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ABSTRACT
Given a set of query points within an image coordinate system,
constellation queries identify the matching points in a database of
known points within a standard coordinate system. Constellation
queries are an integral part of orientation determination systems
used in spacecrafts to orient and navigate themselves. The query
points are bright spots in an image captured by a camera on the
spacecraft and the database contains known celestial objects in a
celestial coordinate system. This paper studies six existing constel-
lation query processing strategies (Angle, Interior Angle, Spherical
Triangle, Planar Triangle, Pyramid, Composite Pyramid) using a
unified algorithmic framework and presents experimental evalu-
ation of the six strategies. We find that the Pyramid strategy in
its simplified form has the best accuracy to runtime ratio given
simulated images with false positives, false negatives, and Gaussian
noise.
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1 INTRODUCTION
With the advent of commercial space industry, we are seeing an
increasing number of spacecrafts, both manned and unmanned,
launched into space. One important function on a spacecraft is
the ability to determine its orientation in space quickly using the
images captured by a camera on the spacecraft – this is known as
the Lost-in-space problem. For example, consider the design of low
Earth orbit (LEO) spacecrafts. In order for the spacecraft to point a
payload, direct its thrusters, or orient its solar panels, an accurate
attitude (another term for orientation) must be known within a
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reasonable amount of time. There are a few known landmarks in
space where some attitude can be extracted (e.g. the Earth, the Sun),
but most attitude determination systems instead use multiple stars
within the field of view of a camera to determine their orientation.

The images capture a rectangular region of space – think of an
image of the sky at night from an Earth-centric perspective. Each
image is essentially a collection of bright spots (celestial objects) and
their location in the image coordinate system. To find the attitude
of the spacecraft, we first have to match the pattern of celestial
objects in the image to a database of known celestial objects. We
refer to such database queries as Constellation Queries: Given a
set of query points in the image coordinate system, find the set
of points, i.e. constellations, in a database of known points (in a
standard coordinate system) that matches a subset of the query
points.

Hypothetically, if we could transform the query points and data-
base points to a common coordinate system, then constellation
queries would be a simple database lookup for each query point.
Unfortunately, evaluating constellation queries are complicated by
several issues. First the query points and the points in the database
are in two different coordinate systems and the transformation
between the two coordinate system is not known a priori. In fact,
attitude determination is finding the transformation between the
two coordinate systems. Second, the query points are affected by
transient celestial objects (e.g. meteors) resulting in spurious points
in the image, obstructions resulting in missing points, and cam-
era characteristics resulting in deviations of the query point’s true
position.

The constellation queries studied in this paper can be viewed as
a type of subgraph isomorphism query that aims to find some 1-to-
1 mapping between the vertices in two graphs (i.e. the reference
database and the image) if it exists [5]. The subgraph isomorphism
formulation is often juxtaposed with pattern recognition approaches,
whichmap larger sets of points within a defined field-of-view across
some reference table and image [13]. We also focus on non-recursive
constellation queries - queries that do not process results from a
prior query. In recursive searches such as the SP-Search and SNA
by Samaan [15], an additional filter can be applied to the query that
limits the possible database points that map to our image set. We
are also interested in indexing strategies for constellation queries.
We indexed our reference relations solely by some statistic of a
collection of star positions (e.g. the interstar angle between two
points, the area between three points), rather than indexing by
star brightnesses (see Scholl[16], Ketchum [8], and more recently
Zhang et. al [19]). There is also much prior work on optimizing
the data accesses in constellation queries, most notably Motari’s
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Figure 1: Flowchart depicting the unified identification
framework which all strategies here follow. Given a query
image, this process returns a map that pairs of subset of im-
age points with points in a reference database. In the event
all image subsets are exhausted, an error is raised and no
map is returned (not depicted).

SLA (Search-Less Algorithm) [10]. Our focus is on the end-to-end
constellation query and not just on the data access aspects.

This paper is an empirical survey of six existing constellation
query processing strategies in the literature and in the industry. To
the best of our knowledge, no systematic survey exists for these
constellation query processing algorithms, no attempts have been
made to study them in a unified framework, and no empirical
evaluation of these algorithms have been done even though many
of these algorithms have been deployed in spacecrafts and satellites
(SAS-3, HTSE, ISC [6, 11]). Additional survey papers have been
published by Spratling [7] and Brätt [3], but our research focuses
on the specific area of constellation queries (not image processing,
attitude determination, or database searching) and describes each
strategy within a unified framework.

2 QUERY PROCESSING STRATEGIES
2.1 Unified Identification Strategy Framework
Each constellation query is presented with a set of points from an
image IMG of size n as well as a database containing two relations:
REF holds the collection of all known points indexed by some iden-
tifier, and REFSTRATEGY holds sets of these known points indexed by
one or more strategy specific features of the set itself. Elements in
REFSTRATEGY are henceforth referred to as r sets, with |r | =d . The
resultant of the constellation query is a d-sized subset of points
from the image known as the b set, as well as a mapping from this

set to the database. Identification of all points in each image is not
the focus.

To start the query, all strategies begin by choosing a b set from
the image IMG. r sets are then retrieved from REFSTRATEGY using
some predicate dependent on the current b. If there exists only one
r as a result, then we proceed. Otherwise, we loop back to the first
step and select a different subset of d stars. Certain methods may
also choose to invoke a secondary database retrieval utilizing a
new database set to filter the current r before deciding to choose
a different b altogether. Once we have found a unique r set, we
determine a mapping between this set and b. If we are confident
in this map, we return this function along with the current b set.
Otherwise, we loop back to the start and choose a new & distinct b
set. This process is depicted in Figure 1. In the event we exhaust all
possible b sets, an error is raised and no map is returned.

2.2 Overview of Strategies
We discuss all six strategies in this section: the Angle strategy, the
Interior Angle strategy, the Spherical Triangle strategy, the Planar
Triangle strategy, the Pyramid strategy, and the Composite Pyramid
strategy.

The Angle strategy (abbreviated as ANG) is composed of a naive
image subset decision, angular features of point pairs, and an ex-
haustive optimal map determination procedure. Given a point set
from the image IMG, our query starts by selecting d = 2 distinct
points b1,b2 to represent the b set. To naively select some b is to fix
the point b1 for n image subset selections, while constantly chang-
ing b2 for every new b choice. With an image subset selected the
strategy proceeds by querying REFANG, a relation holding tuples
of all combinations of two REF identifiers, indexed by the angular
separation between both REF points. The Angle method performs
a range search across REFANG for all r sets such that the angular
separation defined in REFANG is close to the separation between the
image subset [3]. If our database search yields a single r set, we pro-
ceed to the last step: finding a mapping through a process known
as the direct-match test. We follow Tappe’s implementation of this
procedure, which iterates through all possible maps, transforms
the image to the standard coordinate system using this pairing, and
chooses the map with the most amount of image points close to
some database point [12, 17]. In the event both maps possess no
matching database points other than those in r , we return to the
image subset selection step.

The Interior Angle strategy (abbreviated as INT) is composed
of a non-exhaustive “clustered” image subset decision, a feature
set possessing two interstar angles and one interior angle, and an
asymmetric permutation store for map determination. Given a set
of points from the image IMG, the Interior Angle strategy chooses a
central point from the image bc and the two nearest points b1,b2 to
the central point [9]. Choosing another b set involves only choos-
ing a new bc from IMG. Two out of three points are dependent on
the current choice of the central point, meaning that this strategy
avoids exploring

(n
3
)
−n combinations in contrast to the exhaustive

approach of the Angle strategy. With an image subset selected the
Interior Angle strategy proceeds by querying REFINT, a relation
holding tuples of all permutations of three REF identifiers, indexed
by the angular separations from the central point to the two nearest
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points & the angle between the two nearest points with the cen-
tral point as the vertex (i.e. the interior angle). The Interior Angle
strategy performs a three-dimensional range search for all r sets
such that the aforementioned features of r are close to the features
of b [3]. If our database search yields a single r set, we proceed to
the last step: map determination. We follow RezaToloei’s imple-
mentation of the Interior Angle strategy which sacrifices storage
to avoid performing an optimal map determination procedure (e.g.
the direct-match test) by storing permutations of REF instead of
combinations like the Angle strategy [14]. When this permutation
store is used in conjunction with an asymmetry rule, “the first in-
terstar angle must be less than the second”, we store the mapping
of r as well [2]. Thus, to determine a map here is to use the pairing:
{(bc , rc ), (b1, r1), (b2, r2)}.

The Spherical Triangle strategy (abbreviated as SPH) is composed
of a naive image subset decision, spherical area and moment fea-
tures, a “pivoting” process to jointly utilize 2+ database searches,
and an exhaustive optimal map determination process. Given a
set of points from the image IMG, our query starts by selecting
d=3 distinct points to represent the b set in the similar manner to
our Angle strategy. With an image subset selected, the Spherical
Triangle strategy proceeds by querying REFSPH, a relation holding
tuples of all combinations of three REF identifiers, pairwise indexed
by the spherical area and moment between all three REF points.
The Spherical Triangle strategy performs a two-dimensional range
search for all r sets such that the spherical area and moment of b is
close to the spherical area and moment of r . If our database search
does not yield a single r set, we perform another range search with
a new image subset that differs from our original b by only one
point. The results of the secondary search are then used to filter
the initial set by removing all sets in our initial search that do not
share two points with our secondary search. This “pivot” is repeated
to filter the initial search further until a single r is found or all n
additional image subsets have been exhausted [4]. Once a sole r set
is obtained, we perform a direct match test to either obtain a map
or choose another b set and repeat the process altogether.

The Planar Triangle strategy (abbreviated as PLN) is identical
to their Spherical Triangle strategy, with the exception that each
image trio is represented as a planar triangle instead of a spherical
one. This results in the computation of a planar area and moment,
operations that do not require a recursive formula in contrast to
the spherical area and moment.

The Pyramid strategy (abbreviated as PYR) is composed of a
false star avoidance image subset decision, a custom voting based
identification process for star trios, and a voting based confidence
check. Given a set of points from the image IMG, the Pyramid strat-
egy selects d = 3 points in a such a way to avoid the persistence
of misleading points for more than a few combinations [11]. What
follows is a voting-based process which utilizes the relation REFANG.
Per image subset, three of the database range searches used in the
Angle strategy are performed to find database pairs for all distinct
image pairs in b. To determine database points for a single image
point in b is to take the intersection between both sets of points of
the database pairs containing b in their query [18]. Similar to the
Interior Angle method, an optimal map determination procedure
is not required because the map is implicitly formed to determine
r . To establish confidence in this map, another voting strategy is

used which repeats a process similar to obtain r with the inclusion
of an additional star from IMG. Only if there exists a sole result as-
sociated with this additional star do we return the map. Otherwise,
we choose another b set and repeat the process.

The Composite Pyramid strategy (abbreviated as COM) is com-
posed of the Pyramid strategy’s image subset decision, planar area
and moment features, and a voting based confidence check, and an
exhaustive optimal map determination process. This method can be
thought of as a combination of the Planar Triangle strategy and the
Pyramid strategy, borrowing the features, database range search,
and optimal map determination strategy of the former while using
the image subset decision and confidence check of the latter.

3 EMPIRICAL EVALUATION
In this section we discuss our analysis of the six strategies in terms
of their runtime and accuracy response to typical errors that may
occur when capturing an image of the sky. For our testing, the
astronomical catalog used to populate all relations in the reference
database was the Hipparcos Input Catalogue [1]. The REF relation
was shrunk to 1,471 elements dependent on each star’s brightness
(m < 4.5) to reduce the size of the REFSTRATEGY relations (and con-
sequently the running time) for each strategy. All simulations were
performed 2,000 times on a Raspberry Pi Model 3B+, implemented
in C++14without optimization, and utilized SQLite as the embedded
SQL database engine. Image data was generated as points randomly
(but uniformly) rotated from the database coordinate system to
remove the discrepancies that may arise from the image processing
component. Three types of errors were introduced to the image
data from here: false positives, false negatives, and points whose
position is misrepresented from the database (i.e. Gaussian noise).
The width of each strategy’s range search was determined using
a grid search, exploring boundaries from 1 × 10−1, 1 × 10−2, . . . , to
1 × 10−10. The exact implementation is available at the following
link: https://github.com/glennga/hoku.

In a clean image (introducing no errors), all strategies are always
able to produce a correct mapping from some image subset to the
REF table. The Pyramid and Interior Angle strategies are the fastest
methods here (6.293±0.167ms), followed by the Angle strategy
(81.249ms), with all methods possessing triangular features last
(122.479±1.940ms). Both the Pyramid and Interior Angle strategies
do not utilize an optimal map determination procedure, which
significantly reduces their runtime. The Angle strategy, though still
dependent on the direct-match test, has the smallest REFSTRATEGY
relation (2-combinations vs. 3-combinations) resulting in a slight
speedup from the triangular featured strategies.

In an image of three to six false positives, the unmodified meth-
ods that perform the most accurately are the Angle, Planar Triangle,
and Spherical Triangle strategies. The source of error for all other
methods are a result of exhausting all b sets, as opposed to re-
turning an incorrect map. Removing the voting based confidence
check eliminated this error for both the Pyramid and Composite
Pyramid strategies, raising both accuracies to near 100% with a run-
time faster than the Angle, Planar Triangle, and Spherical Triangle
strategies. This difference in speed also demonstrates the efficacy
of the pyramid b decision in contrast to the naive approaches. For
the Interior Angle strategy, replacing its non exhaustive image

https://github.com/glennga/hoku
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Figure 2: Depicts the average accuracy of the resulting map
of the unaltered Angle and triangle strategies, an Interior
Angle strategy with a naive image subset decision, and pyra-
mid strategies without their verification steps given images
with false positives, false negatives, and Gaussian noise.

subset decision with an exhaustive naive approach increased its
accuracy to the near 100%. When dealing with this type of noise,
not exploring all possible combinations increases the chance that a
trio without false positives is never handled, thus lowering overall
accuracy. Figure 2 depicts the accuracy of each strategy in its most
optimal configuration under varying types of noise.

In an image of one to three light blocking blobs (resulting in false
negatives), all strategies except the unaltered pyramid strategies
perform with similar accuracy and runtime. These errors stem as
a result of an image possessing too few points to perform iden-
tification altogether. The unaltered pyramid strategies require a
minimum of four points, raising the chance of having too little
stars to perform identification and decreasing the overall accuracy.
Removing the verification step for the pyramid methods raises the
Composite Pyramid accuracy to a similar range of the rest and does
not significantly affect the Pyramid accuracy, suggesting that this
verification step is too aggressive of a filter overall. In terms of
speed the Interior Angle method is the fastest of the six, followed
closely by Pyramid method (5.791ms vs. 6.050ms).

In an image with Gaussian noise of σ =0.0001◦ to σ =0.0002◦,
the Angle strategy is the most accurate but runs nearly 15 times as
long as the 2nd most accurate & fastest overall strategy: the Pyra-
mid strategy without a verification step (208.552ms vs. 13.801ms).
Unlike the results of the previous simulations, we now see incor-
rect maps returned by strategies instead of returning with an error.
Though small, these maps are only produced by the strategies with
triangular features (Planar Triangle, Spherical Triangle, Composite
Pyramid). Interstar angles appear to be the most effective feature
set against Gaussian noise.

To conclude, the Angle strategy is the most accurate strategy
under all types of noise, but is the slowest of the six. The Pyramid
strategy without a verification step is the next best strategy in terms
of accuracy, and is the fastest overall method. The Interior Angle
strategy was improved by using a naive image subset decision and

has the lowest floor in terms of speed, however this strategy handles
Gaussian noise the worst of the six. The triangular strategies lie
between the Angle and Interior Angle methods in terms of accuracy,
but are a faster alternative to the Angle method. The Composite
Pyramid strategy attempts to utilize a different feature set with the
effectiveness of the Pyramid core but ultimately inherits the worst
of each strategy.
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