

a length-2 path that is not in the Markov histogram.

Computing the selectivity of a single-value path

expression p = ==t1=t2= : : : =tn�1=vn�1= is the same
as that for simple path expression except that

the f(tn�1; tn) term in Equation 2 should be re-

placed by the tag-value count f(tn�1; vn�1). The

selectivity of a multi-value path expression p =

==t1=v1=t2=v2= : : : =tn=vn= can be estimated by

�̂(t1=v1; t2=v2; : : : ; tn=vn)

= �̂(t1; t2; : : : ; tn=vn)�

 
n�1Y
i=1

f(ti; vi)P
v f(ti; v)

!
;

(4)

where f(ti; vi)=
P

v f(ti; v) can be viewed as the

probability of the value vi occurring after tag ti, con-
ditioned on observing ti.

4.2 Handling Data Values

Our XPathLearner uses the Markov histogram rep-

resentation. For �rst order Markov histogram, the

counts of all paths up to length 2 is stored. These

length-2 paths can be tag-tag pairs or tag-value

pairs. The counts of tag-value pairs need to be

stored di�erently because the number of distinct

data values is typically very large compared to the

number of distinct tags in an XML data tree. For

example, the DBLP data set contains 91,878 unique

values and only 29 unique tag names. This translates

to 841 possible tag-tag pairs and 2,664,462 possible

tag-value pairs. Since the number of distinct tags

is usually small, we store the counts of the tag-tag

pairs exactly if there is enough memory. Otherwise,

pruning or aggregation techniques in [1] can be used.

For the counts of tag-value pairs, we use the buck-

eting technique described next.

Storing the counts of the tag-value pairs eÆciently

is similar to the problem addressed in [12]; however,

we adopt a simpler approach, because we found em-

pirically that most of the probability mass is con-

centrated in a very small number of tag-value pairs.

This suggests an approach similar to [17] for storing

the counts of tag-value pairs.

1. For the top k tag-value pairs with the largest

counts, their counts are stored exactly, where

k is a tunable parameter. Each entry in

the `top k' data structure stores the tuple

htag ; value ; counti.

2. Tag-value pairs with a count smaller than the

minimum count among the top k tag-value pairs
are aggregated into buckets. A bucket is a

tuple hfeature ; sum;numpairsi, where the �eld

numpairs is the number of tag-value pairs it rep-

resents, the �eld sum is the sum of the counts

of those tag-value pairs assigned to that bucket,

and the �eld feature is the feature correspond-

ing to that bucket. A tag-value pair is assigned

to a bucket based on some feature of the tag-

value pair.

For example, if a �rst-order Markov histogram is

used and the �rst letter of a value is used as the

bucket assignment feature, the data structure for

storing the counts of tag-value pairs consists of at

most k tuples of the form htag ; value ; counti and at

most 36 � j�j tuples (where � is the set of tags)

of the form hfeature ; sum;numpairsi, assuming that

values are not case sensitive and are alphanumeric

strings. Ideally, the feature should be chosen so that

the counts in each bucket are as uniform as possi-

ble, that is, the variance of the counts represented

in a particular bucket should be minimized. Choos-

ing features dynamically and maintaining the data

structure for dynamic features are part of our future

work.

Retrieval. Accessing the count of a given tag-value

pair requires searching through the top k entries

�rst. If the required pair is not found, the feature

of the given tag-value pair is used to locate the cor-

responding bucket and sum=numpairs of the bucket

is returned.

Update. Given a tag-value pair and an updated

count, the top k entries are searched �rst and if a

matching tag-value pair is found, its count is up-

dated. Otherwise, we check if the updated count

of the given tag-value pair is larger than the mini-

mum count in the top k entries. If it is larger, the

minimum entry in the top k is displaced into the

bucket corresponding to the feature of the displaced

entry. If it is smaller, the count of the given tag-value

pair is added to the sum �eld of the corresponding

bucket, and the numpairs �eld of the same bucket

is incremented. Each bucket therefore encodes the

average selectivity of all the current instances of the

tag-value pairs belonging to that bucket.

Compress. When memory is scarce, the tag-

feature histogram can be further compressed by ag-

gregating buckets with similar selectivities.



tag count
A 1
B 6
C 7
D 7

(a) tag counts

tag tag count
A B 6
A C 3
B C 4
B D 1
C D 6

(b) tag-tag counts

tag value count
D v3 3

(c) top k tag-value
counts

tag feat. sum #pairs
B a 1 1
B b 1 1
D a 2 2
D b 2 2
C a 1 1
C b 1 1

(d) tag-feature histogram

Figure 7: An example Markov histogram using k = 1
and the �rst letter of the data value as the bucketing
feature. Further suppose that the data values fv1, v2,

v3, v4g all begin with the letter `a' and fv5, v6, v7, v8g
with the letter `b'.

4.3 An Example

Consider our earlier example in Figure 6. The

corresponding representation using our Markov his-

togram with k = 1 is shown in Figure 7. We

show how the selectivities of simple path expressions,

single-value path expressions, multi-value path ex-

pressions, and simple path expressions with wildcard

are computed.

The selectivity of the simple path expression

//B/C/D can be estimated by

�̂(BCD) =

f(BC)

f(C)
� f(CD) =

4

7

� 6 � 3;

which has zero estimation error. The selectivity of

the single-value path expression //B/C/D=v3 can

be estimated by

�̂(BCD = v3) =

f(BC)

f(C)
�
f(CD)

f(D)

� f(D = v3)

=

4

7

�
6

7

� 3 � 1

which has an absolute error of 1, since the real se-

lectivity is 2. The selectivity of the multi-value path

expression //B/C=v4/D=v3 can be estimated by

�̂(==B=C = v4=D = v3)

=

f(BC)

f(C)
�
f(CD)

f(D)

� f(D = v3)�
f(C = v4)P
v f(C = v)

=

4

7

�
6

7

� 3�
1

1 + 1

� 1

which has zero estimation error. Note that the value

v4 has feature \a". The selectivity of the simple

path expression //A/*/D (with wildcard) can be es-

timated by

�̂(A �D) =

X
�

�̂(A�D)

= �̂(ABD) + �̂(ACD)

=

6

6

+

18

7

� 4

Update(Mhistogram f, Feedback (p; �), Estimate �̂)

1 if jpj � 2 then

2 if not exists f(p)

then compress-add entry f(p) = �

3 else f(p) �

4 else

5 for each (ti; ti+1) 2 p

6 if not exists f(ti; ti+1)

then compress-add entry f(ti; ti+1) = 1

7 f(ti; ti+1) update

/* depends on update strategy */

8 endfor

9 for each ti 2 p; i 6= 1

10 if not exists f(ti)

then compress-add entry f(ti);

11 f(ti) maxff(ti);
P

�
f(�; ti)g

12 endfor

Figure 8: The high level pseudocode for updating the
Markov histogram given a query feedback. The symbol
` ' denotes updates to existing entry

which has zero estimation error, since �(ABD) +

�(ACD) = 1 + 3 = 4.

4.4 Update Algorithms

We describe the two update algorithms that our

XPathLearner uses to learn a Markov histogram

from query feedback: the heavy-tail rule and the

delta rule. Batch updates have also been studied

and are described in Appendix A.

Our two update algorithms follow the high-

level steps outlined in Figure 8 and di�er in the

update equations used in line 7. The function

compress-add entry adds any unknown length-2

path to the Markov histogram: it learns the set of

labels of a discrete distribution. A physical entry

is not necessarily added to the histogram whenever

compress-add entry is called. When memory is

scarce, compress-add entry can trigger pruning or

aggregation techniques (such as those in [1]) to com-

press the histogram. In contrast to learning the la-

bels, the update equation in the algorithm learns the

frequency counts of the labels in the discrete distri-

bution.

4.4.1 The Heavy-tail Rule

Given estimated selectivity �̂(p) and query feedback

(p; �(p)), where p = t1 : : : tn and �(p) is the real

selectivity, we �rst compute the observed error

� = �(p)� �̂(p): (5)

Recall that the selectivity of path p is computed as

�̂(t1; t2; : : : ; tn) =

 
n�2Y
i=1

f(ti; ti+1)

f(ti+1)

!
� f(tn�1; tn):

(6)

We need to re�ne all the f(ti; ti+1) terms in this

product based on the observed error �. The up-

dates to the f(ti+1) terms are dependent on the



f(ti; ti+1) terms through Equation 3 and will be de-

scribed later. We also may want to attribute more of

the estimation error to the terms associated with the

right end of the path p. There are two reasons for

this: First, the terms closer to the right end of the

path p are naturally more relevant to the selectivity
of path p. Second, attributing more of the estima-

tion error to them also minimizes the e�ect on other

paths sharing the same pre�x as p. We therefore

assign weights to the f(ti; ti+1) terms that increase
with i.

Let wi be the (unnormalized) weight associated

with ti in path p. We update the f(ti; ti+1) terms
as follows:

fk+1(ti; ti+1) fk(ti; ti+1)+sign(�) (j�j)
wi=
P

j<n
wj ;

(7)

where

P
j<n wj is the normalization factor,  is

the learning rate or discount factor, ti is the ith
tag in the query path p, and fk(�) and fk+1(�) are
the counts before and after the update, respectively.

The weights we used are

wi = 2
i; i = 1; 2; : : : (8)

If the last element tn in the query path is a data

value, the weight for f(tn�1; tn) is de�ned to be the

same as that for f(tn�2; tn�1). The intuition for

this is that an instance of a tag cannot take more

than one data value in an XML data tree. Note

that for query path p = t1 : : : tn, the updates to the

relevant Markov histogram entries have the following

property:
n�1Y
i=1

(j�j)
wi=
P

j wj
= j�j: (9)

In general, the discount factor  is set to be less

than one and therefore it makes the error correction

smaller. This prevents XPathLearner from over re-

acting to an estimation error and smoothens the er-

ror reduction process. The f(ti) terms are updated
as

fk+1(ti) maxf
X
j

fk+1(tj ; ti); fk(ti)g; (10)

since the sum of the counts for all length-2 paths

ending in ti must be a lower bound on the true f(ti)
(by Equation 3). The term fk(ti) could be greater

than

P
j fk+1(tj ; ti), if XPathLearner has encoun-

tered a query feedback with a length-1 query path

ti previously.
As an example, suppose that the Markov his-

togram maintained by XPathLearner is in the state

as shown in Figure 7. Further suppose that the feed-

back for path ACD is (ACD; 6) and its estimated

selectivity is �̂ = 3 � 6 � 7 � 3. The observed er-

ror is � = 6 � 3 = 3 and using  = 1, the following

updates are made:

fk+1(AC)  round(3 + 3
1=3

) = 4;

fk+1(CD)  round(6 + 3
2=3

) = 8;

fk+1(C)  maxf4 + 4; 7g = 8;

fk+1(D)  maxf1 + 8; 7g = 9;

The estimated selectivity of the path ACD after the

update is 4 � 8 � 8 = 4. The estimation error has

been reduced.

4.4.2 The Delta Rule

A more principled way of updating the Markov his-

togram using query feedback is to attribute the es-

timation error to the relevant edge counts using the

delta rule. The delta rule is an error reduction learn-

ing technique �rst proposed by Rumelhart et al. [16].

The learning scenario is the same as that in

the heavy-tail method. The histogram learner is

given estimated selectivity �̂(p) and query feedback

(p; �(p)), where p = t1 : : : tn and �(p) is the real se-
lectivity. We compute the observed error as before,

� = �(p)� �̂(p): (11)

The delta rule minimizes an error function. We

choose our error function to be the squared error,

E = (�(p) � �̂(p))
2
: (12)

We also adopt the following shorthand to make the

equations more readable:

w
(k)
�� = fk(�; �); (13)

W
(k)
� = fk(�) =

X
�2�

w
(k)
�� ; (14)

� = �(p); (15)

�̂ = �̂(p): (16)

The superscript
(k)

will be dropped if there is no

confusion over the time of the variable.

The delta rule states that for an error function

E(w) the update to term w should be proportional

to the negative gradient of E(w) with respect to w,

w(k+1)  w(k) � 
@E

@w
; (17)

where  is the proportionality constant or learning

rate. By Equation 2, our update equation for the

term f(tn�1; tn) is

w
(k+1)
��  w

(k)
�� + 2�

�̂

w
(k)
��

; (18)

where � = tn�1 and � = tn. Similarly, from Equa-

tion 2 and 3 and the quotient rule for di�erentia-

tion, the update equation for each f(ti; ti+1) term
(for i < n� 1) is

w
(k+1)

ab  w
(k)

ab +

2��̂
�
W

(k)
b � w

(k)
ab

�
w
(k)
ab W

(k)
b

(19)

where � = ti and � = ti+1. The learning rate pa-

rameter is usually chosen by experimentation. A

learning rate that is too small may result in slow

convergence to the minimum error and a learning



rate that is too big may result in oscillations be-

tween non-optimal error values.

As an example, suppose that the Markov his-

togram maintained by XPathLearner is in the state

as shown in Figure 7. Assume again that the feed-

back for path ACD is (ACD; 6) and its estimated

selectivity is �̂ = 3� 6� 7 � 3. The observed error

is � = 6 � 3 = 3 and using  = 0:5, the following

updates are made:

fk+1(AC)  round(3 + 2� 0:5� 3� 3�
7� 3

3� 7

) = 5;

fk+1(CD) round(6 + 2� 0:5� 3�
3

6

) = 8;

fk+1(C) maxf5 + 4; 7g = 9;

fk+1(D) maxf1 + 8; 7g = 9;

The estimated selectivity for path ACD after the

updates is 5 � 8� 9 � 4. The estimation error has

been reduced.

4.5 Update Overhead

Let the time needed to access an entry in the Markov

histogram be O(m), where m is the size of the data

structure used to implement the Markov histogram.

Let the query path in question be p = t1t2 : : : tn.
The update equations for the heavy-tail rule method

(Equation 7) and the delta rule method (Equation 18

and 19) both take O(m) time. There are O(n) iter-
ations of the two loops in lines 5{8 and lines 9{12 of

the update algorithm (Figure 8). Each iteration of

the loop in lines 9{12 requires O(m) time, since the

summation in line 11 is over at most all the length-

2 paths in the Markov histogram that has size m.

Therefore each update takes

O(nm) (20)

time, where n is the query path length and m is the

size of the Markov histogram. Since n is bounded by

the height of the XML data tree and m by the small

amount memory allocated to store the Markov his-

togram, m and n are practically constants. There-

fore the update overhead is a constant.

5 Experiments

We implemented our XPathLearner in C using the

XML Parser Toolkit [7]. We describe in this section

the experiments that we have done to validate our

method. We describe briey the data sets used, the

query workloads, the performance measures, and the

goals of the di�erent sets of experiments.

Performance Measures. Two error metrics were

used: the average relative error and the average ab-

solute error. The average relative error (a:r:e:) and
the average absolute error (a:a:e:) are de�ned as

a:r :e: =
1

n

nX
i

j�i � �̂ij

�i
; a:a:e: =

1

n

nX
i

j�i � �̂ij;

(21)

where n is the number of the query paths in the

workload, �i is the selectivity of the ith query path

in the workload and �̂i is the selectivity estimate for
the ith query path.

Data Set. We performed our experiments on sev-

eral real data sets: DBLP, Swiss protein
4
, and

Shakespeare
5
. For brevity, we present only the re-

sults from the DBLP data set [13] in this paper.

The XML data tree for the DBLP data set consists

of 261,256 nodes. The corresponding path tree has

a depth of 5 levels with 57 tag nodes and 109,741

value nodes. There are 29 distinct tags and 91,878

distinct values.

Query Workload. In the experiments we present

in this section we used workloads consisting of simple

and single-value query path expressions with posi-

tive selectivity. We did generate negative workloads

(consisting of query paths that do not appear in the

data, i.e., query paths with zero selectivity) by gen-

erating random sequences of legal tags ending with

a random legal value; however, for all the negative

workloads that we generate, our XPathLearner con-

sistently returns a selectivity of 1 for each negative

path
6
. (The default return value for paths that are

not captured in our Markov histogram is 1.) Hence,

the average absolute error is 1. This result contrasts

sharply with the summarized Markov tables of [1],

where the average absolute error for negative work-

loads can be as high as 250.

Positive query workloads are generated from the

path tree of the given XML data set. All the root-

to-leaf paths in the path tree are �rst enumerated.

A query path is generated by randomly choosing

a root-to-leaf path and then randomly choosing a

starting level and a path length that are within lim-

its of the length of the chosen root-to-leaf path. The

random query path of the chosen length is then out-

put starting from the chosen level in the chosen root-

to-leaf path.

These root-to-leaf paths are not chosen uniformly,

but from a distribution weighted according to their

selectivities,

P [choosing root-to-leaf path p] =
�(p)P
r2R �(r)

;

(22)

where R is the set of all root-to-leaf path of the given

path tree. The reason for choosing the root-to-leaf

path in this way is to prevent the query workload

from having too many query paths with very small

selectivities.

The o�-line method. The o�-line method that

XPathLearner is compared with di�ers from the on-

line method in that the Markov histogram is con-

structed by scanning the repository. The o�-line

4http://www.expasy.ch/sprot
5http://metalab.unc.edu/bosak/xml/eg/shaks200.zip
6A positive workload of 1000 query paths was used as the

training workload for that experiment.



method di�ers from the Markov table method [1] in

that no summarization is done of the tag-tag counts.

Also, the tag-value counts are stored as well. The

tag-value counts are summarized using the method

described in Section 4.2.

Initial Condition. We assume that we do not

know anything about the workload distribution at

the start of each experiment; that is, we start with

an empty Markov histogram. More sophisticated

ways of obtaining an initial Markov histogram are

possible, but an empty initial histogram represents

a reasonable worst case.

Counting Memory. There are four data struc-

tures in a �rst-order Markov histogram (see the ex-

ample in Figure 7). These data structures store

the counts of distinct tags (length-1 tag paths), the

counts of distinct tag-tag pairs, the top k counts of

distinct tag-value pairs and the aggregated counts

of distinct tag-feature pairs. Each tag, value, count,

and feature is stored as a four byte integer. The

count of a length-1 tag path requires two integers;

the count of a tag-tag or tag-value pair requires three

integers, and the count of a tag-feature pair requires

four integers. The memory requirements of each

method is accounted for by counting the number of

entries in each of these data structures and multi-

plying by the corresponding memory requirement of

each type of entry.

Parameters. We set the learning rate  to 1 for

the heavy-tail rule update strategy and 0.1 for the

delta rule update strategy. These values were found

to be reasonably good by experimentation.

5.1 Accuracy vs Space

In this experiment, we measure the estimation error

under varying memory constraints. Two di�erent

query workloads are used: one as the training set

and the other as the testing set. Each workload con-

sists of 4096 query paths, of which about 3100 paths

are distinct. The average true selectivities of the

training and testing workloads are 2034 and 2296
7
,

respectively.

The goal of this experiment is to see how our on-

line Markov histogram performs on a workload that

is di�erent from its training workload. We de�ne a

workload di�erence measure with respect to a �rst-

order Markov histogram in order to quantify the dif-

ference between two workloads.

Workload Di�. Given two workloads A and B, we

construct for each workload the set of length-2 paths

of all the query paths in the workload. Let the set

of length-2 paths of A and B be SA and SB , respec-
tively. The workload di�erence measure of A and B

7Since the total number of nodes in the XML data tree
is N = 261; 256, these selectivities correspond to 0.77 % and
0.87 %.
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Figure 9: Accuracy vs Memory. Accuracy of the
on-line Markov histogram method on a testing workload
that is 88.4% di�erent from the training workload. Both
workloads contain 4096 single-value query paths, about
3100 of which are distinct.

is

workload di�(A,B) = 1�
jSA \ SB j

jSA [ SB j
: (23)

Intuitively, the workload di� measures how di�er-

ent the �rst-order Markov models of the two given

workloads are.

We experimented on a large number of training-

testing workload pairs and we present a typical re-

sult set in Figure 9. The workload di� of the train-

ing and testing workload we present is 88.4%. We

measure the estimation error as k varies from 32 to

4096. The k values (for the top k values) are then

converted to memory usage in bytes and we plot the

the estimation errors against memory usage. Our

experiments show that in terms of absolute errors

our on-line XPathLearner is more accurate than the

o�-line version. Amongst the two on-line update

strategies, the delta rule is usually more accurate

than the heavy-tail strategy. In terms of relative

errors, the di�erences amongst the on-line methods

and o�-line method are within 10%.

The relationship between k and the memory us-

age in bytes for the o�-line and on-line XPath-

Learner is graphed in Figure 12. We note that,

for �xed k, the memory requirements of the o�-line

method is more than that of the on-line method; for

k = 512, the o�-line method requires 2947 bytes and

the on-line method only 1934 bytes. The o�-line

method has to store statistics for the entire XML

repository while the on-line method only needs to



Method a.a.e. a.r.e.(%) Memory

On-line delta 0.086 0.197 764 Bytes

O�-line 0.110 0.331 796 Bytes

On-line heavy-tail 1.198 0.243 764 Bytes

Table 1: Accuracy of various methods for sim-
ple path expressions. Estimation error of the o�-line
method, on-line heavy-tail method and on-line delta rule
method for workload consisting only of simple path ex-
pressions (tag-only path expressions). The online delta
rule outperforms the others.

store the statistics of the workload.

We also show our results for two workloads (train-

ing and testing) consisting of simple path expres-

sions only (no value nodes involved). Both work-

loads consist of 1000 simple path expressions, and

although the two workloads are di�erent, their work-

load di� is zero
8
. This property arises because the

set of length-2 paths entailed by both workloads are

the same. The estimation error rates are tabulated

in Table 1.

5.2 Convergence

We want to investigate how well the on-line method

converges to a given workload distribution. One

query workload of 1000 query paths (840 distinct) is

used in this experiment, and we measure the average

absolute and relative errors over the entire workload

as the histogram learner processes each query path

in the same workload. Since the Markov histogram is

initially empty, the �rst few error measurements will

be large, and as the Markov histogram converges to

the workload distribution, the measured error will

be small. The error measurements over each iter-

ation or update of a Markov histogram where all

the tag-value counts are stored exactly (k = 512)

are plotted in Figure 10. The results in Figure 10

show that the accuracy of our XPathLearner reaches

very acceptable levels within the �rst 100 iterations.

Figure 11 shows how the memory constraint gov-

erned by k a�ects the convergence properties of the

heavy-tail and the delta rule update strategies. Our

results show that XPathLearner can still be very ac-

curate even when little memory is allocated for the

tag-value counts. The spikes in Figure 10 and Fig-

ure 11 are due to bad paths (see Appendix B).

5.3 Adapting to Data Distribution Change

This experiment investigates how the on-line Markov

histogram will adapt to a workload that has its �rst

1000 query paths generated from the original DBLP

path tree and the next 1000 query paths generated

from a modi�ed DBLP path tree with random per-

turbation to the counts at each node. The perturba-

tion is intended to simulate the DBLP data changing

over time. We introduce the perturbation by gener-

ating a random number U 2 [1 � Æ; 1 + Æ] for each
node r in the path tree. The count associated with

8Since the number of possible tags is small, a workload of
1000 paths captures most of the length-2 paths.
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Figure 10: Convergence (�xed k). The estimation
error averaged over an entire workload at each iteration
of the learning process. This experiment shows how the
estimation error is reduced as our XPathLearner learns
the path selectivities from query feedback
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Figure 11: Convergence vs k. Estimation error av-
eraged over an entire workload at each iteration of the
learning process for two di�erent values of k. The plot
at the top is for the heavy-tail rule and the bottom one
is for the delta rule. When k = 512, all the tag-value
counts are stored exactly. When k = 32, only 32 tag-
value counts are stored exactly.
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Figure 13: Adaptability. Average absolute error av-
eraged over Qold for iteration 1-1000 and averaged over
Qnew for iteration 1001-2000.

node r is then scaled by the random number U ,

count(r)  maxf1; U � count(r)g (24)

We realize that these perturbations are simplistic

and a �ner model of the changes in XML data is

part of our future work.

The modi�ed path tree that we generated us-

ing Æ = 0:7 has a Kullback-Liebler divergence of

0.129299 bits. The Kullback-Liebler (KL) diver-

gence of a modi�ed path tree f1 with respect to the

original path tree f0 is de�ned as

KL(f0jf1) =
X

y2froot-to-node pathsg

f0(y) log
f0(y)

f1(y)
: (25)

The KL divergence is a common di�erence measure

of distributions [11].

This experiment is performed as follows. Let the

workload of 1000 query paths generated from the

original path tree be Qold and the workload of 1000

query paths generated from the modi�ed path tree

be Qnew . Let Qmix be the concatenation of Qold and

Qnew . We let our XPathLearner (k = 32) learn the

Markov histogram from this mixed workload. For

the �rst 1000 iterations we measure the average ab-

solute error over Qold after each update and for the

next 1000 iterations we measure the average abso-

lute error over Qnew after each update. The average

absolute error at the end of each iteration is plotted

in Figure 13. The spike at iteration 1001 shows the

transition from workload Qold to workload Qnew .

Since the distribution underlying Qold is di�erent

from that underlying Qnew , the average absolute es-

timation error with respect toQnew at iteration 1001

is very large. About 100 iterations after the transi-

tion, the on-line method has adapted to Qnew .

Our experiments show that XPathLearner is very

accurate and it converges to very low error rates

even under tight memory constraints. It adapts to

changing data distributions and can even be more

accurate than the very costly o�-line method. We

have also studied how Markov histograms perform

under skewed workloads and we discuss that in Ap-

pendix B.

6 Conclusions

In this paper, we presented XPathLearner, a new

method for estimating the selectivities of path ex-

pressions (simple, single-value, multi-value) without

examining the XML data. Our method relies on the

feedback from the query execution engine to con-

struct and re�ne a Markov histogram of the un-

derlying path selectivity statistics. We also pro-

posed a method to deal with the large number of

tag-value pairs that allows us to estimate the se-

lectivity of paths containing data values using our

Markov histogram. We presented two update or

re�nement strategies|the heavy-tail rule and the

delta rule|and evaluated their performance experi-

mentally. Our experiments show that our method is

accurate under modest memory requirements. Our

method can be generalized to arbitrary �xed-order

Markov models. As future work, we plan to extend

the current �xed-order Markov model to a more gen-

eral variable-order Markov model.
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A Batch Updates

If our XPathLearner is given a bu�er that can hold q
query feedback tuples, it can update the Markov his-
togram in a batch. We found through experimentation
(2 � q � 10) that batch update is potentially more accu-
rate than single feedback update in terms of attributing
the estimation error to the f(ti; ti+1) terms. The proce-
dure for batch update is outlined below,

� Sort the q feedback tuples in ascending path length.

� Associate a ag with each entry in the Markov his-
togram. The ag for an entry in the histogram is
set when that entry is exact, i.e., it has been learned
by observing a query feedback whose query path ex-
actly has length 1 or 2 two as opposed to the entry
being learned from observing longer paths using the
delta rule or heavy-tail rule update methods.

� Never update an entry with the ag set, unless the
exact path is observed again.

� On observing longer paths containing paths that
have been learned exactly, discount these exact val-
ues from the true selectivity.

We illustrate the batch update strategy with an ex-
ample. Consider updating the Markov histogram after
(bu�ering) every two query feedback tuples, i.e., q = 2.
Suppose the two feedback tuples in the batch bu�er are
(t1t2t3t4; �1) and (t2t3; �2) in order of arrival.

Sorting the batch means that (t2t3; �2) is processed
�rst, and since the query path has length 2, the ag for
f(t2; t3) is set. On processing (t1t2t3t4; �1), we know
that the term f(t2; t3) in

�̂1 = f(t1; t2)�
f(t2; t3)

f(t2)
�

f(t3; t4)

f(t3)
: (26)

has been learned exactly and we can discount it by di-
viding it from the estimated and the true selectivity,

�̂1
f(t2; t3)

=
f(t1; t2)

f(t2)
�

f(t3; t4)

f(t3)
: (27)

We can now do error reduction learning on the remaining
two terms f(t1; t2) and f(t3; t4) by computing the error
as

� =
�1 � �̂1
f(t2; t3)

: (28)

This division of the true selectivity by the terms that
have been learned exactly assumes that the true selec-
tivity of the query path does not violate the Markov as-
sumption. Either the heavy-tail rule or the delta rule can
be used to assign this error to the remaining two terms.
In this particular example, the batch update strategy
has reduced the number of uncertain terms to learn from
three to two for the query feedback (t1t2t3t4; �1).
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B Skewed Data and Workloads

Skewed data and workloads present both challenges and
opportunities to selectivity estimation systems. On one
hand, certain uniformity assumptions made by selectiv-
ity estimation methods break down; on the other hand,
skewed data and workloads allow methods to optimize
for the frequent cases. We discuss a special kind of
skewed data and workloads that a�ects methods based
on the Markov model.

The kind of skew that we consider involves groups
of paths in the XML path tree that violate the Markov
property. Recall that the Markov property states that
the frequency of the next tag depends on the frequency
of the current tag only. We call the paths in these
groups \bad" paths and we illustrate the intuition to
these \bad" paths with an example of a group consist-
ing of two \bad" paths. Suppose there are two paths
//A/C/D and //B/C/D in the path tree and further sup-
pose that the tags A, B, C, D do not occur anywhere
else in the path tree. The counts associated with these
nodes are shown in Figure 14(a). The two paths //A/C/D
and //B/C/D violate the Markov property because the
count of D conditioned on being at C (via B) is 1=200 and
the the count of D conditioned on being at C (via A) is 50.
The violation is due to the large di�erence between the
two conditional counts. We call a pair of paths having
this property a \bad" path pair. We describe how a \bad"
path pair can a�ect the on-line and o�-line Markov his-
togram next. After scanning the the XML data, the o�-
line method is going to store f(AC) = 2, f(BC) = 200,
f(CD) = 101. It will estimate the selectivity of path
//B/C/D as �̂(BCD) = 200� 101� 202 � 100 which has
an absolute error of 99! The on-line method is workload
driven and if the workload does not contain any path
with //A/C or //C/D, the on-line method with delta rule
will learn that f(BC) = 200 and f(CD) = 1. XPath-
Learner with delta rule will then give a more accurate
estimate of //B/C/D.

This example goes against our intuition. We would
expect that the on-line method should be less accurate
than the o�-line method, since the on-line method has
only partial information of the true selectivities. How-
ever, having partial information can be better than hav-
ing complete information for Markov histograms if the
partial information can be modeled by a Markov process
with less information loss than the complete informa-
tion can be modeled by a Markov process. We say that

a distribution A is more Markovian than a distribution
B if A can be modeled as a Markov process with less
loss of information than B. If we think of the set of all
path-selectivity pairs of the XML data as the complete
information and a query workload as the partial infor-
mation, then an on-line Markov histogram can be more
accurate than an o�-line one if the path selectivities in
the query workload are more Markovian than that for
the entire XML data set. If the workload is as Marko-
vian as the XML data, then the on-line method will not
be any better than the o�-line method.

Skewed workloads that are more Markovian than the
XML data exist as long as the XML data cannot be
perfectly modeled by a Markov process. In practice, al-
though most real XML data can be modeled by a Markov
process with little loss of information, it is extremely un-
likely that it can be perfectly modeled by a Markov pro-
cess with no loss of information. Hence such workloads
almost always exist and we outline a heuristic method
to generate such workloads given an XML data tree for
�rst-order Markov histograms.

Our heuristic method involves identifying pairs of
paths in the given XML path tree that violate the
Markov property. Figure 14(b) shows a \bad" path pair
taken from the DBLP data set. If one path of each
\bad" path pair is deleted from the path tree, the re-
sultant path tree will have less violations of the Markov
property. Query workloads generated from this trun-
cated path tree will be more Markovian than workloads
containing \bad" path pairs. We call the workloads gen-
erated in this way Markov-skewed workloads.

In general the o�-line method will perform poorly on
a Markov-skewed workload, because the o�-line method
has to incorporate all \bad" path pairs into the Markov
histogram when it is scanning the XML data. Therefore
the accuracy of the o�-line method requires the strong
assumption that the XML data has to be Markovian. In
contrast the on-line method is workload driven and only
requires that the workload be Markovian.

Do these assumptions make any di�erence?
If the XML data contains too many \bad" paths, the

o�-line method should not be used. But if the work-
load is relatively Markovian, the on-line method can still
be very accurate even though the underlying XML data
contains many \bad" paths. Moreover, the di�erence
in accuracy between the o�-line and on-line method can
be dramatic. For the DBLP data set, we generated one
Markov-skewed workload consisting of 100 single-value
path expressions, of which 91 are unique. We measured
the absolute error of the on-line delta rule method and
the o�-line method averaged over the same workload.
We tuned k big enough to store all tag-value counts ex-
actly, so that we do not penalize the o�-line method by
restricting the memory allocation. The on-line delta rule
method has an average absolute error of only 5.08 com-
pared with an average absolute error of 48.91 for the
o�-line method. This shows that the di�erence in ac-
curacy of the on-line delta rule method and the o�-line
method can be signi�cant even when the o�-line method
is given unlimited memory. If the o�-line method must
be used, \bad" paths pair should be identi�ed and one
in each pair pruned o�.


