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Abstract

Query cost estimation is an important and well-studied problem in relational database systems.

In this paper we study the cost estimation problem in the context of spatial database systems.

We introduce a new method that provides accurate cost estimation for spatial selections, or

window queries, by building wavelet-based histograms for spatial data. Our method is based

upon two novel techniques: (a) A representation transformation in which geometric objects are

represented by points in higher-dimensional space and window queries correspond to semi-in�nite

range-sum queries, and (b) Multiresolution wavelet decomposition that provides a time-e�cient

and space-e�cient approximation of the underlying distribution of the multidimensional point

data, especially for semi-in�nite range-sum queries. We also show for the �rst time how a wavelet

decomposition of a dense multidimensional array derived from a sparse array through a partial-

sum computation can still be computed e�ciently using sparse techniques by doing the processing

implicitly on the original data. Our method eliminates the drawbacks of the partition-based

histogram methods in previous work, and even with very small space allocation it gives excellent

cost estimation over a broad range of spatial data distributions and queries.
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1 Introduction

Spatial data appear in numerous applications, such as GIS, multimedia, and even traditional databases.

DBMSs (DataBase Management Systems) must o�er spatial query processing capabilities to meet the needs

of such applications. Query optimization is an integral part of DBMSs. One important task in query

optimization is query cost estimation. In this paper, we study the cost estimation problem for an important

class of spatial queries, spatial selections (or window queries).

In a window query, a region called query window is speci�ed, and the query retrieves all the objects

in the data set that partially or completely overlap the region. Spatial objects can be very complex, and

their accurate representation may require a large amount of memory. Since manipulating such large objects

during query optimization time can be very expensive, it is customary to approximate spatial objects and

manipulate the approximations instead. The most common techniques is to bound each spatial object by

the smallest axis-parallel rectangle that completely contains it, called minimum bounding rectangle (MBR).

Database systems process window queries and other spatial operations using a two-step �lter and re�ne

strategy [Ore86]. The �ltering step identi�es the set of candidate objects whose MBRs partially or completely

overlap the MBR of the query window. The re�nement step tests the exact geometry of the the candidate

objects identi�ed by the �ltering step to determine the set of objects that actually overlap the query window.

Thus, the cost of window query depends upon the selectivity of the �ltering step (the MBR selectivity) and

the complexity of the candidate objects [AN00].

The start-of-the-art techniques on spatial cost estimations [AN00, APR99] deal with the spatial objects

in their original space directly and form partition-based histograms for spatial data using di�erent partition

strategies. The goal of any partition strategy is to form histogram buckets in a way that each bucket

contains objects that are similar in each of the feature domains (e.g., location, shape). However, because of

the complicated nature of spatial objects, such a goal is often not achievable in practice.

In this paper, we take a di�erent approach. We �rst use a transformation of representation to transform

the spatial objects into points in higher-dimensional space. All the features of the objects in the original

space can be re
ected as the frequency distribution of the points in the transformed space. Window queries

correspond to semi-in�nite range-sum queries in the transformed space. We then use a novel multiresolution

compression technique, namely, a type of wavelet decomposition done on the partial sums (pre�x/su�x

sums) of the transformed data, to form a histogram for the point data. The partial sums correspond exactly

to the window queries, and thus the approximation should be especially good. Experiments con�rm that

wavelet decomposition on the partial sums of the transformed data yields noticeably better results than does

wavelet decomposition directly on the transformed data. One problem is that the partial sum array is very

dense and infeasible to be processed by conventional means.

Our main contributions are as follows:

1. Our approximation method is robust over a broad range of spatial data distributions and queries. Even

with very small space allocation it gives excellent cost estimation.
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2. Our method provides a uniform framework of doing spatial cost estimations in spaces of di�erent

dimensionalities. While we concentrate on two-dimensional space in this paper, our method can be

applied to one-dimensional and three dimensional space as well.

3. Our method can be used to answer spatial queries approximately and support progressive re�nement

of the approximate answers e�ciently. While partition-based histogram methods can also be used for

approximate query processing, they can only be applied in a static way and thus do not have the

desirable feature of supporting progressive re�nement.

4. Although the transformed data set is typically sparse when represented in a discrete multidimensional

array, in that most values in the array are zeroes, the array consisting of partial sums of the transformed

data, which is most e�ective for our wavelet decomposition in terms of approximation, is very dense and

has few nonzero values. Thus, the partial sum wavelet decomposition cannot be processed directly in a

space-e�cient manner. This limitation has been a major stumbling block in the applicability of partial

sums for query approximation in previous work on wavelets [VW99]. It is particularly important for

us to resolve this problem since partial sums are especially well suited to window queries. We solve

this open problem by computing the wavelet decomposition of the dense partial sum array using an

indirect approach in which sparse techniques can be applied directly to the sparse transformed array

to compute the partial sums and the wavelet decomposition simultaneously.

The rest of the paper is organized as follows: In the next section we summarize related work. We formally

de�ne the problem in Section 3. In Sections 4 and 5, we describe our method. We present our experimental

results in Section 6 and draw conclusions in Section 7.

2 Related Work

Selectivity estimation is a well-studied problem for traditional data types such as integers. Histograms are

the most widely used form for doing selectivity estimation in relational database systems. Many di�erent

histograms have been proposed in the literature [PSC84, PIHS96, MD88, PI97] and some have been deployed

in commercial RDBMSs. However, almost all previous histograms have one thing in common, that is, they

use buckets to partition the data, although in di�erent ways.

In [MVW98] Matias et al. introduce a new type of histograms, called wavelet-based histograms, based

upon a multidimensional wavelet decomposition. A wavelet decomposition is performed on the underlying

data distribution, and the most signi�cant wavelet coe�cients are chosen to compose the histogram. In other

words, the data points are \compressed" into a set of numbers (or wavelet coe�cients) via a sophisticated

multiresolution transformation. Those coe�cients constitute the �nal histogram. This approach o�ers more

accurate selectivity estimation than traditional partition-based histogram methods and can be extended

very naturally to e�ciently compress the joint distribution of multiple attributes. Experiments con�rm

that wavelet-based histograms o�er more accurate selectivity estimation for typical queries than traditional
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bucket-partition based histogram methods.

Cost estimation in spatial databases is a relatively new topic, and some techniques for window queries have

been proposed in the literature [FK94, APR99, KF93, PSTW93, BF95, AN00, TS96]. With the exception

of [AN00], all the previous estimation techniques assume that the query windows and data objects are

rectangles. They estimate the selectivity and the cost of the �ltering step, and they ignore the re�nement

step.

Aboulnaga and Naughton [AN00] introduce an interesting new type of histogram for general polygon data

and query windows. The new histogram, called the SQ-histogram, partitions the data objects into possible

overlapping rectangular buckets. The partitioning is based upon the MBRs of the objects, with each object

being assigned to one histogram bucket. Each bucket stores the number of objects it represents, the objects'

average width and height, and their average number of vertices, as well as the boundaries of the rectangular

region containing these objects. The objects within a bucket are assumed to be uniformly distributed. The

information about the average number of vertices in each bucket is important for estimating the cost of the

re�nement step, and thus this work is quite di�erent from previous works that estimate only the selectivity

of the �ltering step.

While the SQ-histogram is a novel technique for capturing spatial data distributions, it still falls into

the category of partition-based histograms, and it cannot overcome the limitations that partition-based

histograms have, especially when dealing with spatial objects. Since assuming uniformity within each bucket

is the major reason that introduces estimation errors for partition-based histograms, the goal of histogram

construction is to form buckets in a way that each bucket represents a \homogeneous" set of objects. Because

of the strict storage size constraints for histograms used in query optimization, the number of buckets is

usually very small. Using a small number of buckets to approximate the underlying distribution so that

each bucket contains data points with \similar" frequencies is a hard job even for traditional partition-based

histograms used for simple point data. For spatial data, we require uniformity within each bucket in several

domains: location, width of the MBRs, height of the MBRs, complexity of the objects. It is extremely

di�cult to �nd a partition mechanism to ensure that the uniformity holds for all these domains unless we

use a large number of buckets! As a result, partition-based histograms often do not provide accurate cost

estimation with low storage overhead.

3 Problem Formulation

In this section, we formally de�ne the cost estimation problem addressed in this paper. Consider a rela-

tion R containing an attribute whose domain is a set of N general polygons. The set of polygons can be

approximately represented as

A = f
�
(xil ; y

i
b); (x

i
r ; y

i
t); v

i
�
j 1 � i � Ng;

4



where (xil ; y
i
b) and (xir; y

i
t) specify the lower-left and upper-right corner of the MBR of the ith polygon,

respectively, and vi is the number of vertices of the ith polygon. A window query Q is a polygon whose

MBR can be represented as

q =
�
(Qxl; Qyb); (Qxr; Qyt)

�
:

We de�ne the set of objects whose MBRs partially or completely overlap the query MBR q as the

candidate set :

C = fci j ci 2 A and ci overlaps qg:

The MBR selectivity of query Q is de�ned as

sMBR =
1

N
jCj:

The complexity of the candidate set is de�ned as

ccand =
1

jCj

X
ci2C

vi:

That is, the complexity of the candidate set is the average number of vertices of the candidate objects.

Aboulnaga and Naughton [AN00] showed that approximating the cost of a window query requires esti-

mating the MBR selectivity sMBR of the query and the complexity ccand of the candidate set. However,

computing these two quantities exactly requires us to either scan the data set or use an existing index to

�nd each member of the candidate set. Both of these two options are too expensive to be useful in query

optimization since an essential requirement for a query optimizer is to do cost estimation for any query in

a time and space e�cient manner. In a DBMS, cost estimation is usually done through two phases: an

o�ine phase and an online phase. During the o�ine phase, the input data are approximated and some

statistical/summary information is collected and stored in the database catalog. The space allocated in the

catalog for one attribute of a relation is usually very small (often in the order of several hundred bytes in

traditional RDBMSs). During online phase, the cost of a given query is estimated based upon the relevant

catalog information.

The goal of our work is to construct accurate histograms for spatial data and use it to do cost estimation

(i.e., to estimate sMBR and ccand) for any window query e�ciently.

4 Constructing Wavelet-Based Histograms for Spatial Data

At a high level, our cost estimation model works in four steps during the o�ine phase:

1. Transformation: We transform the input spatial objects into points in higher-dimensional space.

2. Quantization and Preprocessing: We form a uniform grid for the point data through quantization and

compute partial sums of the grid data.

3. Wavelet Decomposition: We compute the wavelet decomposition of the grid data, obtaining a set of

wavelet coe�cients.
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4. Thresholding: We keep only the m most signi�cant wavelet coe�cients, for some m that corresponds

to the desired storage usage. The choice of which m coe�cients we keep depends upon the particular

thresholding method we use. The m coe�cients compose our wavelet-based histogram.

In Sections 4.1{4.4, we elaborate on the details of these four steps.

For large GIS data, the number of objects may be very large and typically cannot be stored in internal

memory, even after being transformed into points. It is convenient to treat the points in a discrete way by

dividing the space into a uniform grid of four-dimensional rectangular grid regions. Even though the number

of points (objects) may be large, their number is typically very small with respect to the number of grid

regions. That is, the input data is typically very sparse. Thus it may not be possible to process the full grid

at all, even using e�cient external memory techniques [Vit99], and thus sparse techniques are needed. As

we shall see, a potentially major stumbling block is that it is not possible to use known sparse techniques,

such as those recently developed by Vitter and Wang [VW99], because of the partial sum preprocessing,

which makes the grid array highly dense. In Section 4.3 we show nevertheless how to do the sparse wavelet

decomposition in an I/O-e�cient manner.

4.1 Transformation of Representation

Transforming the representation of the input data is a well-known technique for representing geometric

objects [NH85, SK88, WKW94]. The idea is to transform objects in the original space (o-space) into points

in the transformed space (t-space) using parameters that represent the shape and location of each object.

The transformed points can then be accessed by a multidimensional point access method during spatial

query processing.

The transformation technique can certainly be applied to cost estimation in spatial databases. After

transforming geometry objects into points in higher-dimensional space, we can use various multi-dimensional

histogram methods that have been developed for point data in traditional databases [MD88, PI97, MVW98,

VWI98, Wan99, VW99]. The combination of proper transformation and an accurate multidimensional

histogram method can result in very accurate cost estimation for spatial operations. However, to the best

of our knowledge, no previous work on spatial cost estimation has ever considered applying a representation

transformation.

In our method, we use a corner transformation to represent the MBR of a spatial object. For simplicity,

we �rst explain how to apply corner transformation in a one-dimensional o-space. Corner transformation

maps an object in the one-dimensional o-space into a point in the two-dimensional t-space. The left end of

an object is mapped to the horizontal (xl) axis and the right end to the vertical (xr) axis in the t-space.

All transformed objects are placed in the upper part of the diagonal in the t-space since the xr value (the

coordinate of the right end) of an object is always larger than the xl value (the coordinate of the left end).

Figure 1 shows the procedure of transforming a set of intervals in the o-space into a set of points in the

t-space.
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Figure 1: A set of intervals and its corner transformation

For cost estimation of window queries, we use corner transformation to map the MBR of a polygon in the

two-dimensional o-space to a point in the four-dimensional t-space. We name the four axes of the t-space as

xl, xr, yb, and yt. A rectangle with lower-left corner (xil ; y
i
b) and upper-right corner (xir; y

i
t) in the o-space is

transformed into a point (xil ; x
i
r; y

i
b; y

i
t) in the t-space.

The nice property of the transformation is that the coordinates of a point in the t-space capture all the

features of the corresponding MBR in the o-space in a very compact way. We can calculate the width and

the height of a rectangle easily using its point representation. Also the relationship among objects becomes

very obvious in the t-space. For example, two points in the t-space are close to each other if and only if the

two corresponding MBRs in the o-space are both very close in location and similar in shape (i.e., similar in

both width and height).

4.2 Quantization, Preprocessing, and the Partial Sum Array

To discretize the problem, we quantize the t-space evenly into a uniform grid of four-dimensional rectangular

grid regions. Let D = fD1; D2; D3; D4g denote the set of four dimensions in the quantized t-space, where

dimensions D1, D2, D3 and D4 correspond to xl, xr, yb and yt, respectively. We can approximately represent

the objects in the o-space by a four-dimensional grid array of size jD1j � jD2j � jD3j � jD4j, where jDij is

the size of dimension Di. Note that we always have jD1j = jD2j and jD3j = jD4j. Without loss of generality,

we assume that each dimension Di has an index domain f0, 1, : : : , jDij � 1g. For convenience, we call each

array element a grid cell. A cell indexed by (i1; i2; i3; i4) contains two values, p(i1; i2; i3; i4) and v(i1; i2; i3; i4),

where p(i1; i2; i3; i4) is the number of points in the corresponding four-dimensional rectangular region, and

v(i1; i2; i3; i4) is the total number of vertices for the objects counted in p(i1; i2; i3; i4). Let G =
Q

1�i�4
jDij

denote the total size (i.e., number of grid cells) of the grid array. For convenience, we call the domain

of possible p(i1; i2; i3; i4) values the p-domain, and we call the domain of possible v(i1; i2; i3; i4) values the
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Figure 2: Query region and data.

v-domain.

Now we examine how to use the two array representations to calculate the MBR selectivity and complexity

of any given window query. For simplicity, let us �rst consider the MBR selectivity in a one-dimensional

o-space. We can (approximately) represent a one-dimensional query interval by a cell (i1; i2) in the two-

dimensional grid space. A given query MBR q can be (approximately) represented as a cell (q1; q2) in the

grid space. The MBR selectivity of q is the fraction of the intervals that partially or completely overlap with

q. We can easily see that an interval in the o-space overlaps with q if and only if its transformed point in

the t-space is in the shaded area in Figure 2b. Since there is no point below the diagonal in the t-space, we

can also say that an interval in the o-space overlaps with q if and only if its transformed point in the t-space

is in the extended shaded area in Figure 2c. Thus, we can use the following formula to calculate the MBR

selectivity of query q:

sMBR =
1

N

X
0�i1�q2

X
q1�i2<jD2j

p(i1; i2): (1)

In a two-dimensional o-space, for any given query window q whose MBR can be (approximately) repre-

sented as (q1; q2; q3; q4) in the grid space, the MBR selectivity and complexity of q can be calculated using

the following formulas:

sMBR =
1

N

X
0�i1�q2

X
q1�i2<jD2j

X
0�i3�q4

X
q3�i4<jD4j

p(i1; i2; i3; i4); (2)

ccand =

X
0�i1�q2

X
q1�i2<jD2j

X
0�i3�q4

X
q3�i4<jD4j

v(i1; i2; i3; i4)

X
0�i1�q2

X
q1�i2<jD2j

X
0�i3�q4

X
q3�i4<jD4j

p(i1; i2; i3; i4)
: (3)

For queries whose MBR do not correspond exactly to a grid point, we use an interpolated version of (2)

and (3).
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Since formulas (2) and (3) are in the form of partial sums, we preprocess arrays p and v to obtain two

new arrays P and V so that

P (i1; i2; i3; i4) =
X

0�j1�i1

X
i2�j2<jD2j

X
0�j3�i3

X
i4�j4<jD4j

p(j1; j2; j3; j4); (4)

and

V (i1; i2; i3; i4) =
X

0�j1�i1

X
i2�j2<jD2j

X
0�j3�i3

X
i4�j4<jD4j

v(i1; i2; i3; i4): (5)

That is, we compute the pre�x sums along dimensions D1 and D3 and the su�x sums along dimensions D2

and D4 for both array p and array v to obtain two new arrays P and V , respectively. Using the new arrays

P and V , the formulas (2) and (3) can be written as:

sMBR =
1

N
P (q2; q1; q4; q3); (6)

ccand =
V (q2; q1; q4; q3)

P (q2; q1; q4; q3)
: (7)

We have experimented with the approach of using partial sums as described above in formulas (4) and (5)

versus the approach of not using partial sums. For our purposes, the smoothness due to partial sums in the

arrays P and V intuitively enables a more e�ective wavelet approximation and as a result gives better results

than the wavelet approximation on p and v. In the next subsections we discuss the wavelet decomposition on

P and V and the subsequent thresholding, and we show how the processing can be done in an I/O-e�cient

manner despite the fact that P and V are dense arrays.

4.3 I/O-E�cient Wavelet Decomposition of Dense Partial Sum Array

The array representations of P and V are often too big to �t in internal memory or even on disk when

the dimensionality of the array is 4 or greater, and they are certainly much too big to be stored in a

database catalog. The goal of this step is to use wavelets as an e�cient compression tool to construct a good

approximate representation of P and V .

We refer readers who are not familiar with wavelet decomposition procedure to Section 5.1 of [VW99].

For illustration purposes, we use the Haar wavelets described there throughout this paper.

The main challenge for this step is how to perform the wavelet decomposition on the partial-sum array

representations of P and V in an I/O-e�cient manner. The original data (i.e., before partial sums are

formed) are often very sparse with respect to the large grid array. When the dimension is 4 or greater,

the grid array may be too large to store explicitly even on disk without using some sparse represnetation

(like the one suggested in [VW99]). When partial sums are formed, the grid array becomes very dense. A

single nonzero value in the original data could cause each entry in the partial sum array to be nonzero.

Wavelet decomposition is not feasible in such a scenario by conventional techniques. This limitation has
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been a major limiting factor in the applicability of partial sums for query approximation in previous work on

wavelets [VW99]. It is particularly important for us to resolve this problem since partial sums are especially

well suited to window queries.

We solve this open problem by computing the wavelet decomposition of the dense partial sum array by

using an indirect approach in which sparse techniques can be applied. The intuition is that the �nal wavelet

decomposition itself is sparse. And thus it may be possible to process the original sparse data directly and

to realize the �nal sparse wavelet decomposition of the partial sum array. To accomplish this goal, we cycle

through the dimensions, and for each dimension we do the partial sum calculation at the same time that

the wavelet decomposition is done for that dimension. At any given point in the processing, some number

of dimensions have been decomposed, and the \slices" of the multidimensional array corresponding to those

dimensions are therefore sparse. The partial sums along the remaining dimensions have not yet been formed,

so they remain sparse as well. Details and full analysis will be included in the full paper.

Theorem 1 The number of I/Os needed to do a d-dimensional wavelet decomposition of size G = jD1j �

jD2j � � � � � jDdj with internal memory of size M and block size B is

O

�
Nz

B
min

�
d; logM=B

G

B

��
;

where Nz is the number of nonzero coe�cients.

We assume for purposes of the theorem above that some data values are coarsely pruned in an online

manner so that the number of nonzero coe�cients stays roughly the same during the course of the decompo-

sition. A similar approach is used e�ectively in our earlier work [VW99]. Otherwise the number of nonzero

coe�cients could increase in the worst case by a factor of
Q

1�i�d log jDij. The �nal (and major) thresholding

is done on the coe�cients that make it through the initial �lter.

4.4 Thresholding

In our method, we compute the wavelet decomposition for the four-dimensional arrays P and V . Given the

storage limitation for the histogram, we can only \keep" a certain number of the wavelet coe�cients for

the p-domain of point counts and the v-domain of vertex counts, which are de�ned in Section 4.2. Let m

denote the number of wavelet coe�cients that we have room to keep. Let m1 and m2 (where m1+m2 = m)

denote the number of coe�cients that we keep for the p-domain and v-domain, respectively. The goal of

thresholding is to determine which are the \best" m1 and m2 coe�cients to keep, so as to minimize the error

of estimating sMBR and ccand .

It is well-known that thresholding by choosing the m1 largest (in absolute value) normalized wavelet

coe�cients is provably optimal in terms of minimizing the 2-norm of the absolute error in the p-domain.

The corresponding statement is true for the v-domain. If we do not have any prior knowledge of the

pattern/distribution of the window queries, we can just choose the top m1 and m2 coe�cients from the p-

domain and v-domain independently. For each coe�cient chosen, we need to store the value of the coe�cient
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together with its index (in an appropriate one-dimensional order of the grid cells). Thus the m coe�cients

may require 2m numbers in storage size.

The simplest way to choose the m coe�cients is to pick the top m=2 coe�cients in the two domains

independently. Since the p-domain is more important in the sense that it a�ects the estimation of both

sMBR and ccand , we may want to use some heuristic to pick more coe�cients from the p-domain. Another

heuristic we can use is to pick the coe�cients in the two domains so that the indices can be shared. For

example, we can pick the top m1 coe�cients from the p-domain �rst. When picking the m2 coe�cients from

the v-domain, we consider both the magnitude of the coe�cients and their indices. A coe�cient is weighted

more if its index appears as an index of one of the already chosen m1 coe�cients. For the pair of coe�cients

that share the same index, we need only three (rather than four) numbers to store two wavelet coe�cients,

thus allowing us to increase the e�ective number m of coe�cients that we can keep.

5 Estimating the Cost of Spatial Selections

In this section, we show how to estimate the cost of window queries using the wavelet-based histogram

constructed in the previous section in a time-e�cient and space-e�cient manner.

Let us consider the p-domain �rst. The naive way of estimating the MBR selectivity for a given window

query is to perform wavelet reconstruction based upon the m1 wavelet coe�cients we obtained during the

o�ine stage, with all the other coe�cients being set to 0. The reconstruction is an approximate representation

of the P array. We can then use formula (6) to compute sMBR. However, the space and CPU complexity

of doing the normal wavelet reconstruction are both O(G). That is, even we only keep m � G coe�cients

in the histogram, we need O(G) space and CPU time to use the histogram to do the cost estimation during

the online phase! This approach is certainly too costly to be acceptable.

Using the properties of wavelet decomposition, we can design e�cient online estimation algorithm. Based

upon the error tree structure introduced in [MVW98] and the lemmas derived in Section 6 of [VW99], we

use the following algorithm to compute sMBR of query q whose MBR can be (approximately) represented as

(q1; q2; q3; q4) in the grid space.

Let coe� [1; : : : ;m1] denote the m1 coe�cients we obtained by wavelet decomposition of the p-domain

array P .

CostEstimation(coe� ;m1; q1; q2; q3; q4)
sMBR = 0;
for i = 1; 2; : : : ;m1 do

if Contribute(coe� [i ]; q2; q1; q4; q3)
sMBR = sMBR + Compute Contribution(coe� [i ]; q2; q1; q4; q3);

return answer ;

Function Contribute(coe� [i ]; i1; i2; i3; i4) returns true if coe� [i] contributes to the the reconstruction of value

P (i1; i2; i3; i4), and it returns false otherwise. The actual contribution of coe� [i] to the speci�ed value is

computed by function Compute Contribution(coe� [i ]; i1; i2; i3; i4).
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Using the regular structure of the error tree and the lemmas in [VW99], we have devised two algorithms

to compute these two functions. Each algorithm has constant CPU time complexity. For reasons of brevity,

we refer to [Wan99] for the details. The complexity ccand of a window query can be computed in a similar

way.

Theorem 2 For a given window query, the approximate MBR selectivity sMBR and complexity ccand can be

computed based upon the m = m1 +m2 coe�cients in the histogram using a (2m)-space data structure in

min
�
m;
Q

1�i�4
log jDij

	
CPU time.

Proof Sketch: Each of the coe�cients can be stored using two numbers, one for its cell number and one for

its value. So the space complexity is at most 2m. (Typically the space complexity is less since the indices

can be shared, as mentioned at the end of Section 4.4.) The CPU time complexity follows easily from that

of the two functions. An alternate mechanism is to process only the coe�cients needed, which are at mostQ
1�i�4

log jDij.

It is very important to note that our algorithm has the useful feature that it can progressively re�ne the

approximate answer with no added overhead. If a coe�cient contributes to a query, its contribution can be

computed independently of the other coe�cients. Therefore, to re�ne a query answer, the contribution of

a new coe�cient can be added to the previous answer in constant CPU time, without starting over from

scratch.

6 Experiments

In this section, we describe the experiments that we performed to evaluate the performance of our proposed

wavelet method for spatial selectivity. As a reference, we also include the results for the SQ-histogram

method of Aboulnaga and Naughton [AN00]. We �rst describe our error metric, the data, and the query

generation procedures. We also explain some of the parameters to the SQ-histogram and wavelet methods,

because the constraints on them may not be immediately apparent. We will then discuss our experiments

and the performance of the di�erent methods under varying query size, memory, selectivity and data set

aspect ratio.

6.1 Error Metric

Our measure of performance is the average relative error and average absolute error of the estimated MBR

selectivity and the estimated complexity of the candidate set. For brevity we report only the relative errors

in this section. The results are even better in terms of absolute error. The quantities that we measure are

actually not sMBR and ccand but rather N � sMBR (the size of the candidate set) and N � sMBR� ccand (the

total number of vertices of the objects in the candidate set).

12



Average relative error is de�ned as

Ave. Relative Error =
X

queries

jxest � xrealj

xreal
(8)

where xest is the estimated value and xreal is the actual measured value.

6.2 Parameters

In the SQ-histogram, three parameters a�ect the quality of the constructed quadtrees: the number t of

trees, the maximum number ` of levels of a tree, and the number of bytes M of allocated memory. The

number of levels a�ects the granularity in the p-domain, and the number of trees a�ects the granularity

in the v-domain. By construction each `-level tree requires at least ` buckets and therefore we must have

t� `�bucketsize �M , where bucketsize is the number of bytes needed to store all the summary information

for each bucket of the SQ-histogram.

In the wavelet method, we assume sharing of indices between the coe�cients of the p-domain and the

v-domain. Let m1 and m2 be the number of coe�cients used in the p-domain and v-domain respectively. If

m1 � m2 and if we allocate 4 bytes for each index and each coe�cient, then 4(2m1+m2) �M . We generally

want m1 � m2 because ccand is dependent on sMBR and it is reasonable to allocate more coe�cients to m1.

In our experiments, we set m1 � 2m2.

6.3 Data Set

For our experiments we use the same data generator developed by Aboulnaga and Naughton [AN00] for their

experiments on SQ-histograms. In this paper we report experiments on a representative data set consisting

of 10,000 rectangles in a 16; 384�16; 384 bounding box. Each rectangle represents the MBR of a polygon and

is associated with a number representing the number of vertices of that polygon. This number is randomly

chosen from the interval [3; 1000]. Each rectangle is generated by �rst randomly putting it into one of four

bins. Three of the bins each correspond to a cluster, while the last one corresponds to the unclustered

rectangles. Each cluster is associated with a cluster MBR and an area interval. We randomly pick a point in

the cluster MBR as the center of the rectangle and a value in the area interval as the area of the rectangle.

After randomly picking an aspect ratio in the range [1; 8], we can determine the coordinates of the rectangle.

The last step is to randomly 
ip the rectangle so that the longer sides will not always be along one axis.

6.4 Query Workloads

In our experiments we use �ve query workloads with 10000 query windows each. Each query workload has

a �xed average query size ranging from 0.04% to 10.24% of the data set MBR area. The query windows are

generated by randomly choosing a center from the centers of the rectangles in the data set, an aspect ratio

from the range [1; 8], and an area value uniformly distributed in the interval [95% � qsize ; 105% � qsize ],

where qsize is the desired average query size.
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Figure 3: Performance of the various methods under varying query window size.

6.5 Varying Query Size

In this experiment we tested the di�erent methods on query workloads of �ve di�erent average query sizes:

0.04%, 0.16%, 0.64%, 2.56%, and 10.24%. The amount of memory each method can use is �xed at 2048

bytes. For the SQ-histogram, we set the maximum number of levels to 6 and the number of trees to 10.

These values were chosen so that the trees will �t into the 2048 bytes of memory. For the wavelet methods,

we used 64 grid divisions per axis, 206 coe�cients for the p-domain and 100 coe�cients for the v-domain.

Figure 3 shows the average relative errors of the di�erent methods. We note that the relative error for

the wavelet method is much smaller than that of the SQ-histogram in both the p-domain and the v-domain,

especially when the query size is less than 10% of the entire area, which is the case important in practice.

6.6 Varying Memory Constraint

Another question we are interested in is how do these methods scale with memory size allocated. We apply

the di�erent methods on the same �ve query workloads using 1024 bytes, 2048 bytes, and 4096 bytes of

memory. The maximum number of levels used in the SQ-histogram method and the number of coe�cients

used in the wavelet method are summarized in Table 1. The number of trees used in the SQ-histogram

method is �xed at 10 for all runs.

The average relative error is computed for each memory size over all �ve query workloads. Figure 4 shows

the results. In both the p-domain and the v-domain, not only is the wavelet method more accurate, but

its accuracy improves with more memory. Note for the SQ-histogram that its accuracy does not necessarily

improve with more memory, because the size of the quadtrees after merging is also dependent on the size

and location of the rectangles in the data set. This situation arises, for example, when either the height or

width of each MBR is at least one-half of that of the input space. In that case, all the MBRs will be stored

14
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Figure 4: Performance of the various methods under varying memory constraints.

in the root node; the resulting histogram will consist of a single bucket, regardless of the memory available.

6.7 Varying Query Window Selectivity

In this section, we look at our results from an alternative view. We partition the results (with 1024 bytes

memory constraint) according to the actual selectivity of each query window. The partitions we used are

f[0; 10), [10; 20), [20; 30), [30; 40), [40; 50), [50; 60), [60; 70), [70; 80), [80; 90), [90; 100]g, where the values

are percentages of the total number of objects in the data set. The partitions are indexed by their lower

endpoint, so 0% on the plot corresponds to the interval [0; 10).

Figure 5(a) shows the repartitioned results. It turns out that all of our query windows overlap with 0%

to 70% of the data set. The �gure shows that the wavelet method is more accurate than SQ-histogram over

this range of query window selectivity most of the time.

Memory (bytes) SQ-histogram Wavelet

M ` m1 m2

1024 3 levels 103 50

2048 6 levels 206 100

4096 8 levels 412 200

Table 1: Parameters used in the SQ-histogram method and the wavelet method. The numbers in the wavelet

columns are the number of coe�cients used for the p-domain and the v-domain respectively.
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Figure 5: Performance of the various methods in estimating selectivity under varying query window selectivity

and varying data set aspect ratio.

6.8 Varying Data Set Aspect Ratio

We also studied how the di�erent methods perform on data of di�erent aspect ratios. We generated �ve data

sets whose objects have randomly chosen aspect ratios from di�erent ranges f[1; 2]; [1; 4]; [1; 8]; [1; 16]; [1; 32]g.

Each of these data sets have 10,000 rectangles in a 16; 384� 16; 384 space as before. The performance of

the di�erent methods are shown in Figure 5(b). Our wavelet method is signi�cantly more stable and robust

under increasing aspect ratio then the other methods. Long and skinny horizontal (or vertical) rectangles of

di�erent sizes and locations will typically be placed near the root level of the quadtrees in the SQ-histogram,

rendering the objects within a node or a bucket less uniform.

7 Conclusions

Cost estimation in spatial databases is a hard problem in query optimization because of the complex features

of the spatial data and queries. In this paper, we present a new method for spatial cost estimation that

improves over partition-based histogram techniques. By transforming the spatial objects in object space

into higher-dimensional points in a transformed space, we can conveniently capture several features of the

spatial objects. The point data distribution in object space is then e�ectively approximated through a novel

data compression technique based on a wavelet decomposition of partial sums in the transformed space. We

overcome the major problem that the partial sum data are very dense and show how to indirectly process

the data via sparse techniques to compute the wavelet decomposition in a space-e�cient way. Experiments

con�rm that our method is robust over a broad range of spatial data distributions and queries and can

provide accurate cost estimations even with very small space allocation. We do not give analytic guarantees

of accuracy or con�dence bounds, but performance is uniformly good.
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Besides accuracy, another important problem for cost estimation is how to maintain the histogram when

the underlying data distribution changes. In [MVW00], we introduce an e�cient method for the dynamic

maintenance of wavelet-based histograms. An interesting and challenging extension of those techniques

would be to the partial sum arrays we consider in this paper.
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