
Optimizing Content Freshness of Relations Extracted
From the Web Using Keyword Search

Mohan Yang 1,2
∗

Haixun Wang 2 Lipyeow Lim 3 Min Wang 4

1Shanghai Jiao Tong University, mh.yang.sjtu@gmail.com
2Microsoft Research Asia, haixunw@microsoft.com

3University of Hawai‘i at Mānoa, lipyeow@hawaii.edu
4HP Labs China, min.wang6@hp.com

ABSTRACT
An increasing number of applications operate on data ob-
tained from the Web. These applications typically maintain
local copies of the web data to avoid network latency in
data accesses. As the data on the Web evolves, it is criti-
cal that the local copy be kept up-to-date. Data freshness
is one of the most important data quality issues, and has
been extensively studied for various applications including
web crawling. However, web crawling is focused on obtain-
ing as many raw web pages as possible. Our applications,
on the other hand, are interested in specific content from
specific data sources. Knowing the content or the semantics
of the data enables us to differentiate data items based on
their importance and volatility, which are key factors that
impact the design of the data synchronization strategy. In
this work, we formulate the concept of content freshness, and
present a novel approach that maintains content freshness
with least amount of web communication. Specifically, we
assume data is accessible through a general keyword search
interface, and we form keyword queries based on their se-
lectivity, as well their contribution to content freshness of
the local copy. Experiments show the effectiveness of our
approach compared with several naive methods for keeping
data fresh.

Categories and Subject Descriptors
H.2.8 [Database management]: Database Applications

General Terms
Performance

Keywords
content freshness, synchronization strategy, web crawling

∗Work done while the author is at Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

1. INTRODUCTION
Today, an increasing number of applications operate on

data from the Web. Mashup applications are particularly
good examples of such applications: they combine data from
multiple external (web) sources to create a new service. In
order to provide reliable, high quality, value added services,
data availability and freshness are of paramount importance.
The Internet provides no guarantees on connectivity and
data availability; hence data availability is often achieved
by maintaining a local copy of the data of interest. These
applications are then faced with the problem of keeping the
data in the local copy fresh.

In this paper, we study the problem of refreshing the local
data maintained by these applications. The problem is par-
ticularly challenging because the Internet that sits between
the local data and the data source is unreliable, has rela-
tively high latency, the change characteristics of the data at
its source is generally not observable, and most web data
sources only support very limited data retrieval APIs, i.e.,
mainly keyword search.

Keeping a local data set fresh has been studied previously
in the context of web crawling. However, the problem we
face is quite different. First, the goal of web crawling is to
maintain a local copy of raw web pages from millions of web
sites. Commercial search engines are built upon web crawl-
ing techniques. It can take weeks for a commercial search
engine to completely refresh its entire repository. For the
purpose of web search, it is often acceptable that a local
copy of a web page is not updated for days or even weeks in
the search engine. It is true that stale pages may reduce the
relevancy of web search results, but the problem is not as
serious as in our case, where stale content may lead to wrong
answers in applications that provide specific services (e.g.,
checking the availability of a product, as in ticket reserva-
tions). Second, web crawling handles raw web pages and is
agnostic to the content of the web pages. In contrast, the
applications we are concerned with understand the content
or the semantics of the data that need to be kept fresh in
the local copy. While such applications are much more sen-
sitive to the staleness of the data than applications such as
search engines, it also creates an opportunity for develop-
ing new mechanisms for keeping the content (not just the
raw web pages) fresh. For example, knowing which data
items are more volatile or more important enables the re-
fresh algorithm to raise their priorities for synchronization.
Furthermore, we can group data items together according

to application semantics, and use one Web access to refresh
them.

1.1 Applications
Before we formally describe the problem and the chal-

lenges, let us consider some representative application sce-
narios.

• Online Specialty Stores. Suppose one manages a
specialty store on the Web. Instead of selling his own
stock of merchandise, he links products on his Web
pages to major e-commerce sites such as Amazon.com,
Buy.com, ebay.com, etc., and earns commission from
them. Usually, a specialty store sells products in fo-
cused categories, which can be narrow or broad. For
example, one can build an online drugstore that has
the most comprehensive coverage of medications by
pulling data from other general purpose stores, or one
can specialize in books on closely related topics, or fur-
niture of particular styles. To maintain such a store,
one needs to synchronize with the data source (e.g.,
Amazon.com) frequently to keep information such as
price and availability up-to-date.

• Paper Citations. Citations are a good measurement
for scientific impact, and more and more institutes take
citations into consideration when they evaluate job ap-
plicants or award candidates. Suppose a web applica-
tion maintains multiple lists of publications, and pub-
lications in each list are on a particular topic (e.g., a
reading list of web crawling literature), authored by
a particular researcher, or by a group of researchers
(e.g., faculties in Stanford’s CS department). Suppose
among everything else, the application obtains the ci-
tation count of each publication from Google Scholar.
The challenge is to maintain the freshness of this ma-
terialized view.

1.2 Challenges
Many applications that rely on third party data sources

face similar challenges as the two examples given above. The
architectures of these applications have many things in com-
mon: to ensure data availability, a web application main-
tains one or multiple data sets, each materializing certain
content from one or more external sources on the Web. In
order to serve its clients using its materialized content, the
application must poll the data sources regularly in order to
ensure the freshness of the materialized content. The chal-
lenges lie in how to poll the sources.

• The first challenge is that the content we need to ma-
terialize locally is often big and dynamic. Take pa-
per citations as an example. Its goal is to maintain
publication lists for multiple researchers, for multiple
institutes, and on multiple topics in order to provide
more useful services such as topic analysis, etc. How-
ever, the content is dynamic since new papers and new
citations are being added constantly. Consequently,
the application needs to devise intelligent methods for
materializing the large and dynamic content. Similar
challenges exist for online specialty stores, as the avail-
ability and prices of products of interest also change
constantly.

• The second challenge is the lack of efficient data access
methods on the Web. Ideally, we want to query entities

(e.g., publications and products) we are interested in
as if they are structured relations. Thus, we would like
to view the data source as a database, so that we can
issue SQL-like queries against it. However, the data
sources are either not structured or if they are, the
schema of the data is usually not published. There
are many reasons for not doing so, among which is
the cost issue: for example, during schema evolution,
APIs must be changed which may cause interruption of
service. The most common interface for querying the
external data source is through keyword search, which
is the case for searching papers on Google Scholar and
searching for products on Amazon.com.

• The third challenge is access restrictions. Most web
sites have heavy restrictions against crawling. Take
Google Scholar for example. Google will direct users
that generate frequent polling to a CAPTCHA test to
ensure that the requests are not coming from a robot.
A naive method is to limit the number of queries sent
to the data source within a given period of time (e.g.,
limit it to say 10 queries in any given 5 minute period).
However, this approach will limit the functionality of
the services we want to provide, especially when the
data sets are large.

Some of these issues are also faced by the traditional web
crawling problem (usually carried out by search engines),
but our problem is unique in several aspects. First, our goal
is to obtain specific information for a specific set of enti-
ties (papers, products, etc). The goal of Web crawling is
to obtain as many raw pages as possible. Typically, the
applications we consider has one or several targeted data
sources on the Web, while web crawlers employed by com-
mercial search engines scan millions of hosts. Recently, the
topic of deep web crawling has attracted much interest. Just
like general purpose web crawling, its goal is also to obtain
as much information from the database beneath the surface
web as possible.

Second, we are concerned about content freshness. For in-
stance, a significant change of a product’s price or a paper’s
citation justifies high priority of refreshing the information
about the product. Web crawling, on the other hand, is
only concerned about whether a raw page has been updated.
Thus, there is no difference from page to page, or the nature
of change within a page.

Third, we have a more stringent requirement on data be-
ing fresh. For search engines, there are typically no correct
answers when it comes to search results. Instead, search
engines provide a list of results, hopefully ranked by their
relevancy. It is acceptable that the crawled pages are a few
days or a few weeks old. However, the applications we are
concerned with must analyze (e.g. aggregate) the content
to provide a new type of service. Thus, most of them re-
quire that the content (e.g., product availability and price)
is accurate and up-to-date.

1.3 Our Approach
Our goal is to maintain the freshness of a set of entities by

sending as few web requests as possible to the sites where
such information is hosted. We assume that each data item
has a unique ID assigned by the data source. For instance,
each product on Amazon.com has a unique ID, and each pa-
per hosted by Google Scholar has a unique ID. Furthermore,

we assume we can form a web request using an item’s ID to
obtain the information about the item. However, accessing
information by ID is not efficient: in order to refresh the
entire repository of N items, we need to send N requests.
Besides being inefficient, sending many requests within a
short period of time is usually unacceptable due to web ac-
cess restrictions (excessive accesses of a Web site such as
Google Scholar will be rejected by the Web site).
In addition to ID-based data retrieval, data sources usu-

ally provide keyword based search. For each search, items
that contain the keywords in the search are returned (unless
the keywords are too popular, in which case, a subset of the
items are returned). Thus, if the result of one search con-
tains information about multiple entities we are interested
in, then we save on the number of web accesses. This is
possible because the entities we are concerned with are not
a random set of entities. Instead, they usually have some
commonality. For instance, publications in a list are either
on a specific topic, or authored by one researcher, or by a
group of researchers in the same institute, etc. For spe-
cialty stores, the seller focuses on grouping and presenting
products in a better way than general retailers such as Ama-
zon.com, which means products in a specialty store are often
related. This offers opportunity to refresh multiple items in
a single Web request.
In view of this, our approach focuses on finding the best

set of keywords that can be used to refresh the data set in
the most efficient way, i.e., with least number of searches. In
the following, we discuss two factors that affect the keyword
selection process.

• Keyword Selectivity. First, we should choose keywords
that have high selectivity on the local data set (i.e.,
find the keywords that maximize the number of items
in the local copy that contain the keywords). Second,
we should choose keywords that have low selectivity on
the server, such that most returned items are relevant
to the local data set.

• Refreshing Priority. Not all items are the same. There
are at least three factors that may impact the prior-
ity: time, volatility, and importance. Take papers in
a publication list as an example. The time factor says
that a paper that was refreshed a long time ago should
have high priority to be updated. Second, different pa-
pers have different volatility. For example, highly cited
papers, or papers on hot topics, or papers written by
well known authors are more likely to attract citations,
and are hence more volatile. Thus, they should have
higher priority to be updated. Finally, certain items,
e.g., items that many users are interested in, are more
important, and should be kept fresh with higher pri-
ority.

In this paper, we introduce the concept of content freshness.
Unlike previous work in maintaining data freshness, content
freshness takes into consideration not only the time factor,
but also factors related to items’ volatility and importance.
We then conceive a greedy approach: every time we select
keywords in a way to maximize the increase of the content
freshness.

1.4 Paper Organization
The rest of the paper is organized as follows. Section 2

compares our work with related work. Section 3 presents

the mathematical formulation of the problem. Section 4
presents our greedy algorithm for the query generation and
graph technique for querying order and frequency optimiza-
tion. Section 5 presents the experimental results. The paper
concludes in Section 6.

2. RELATED WORK
Cho et. al. [3] did some pioneering work on designing a

crawling policy to maintain a web repository fresh. The goal
of their work is to answer the following questions: “How of-
ten should we synchronize the copy to maintain, say, 80% of
the copy up-to-date? How much fresher does the copy get if
we synchronize it twice as often? In what order should data
items be synchronized? For instance, would it be better to
synchronize a data item more often when we believe that it
changes more often than the other items?” Cho et. al. intro-
duced a definition of data freshness, and proposed a crawling
policy to increase the freshness. In particular, the crawling
policy takes web page update patterns (e.g. Poisson) into
consideration [3].

There are two major differences between Cho’s work and
ours. First, Cho et. al. maintain the freshness of a local data
set that correspond to a set of URLs. Each URL potentially
points to a different web site. Thus, each web request is for
one URL and refreshes one element of the local data set: in
other words, it is not possible to refresh multiple elements
in the local copy by one Web request. In our work, the
local data consists of a set of entities, which are extracted
from a remote database hosted on a single Web site (e.g.,
paper citations based on Google Scholar) or a small number
of Web sites (e.g., online specialty stores based on Ama-
zon.com, buy.com, etc). Our goal is thus to maximize the
number of entities retrieved using one query.

The second major difference is that Cho et. al.’s freshness
model is based on the assumption that updates on a web
site follow Poisson process. Because Cho et. al. maintains a
set of URLs of different web sites, this is probably the best
assumption they can make since they do not have any knowl-
edge of the content of the data. In our case, we maintain
a set of entities. Thus, we know the semantics of the data,
so we can make more reasonable assumptions. For exam-
ple, consider the publication/citation graph. We can assume
that the citations follow a power-law distribution. In other
words, a highly cited paper is more likely to attract more ci-
tations, and hence should be updated more frequently. The
same phenomenon occurs in online specialty stores. A pop-
ular item (highly ranked on sales list) is more volatile, that
is, it is more likely to go through changes (ranking, price
adjustment, availability, etc). Furthermore, a popular item,
just like a highly cited paper, is more likely to be queried on
the local site as well.

Sia et. al. [14] studied how the RSS aggregation services
should monitor the data sources to retrieve new content
quickly using minimal resources and to provide its subscribers
with fast news alerts. The optimal resource allocation and
retrieval scheduling policy enables the RSS aggregator to
provide news alerts significantly faster than the previous ap-
proaches. Our work is different from theirs in the following
two aspects. First, their requests are clustered based on
data sources to begin with as users subscribe news by do-
mains. In our work, one challenge is to cluster entities so
that they can be covered by a set of queries. Second, their
optimization is performed on the data source level while ours

is performed on the query level. Their work cares about how
much resource should be allocated to each data source and
when should a specific data source be synchronized in the
allocated time slot based on the posting pattern in the data
source. Our work cares about in what order should queries
be sent and how frequently should we send queries. There
are also a lot of research work on aggregation services, in-
cluding [4, 10]. However, these methods passively wait for
new data to come in instead of actively pulling data from
the data sources.
Deep Web crawling [11, 9, 1, 2, 17, 8, 6, 7, 16] is an-

other area that is closely related to our work. Raghavan and
Garcia-Molina [11] proposed a generic operational model of
a deep web crawler. They mainly focused on the learning
of hidden web query interfaces. Ntoulas et. al. [9] devel-
oped a greedy algorithm to automatically generate keyword
queries. The algorithm tried to maximize the efficiency of
every query, thus obtaining as many pages as possible with
a relatively small number of queries. Wu et. al. [17] also
proposed a similar keyword query selection technique for ef-
ficient crawling of structured web sources. Barbosa et. al. [1,
2] worked on a project called DeepPeep which gathered hid-
den web sources in different domains based on novel focused
crawler techniques. Madhavan et. al. [8] described a system
for surfacing deep web content, i.e., pre-computing submis-
sions for each HTML form and adding the resulting HTML
pages into a search engine index. Wang et. al. [16] devel-
oped a greedy algorithm to solve the weighted set covering
problem targeting at deep web crawling. However, deep web
crawling focus on the problem of discovering as many items
as possible from the data source while our work mainly fo-
cuses on the scenario of maintaining a specific set of items.
Thus, the crawling strategy in the above work does not ap-
ply, as we are not interested in the irrelevant items returned
by the queries. Additionally, content-freshness or result-
freshness is never considered in these works, it is an impor-
tant dimension of deep web crawling and the main focus of
our paper.

3. PROBLEM FORMULATION
We model a web data source as a server database. With-

out loss of generality, consider the case where the server
database contains a single relational table. Note that the ta-
ble is used as the database backend of a web application, al-
though it has a schema, it does not support relational queries
from the user. Instead, all queries must go through a web
interface. Thus, we assume, as far as queries are concerned,
(1) each row in the table is represented by a bag of words,
and (2) the web interface only supports keyword queries on
the table. Each query consists of a set of keywords, and can
retrieve up to K tuples that contain all of the keywords in
the query.
An application that keeps a local copy of the web data

is modeled as a local database. The local copy contains a
subset of the rows in the server database, and its content is
kept up-to-date by querying the server database periodically
using hopefully a small number of queries. Furthermore, the
local database can only query or probe the server database
via keyword queries. At each synchronization, the applica-
tion needs to decide on a set of keyword queries to probe
the server database in order to maximally refresh the con-
tent of its local copy. In most practical applications, the
synchronization occurs at fixed intervals.

S Server copy of the relation.
L Local copy of the relation.
k(q) Keywords associated with query q.
w(r) The weight associated with tuple r in

the local relation.
RS(k) The set of tuples in the server relation

associated with keyword k.
RL(k) The set of tuples in the local relation

associated with keyword k.
KL The set of all keywords associated with

the local copy of the relation.

Table 1: Notations

There are two optimization objectives when choosing the
set of keyword queries at each synchronization point.

1. the local relation should be kept as up-to-date, i.e., as
similar to the current content on the server as possible,
and

2. the number of keyword queries should be as small as
possible.

3.1 Optimization Objective 1
A key element in the first objective is that we need a sim-

ilarity measure between the local data and the data on the
server. Let rL be a tuple in the local database L. Let rS be
the corresponding tuple in the server database S. Assume
we have a function δ(rL, rS) that measures the dissimilarity
between rL and rS . However, not all tuples are equal. The
freshness of some tuples is more important than others. To
reflect the importance, we assign a weight w(·) to each tu-
ple. Thus, the priority of a record is given by its weighted
dissimilarity:

w(rL) · δ(rL, rS)

In other words, the higher the weight of a tuple, and the
bigger the difference between the server and the local copy,
the higher the priority to refresh the tuple. Then, the con-
tent freshness of the entire local relation with respect to the
server relation can be computed as:

δ(L, S) =
1

|L|
∑
rL∈L

w(rL) · δ(rL, rS)

Note that a content freshness of zero means that the local
database is perfectly in-sync with the source. The larger the
content freshness, the less “fresh” the local content.

Both the dissimilarity function and the weight function
are application dependent. For example, for the paper cita-
tion application, the dissimilarity function can be defined as
the absolute value of the difference between the number of
citations on the local and the server databases, i.e.,

δ(rL, rS) = |rL.Num_of_citation− rS .Num_of_citation|

where Num_of_citation is a database column. Similarly, we
can conceive a weight function which says the more citations
a paper has, the more important the paper is, i.e.:

w(rL) = rL.Num_of_citation

In the same spirit, we can define the importance based on
the popularity of its author, the relevance of its topic, or
the prestige of the conference or journal where the paper
appears, etc.

As we can see, the weighted dissimilarity is the key to
the concept of content freshness, as it employs the seman-
tics of the data to decide on the refreshing strategy. This
also makes our problem different from web crawling, which
is mainly concerned with whether a web page has been up-
dated or not.
Given the weighted dissimilarity, we design a synchroniz-

ing strategy to keep the data set fresh. Intuitively, the local
application measures the difference between the local tuples
and the server tuples, and gives priority to refreshing those
that have a big weighted difference when it synchronizes with
the server. But there is a big catch: the local application
does not know what the current rS is. We assume rS has
changed since the last synchronization (otherwise δ(rL, rS)
will be 0, which means there is no need to refresh it), but
we do not know how much it has changed.
In our approach, we estimate rS based on i) the content

of rL, ii) the volatility of rL, and iii) the time elapsed since
the last synchronization of rL. In other words, we assume
δ(rL, rS) can be estimated by F (rL; t), or simply

δ(rL, rS) = F (rL; t)

where t is the current time. In other words, we create an
update model of the content. We consider rL’s volatility
and previous synchronization information as features of rL.
Thus, from rL and t we can derive rS . This leads to our
definition of content freshness.

Definition 1. The content freshness of the entire local
relation at time t is defined as:

F (L; t) =
1

|L|
∑
rL∈L

w(rL) · F (rL; t) (1)

As an example, a simple deterministic update model for
the citations can be the following. Let ts be the time that rL
was last synchronized. Let ω be the parameter that reflects
the volatility of rL – for instance, assume the citation of a
paper increases by 1 every ω days. Thus, we have

F (rL; t) = δ(rL, rS)

= |rS .Num_of_citation− rL.Num_of_citation|

= (rL.Num_of_citation+
t− ts
ω

)−

rL.Num_of_citation

=
t− ts
ω

Certainly, this is a very näıve update model. In Section
4, we introduce more realistic models where the change of
the citation is modeled by a Poisson process with a rate
parameter obtained from historical data.

3.2 Optimization Objective 2
The second objective seeks to minimize the number of nec-

essary keyword queries for synchronization. This require-
ment is due to a limitation in web based keyword search:
for each query, the web server only returns top K results
that match the query. In other words, even if there exists
a common keyword that matches every tuple in the server
database, a query containing the keyword will not retrieve
the entire database. More likely it returns K tuples that the
local application has little interest in.

Thus, a “good” keyword query is a keyword query that
ensures most of the returned K tuples are useful and im-
portant to the local application. By “useful and important”,
we mean they are part of the local copy and they have high
weighted dissimilarity. Thus, obtaining these tuples through
synchronization will greatly improve the content freshness of
the local data. This requires the query to contain keywords
that match as many important tuples in the local copy, and
as few irrelevant tuples, as possible. To make this opti-
mization decision, the local database needs to estimate the
selectivity of keyword queries on the server database. That
is, given a set of keywords, we need to estimate how many
tuples in the server database contains these keywords. Then,
we will avoid keywords that match a large number of tuples
in the server database.

3.3 Problem Statement
We give our problem stalement as follows:

At each synchronization, find a set of queries Q such
that after getting the results of Q, the content freshness of
the local relation is maximally improved (that is, F (L; t) is
maximally reduced.)

A couple of constraints on queries are necessary to fully
specify the problem: (1) only relevant keywords are to be
used in the queries, ∀q ∈ Q, k(q) ⊆ KL, (2) the keywords
in the queries cover the local relation, L ⊆ ∪q∈QRL(k(q)),
(3) the number of queries |Q| should be minimized, and (4)
the number of tuples transmitted,

∑
q∈Q |RS(k(q))| should

be minimized.

A Note on NP-Hardness. Consider a more constrained
version of the problem where the weights of the dissimi-
larity measure between local and server relation are set to
one. The problem then is to find the smallest number of
queries to cover the whole local relation while the number
of tuples transmitted is minimized. Let Q be the set of all
possible queries (i.e., all possible combination of keywords in
KL), then we are trying to solve the following optimization
problem:

minimize
∑
q∈Q

|RS(k(q))|xq

subject to
∑

q:r∈RL(k(q))

xq ≥ 1 ∀r ∈ L

xq ∈ {0, 1} ∀q ∈ Q

where xq represents whether a query q ∈ Q is selected(1 for
yes, 0 for no) when objective function is minimum. This is
the covering integer program [15] which is a generalization
of the set cover problem.

4. OUR APPROACH
Our approach to refresh the content of a local relation L

with a server relation S is outlined in Algorithm 1. The re-
freshLocal algorithm contains an infinite loop of refresh
events. Each refresh event, i.e., each iteration of the loop,
generates a set of keyword queries using the greedyProbes
algorithm, uses the generated set of keyword queries to re-
trieve data from the server relation, updates the local rela-
tion using the retrieved data, and sleeps for τ time units. At
this point, for ease of exposition, we assume that the results

Algorithm 1 refreshLocal(L, S)

Input: local relation L, information related to server relation S
Output: synchronized local relation L

1: loop
2: P ← greedyProbes(L, S)
3: D ← query S using P
4: update L using results D
5: sleep for time interval τ
6: end loop

Algorithm 2 GreedyProbes(L, S)

Input: local relation L, information related to server relation S and
statistics to compute |RS(q)| for query q
Output: P

1: P ← ∅
2: Rnotcovered ← L

3: while not stopping condition do
4: K ← find all keywords associated with Rnotcovered
5: Pick q from powerset P(K) using greedy heuristic Eqn. (2)
6: P ← P ∪ {q}
7: Rnotcovered ← Rnotcovered − RL(q)

8: end while
9: return P

for all the keyword queries are retrieved instantaneously. In
Section 4.3, we remove this assumption and analyze the ef-
fect of ordering the keyword queries for obtaining maximum
freshness.
The essence of our solution lies in the greedyProbes

algorithm that directly addresses the problem statement of
the previous section. Given the NP-hardness of the problem,
greedyProbes uses a greedy heuristic-based algorithm out-
lined in Algorithm 2 to find the set of keyword queries for
each refresh event.
The greedProbes algorithm starts with an initially empty

set of query probes P and adds a query probe to this set us-
ing a greedy query efficiency heuristic (to be described in
Section 4.1). The stopping condition of the while-loop can
be application dependent and some examples are: (1) when
some quota of keyword queries has been reached, or (2) when
the current set of queries completely covers the local relation.
A query probe can be a single keyword or a conjunction of
keywords; hence, a query is picked from the powerset of all
possible keywords associated with the local relation. Note
that in practice, the power set is never materialized, because
of its exponential complexity.
Next, we describe the query efficiency heuristic in detail.

The rest of the section will discuss how relaxing the as-
sumption that the set of query probes are executed instan-
taneously will affect the change of content freshness. The
paper citation scenario will be used as a running example in
our analysis.

4.1 Query Efficiency Heuristic
For a keyword query q, let |RL(q)| and |RS(q)| be the lo-

cal coverage and server coverage of q respectively. To mini-
mize the number of queries, the local coverage of every query
should be as high as possible. On the other hand, the search
result of most keyword search interfaces is partitioned into
pages while each page covers only a limited number of re-
sults. So if a query has large server coverage, i.e., the results
of this query is partitioned into many pages, then a lot of
additional queries are needed to retrieve all the result pages
from the server. To minimize the number of tuples trans-
mitted, the server coverage of every query should be as low

as possible. Intuitively, a good query should maximize the
query efficiency as defined by

q := argmax
q

|RL(q)|
|RS(q)|

.

This is similar to the tf/idf measure in IR. The term fre-
quency (tf) represents the number of times a term occurs in
a document. The inverse document frequency (idf) is a mea-
sure of the general importance of the term. A high weight of
tf/idf measure is reached by a high term frequency (in the
given document) and a low document frequency of the term
in the whole collection of documents.

As different tuples have different priorities to be refreshed,
it is preferable to cover high priority tuples. Let w(r) be
the importance of tuple r, and let F (r; t) be the dissimi-
larity between r and the current r on the server. Then we
can change the local coverage into weighted local coverage,
i.e., for a query q we have

∑
r∈RL(q) w(r) ·F (r; t) instead of

|RL(q)|, which is a special case where all w(r) and all F (r; t)
are the same). Still, we want to maximize the efficiency

q := argmax
q

∑
r∈RL(q) w(r) · F (r; t)

|RS(q)|
(2)

Estimating Server Coverage. In Equation (2), the numer-
ator part can be directly calculated based on the local re-
lation L and an update model which we will introduce in
Section 4.2. But to compute the denominator part, we need
information from the server. Usually, a keyword search in-
terface will notify user about the total number of results
related to a query on the result page. This is a way to ob-
tain the value of |RS(q)|. However, this method requires
sending queries to the server for every possible value of q.
The query generation may need the information of every
possible combination of keywords. Such a huge amount of
queries may be blocked by the keyword search interface. So
we need some alternative methods to indirectly estimate the
value of |RS(q)|.

One possible approach is to use the technique developed
by Li and Church [5], which estimates word associations (co-
occurrences of words, i.e., the frequency that a set of words
occur together). If we regard the server relation as a cor-
pus, the keyword query can be seen as calculating the word
association for words in a keyword query. Li and Church’s
method samples the inverted index of the corpus, and con-
structs a contingency table for this sample. Then, a straight-
forward method for deriving the contingency table for the
entire population is to use scaling. Li and Church use a max-
imum likelihood estimator (MLE) by taking advantage of
the margins (also known as document frequencies) to make
the estimation more accurate [5]. However, in order to use Li
and Church’s method, we need to create the inverted index
first, which means we need to crawl the entire server.

Another possible approach is to use some similar data
sources to estimate the value of |RS(q)|. Data sources from
the same domain are similar both in terms of their attribute
values and their attribute value distributions. Sometimes,
downloadable data sources in the same domain are available.
The downloaded data can act as a good estimation of our
target server data. With the help of the downloaded data,
the estimation can be rather simple. For example, if we
need the |RS(q)| value for some computer science papers

on Google Scholar, we can use the data from DBLP1 as an
estimation. DBLP includes more than one million articles
on computer science. Let |RDBLP (q)| be the number of
items related to query q in the DBLP data dump, then the
value of |RS(q)| can be estimated as |RDBLP (q)| · c. c is a
scaling factor representing the volume difference of these two
data sources. c can be estimated by comparing the results
number of several queries on these two data sources.

4.2 Poisson Analysis
In Section 4.1, we introduced the greedyProbes algo-

rithm to find a set of queries that cover the local dataset.
Suppose the set of queries found is P = {q1, q2, . . . , qk} and
RL(q1), RL(q2), . . . , RL(qk) denote the corresponding results
of the k queries.
In many practical applications, the number of queries, k,

can be quite large. For instance, a website that keeps track
of thousands of products sold on Amazon.com may need
hundreds if not thousands of queries to synchronize its list.
Previously, we have assumed that these k queries can be
executed and results obtained from the server database in-
stantaneously. When k is large, the assumption is not valid.
Moreover, the server may not even allow such a large num-
ber of queries from a single client in a single refresh event.
Thus, we need to “spread out” the queries over time and try
to maximize the content freshness with less frequent queries
to the server. One of the simplest models is to issue one
query at fixed time intervals. Let I be the fixed time in-
terval. At each time slot, we issue exactly one query, and
thus we finish one iteration of the synchronization loop in
the refreshLocal algorithm within a time span of kI + τ
time units.
Two questions immediately arise with this model. First,

what is the order of issuing the queries, and second, how
does the fixed time interval I impact the content freshness
of the dataset. To answer these two questions, we introduce
a theoretical content freshness measure and a Poisson update
model of the source data in order to perform the analysis for
these two questions.

Definition of F (e; t). Suppose we measure the content fresh-
ness of an item e at time t as follows.

F (e; t) =

{
0 if e is up-to-date at time t∑

ti∈U t− ti otherwise

where U is the set of time points at which an update occurs
on the server (e changes value) since last synchronization.
Then the content freshness of the local relation L at time t
is

F (L; t) =
1

|L|
∑
e∈L

w(e) · F (e; t) (3)

Fig. 1 shows an example illustrating this definition of con-
tent freshness. The content freshness of e stays zero before
the first updating. After that the content freshness keeps
growing at a speed of one till the first synchronization. After
the first synchronization, the content freshness drops to zero
and remains zero till next updating. The content freshness
keeps increasing from the third updating. Since no synchro-
nization has occurred since the third updating, the content
freshness keeps growing at the speed of two after the fourth

1The DBLP Computer Science Bibliography: http://www.
informatik.uni-trier.de/~ley/db

Time

0

F(e;t)

Element is updated

Element is synchronized

1 2 3 4 5 6 7 8

Figure 1: An Example of the Time Evolution of Con-
tent Freshness

time content freshness
6 6 - 5 = 1
7 (7 - 5) + (7 - 6) = 3
8 (8 - 5) + (8 - 6) + (8 - 7) = 6

Table 2: F (e; t) of e at time 6, 7 and 8

updating and at the speed of three after the fifth updating.
If the time of the third, fourth and fifth updating is 5, 6 and
7 respectively, then the content freshness of e at time 6, 7
and 8 is shown in Table 4.2.

Poisson Update Model. Suppose we model the update
characteristics of a source data element (eg. paper citation
count) using a Poisson process2. For an item e, the parame-
ter of the Poisson process is λ which represents the number
of update events in one time unit. A Poisson process implies
that update events do not occur simultaneously. In the pa-
per citation scenario, this means that the citation count can
only increase by one at each update event.

Let N(t) be the number of update events within a time
period of t. Then we have the following based on the Poisson
assumption:

P (N(s+ t)−N(s) = k) =
(λt)k

k!
e−λt

Next, we derive the expected content freshness at time t un-
der this update model. Let the sequence of Poisson update

2Cho et. al. [3] verified the changes of Web pages followed
a Poisson process. As the information of source data ele-
ments is extracted from Web pages, the update characteris-
tics should also follow a Poisson process.

event times be τ1, τ2, · · · , τk, At time x, we have

P (τk = x) = lim
dt→0

P (N(x+ dt) ≥ k,N(x) = k − 1)

dt

= lim
dt→0

1− P (N(dt) = 0)

dt
P (N(x) = k − 1)

= lim
dt→0

1− (1− λdt+O(dt2))

dt

(λx)k−1

(k − 1)!
e−λx

= λ
(λx)k−1

(k − 1)!
e−λx

Hence, the contribution of each k-th update to the expecta-
tion of content freshness is,∫ t

0

(t− x)λ
(λx)k−1

(k − 1)!
e−λxdx

Adding up the above expression for k = 1, 2, · · · ,∞ gives

∞∑
k=1

∫ t

0

(t− x)λ
(λx)k−1

(k − 1)!
e−λxdx =

1

2
λt2

However, this expression does not guarantee the order τ1 <
τ2 < · · · < τk < · · · . So some unsatisfactory situations
should be excluded from this value, i.e.,

E[F (e; t)] <
1

2
λt2

On the other hand, E[F (e; t)] must be bigger than the ex-
pectation of τ1, so

E[F (e; t)] >

∫ t

0

(t− x)λe−λxdx

= t(1− 1− e−λt

λt
)

∼ 1

2
λt2

Combining the upper and lower bound, we have

E[F (e; t)] ∼ 1

2
λt2,

as the expression to represent the expectation of content
freshness at time t since time 0.

4.3 Query Order Optimization
Let gi be the group of data elements covered by issuing

query qi, i.e., we use gi as a shorthand for RL(qi). After issu-
ing a query qi, the elements in the group gi are synchronized
together. For our analysis, we assume gi ∩ gj=∅, ∀i ̸= j (if
they are not we can artificially remove duplicates from the
groups). Let xi denote the time when gi was last synchro-
nized and xi satisfies the constraints xi ∈ {0, 1, 2, · · · , k},
i = 1, 2, · · · , k, and xi ̸= xj if i ̸= j. Then, if we send one
query in a time unit I, the expected content freshness of L
at time t = kI is

E[F (L; kI)] =
1

|L|

k∑
i=1

∑
ej∈gi

w(ej)E[F (ej ; (k − xi)I)]

=
1

|L|

k∑
i=1

∑
ej∈gi

1

2
w(ej)λj(k − xi)

2I2

Let ai be a shorthand for 1
|L|

∑
ej∈gi

1
2
w(ej)λjI

2, which

for fixed I and local copy of relation L, ai is a positive

constant. We have

E[F (L; kI)] =

k∑
i=1

ai(k − xi)
2 (4)

To achieve the smallest content freshness L, we want to
minimize Eqn. (4).

Clearly, the order of the queries, which is embodied by the
vector of xi, makes an impact on the content freshness. In
Table 3, we use an example to demonstrate the relationship
between the ordering and the content freshness. Assume i)
the local dataset maintains 4 items, L = {e1, e2, e3, e4}; ii)
item has the same weight, that is, w(ei) = {1, 1, 1, 1}; iii)
each item is updated by a Poisson process, with parameter
(λi) = (1, 2, 3, 4), and iv) e1 and e2 are covered by query q1,
e3 and e4 are covered by query q2.

Table 3: Content Freshness L for k = 2, I = 1, (λi) =
(1, 2, 3, 4), w(ei) = {1, 1, 1, 1}

x1 = 0 x1 = 1 x1 = 2
x2 = 0 5 3.875 3.5
x2 = 1 2.375 N/A 0.875
x2 = 2 1.5 0.375 N/A

For I = 1, we have a1 = 0.375 and a2 = 0.875, and
Eqn. (4) becomes 0.375(2− x1)

2 + 0.875(2− x2)
2. We need

to decide the order of queries or the exact value of xi so
that Eqn. (4) is minimized. As k = 2, we can enumerate
the value of xi. The result is shown in Table 3. We see that
0.375 is the minimum, which means we should send q1 first
and then q2. In this case, a1 < a2 and Eqn. (4) is minimized
when q1 is send before q2. This indicates that the order to
send the queries and the order of ais should be the same in
order to minimize Eqn. (4). We have the following greedy
algorithm.
Greedy Query Order Optimization. Sort ai’s in Eqn. (4)
in ascending order, that is, ap1 < ap2 < · · · < apk where
{p1, · · · , pk} = {1, · · · , k}. Then, xpi = i ∀i = 1, 2, · · · , k,
that is, sending query qpi at time iI, minimizes Eqn. (4).

The proof is simple. According to rearrangement inequal-
ity, Eqn. (4) is minimal when (k − xp1)

2 > (k − xp2)
2 >

· · · > (k − xpk)
2 or xp1 < xp2 < · · · < xpk . As we can

send k queries, so every xi is positive if we need to minimize
Eqn. (4). Thus xpi = i ∀i = 1, 2, · · · , k.

After all queries have been sent in the order specified by
vector xi, the algorithm sleeps for τ time units and another
loop starts from the first query in the list. Each loop lasts
for kI + τ time units.

Sometimes the the number of queries we can issue in each
synchronization loop is low, then, some elements will not be
synchronized in a loop. In the subsequent loops, the content
freshness of the unsynchronized elements in previous loops
will become significantly bigger because they have big values
of t in 1

2
λt2. So these unsynchronized elements will finally

get synchronized as this will lead to a great decrease in the
content freshness of local relation L.

4.4 Query Frequency Optimization
We send a query every I time units and k queries require

kI time units. If we do not send these queries, the content
freshness of L will become kI|L| if the content freshness of
L increases as a linear function of the time. Our target is to

ensure that the content freshness of L does not go beyond
αkI|L| where α is a threshold, i.e., E[F (L; kI)] < αkI|L|.
For fixed L, E[F (L; kI)] is a function of x = (x1, · · · , xk)

and I. Let f(x, I) = E[F (L; kI)], x̃ := argminx f(x, I),
and g(x, I) = 1

kI|L|f(x, I), then the target becomes g(x, I) <

α, where g(x) is given as

g(x, I) =
1

|L|2
k∑

i=1

∑
ej∈qi

w(ej)λj(k − xi)
2

2k
I

g(x, I) is an increasing function of I for fixed x and L. If
I1 > I2 > 0, we have

g(x̃1, I1) > g(x̃1, I2) (5)

=
1

kI2|L|
f(x̃1, I2) (6)

≥ 1

kI2|L|
f(x̃2, I2) (7)

= g(x̃2, I2) (8)

(5) is because g is an increasing function of I. (7) is based
on the definition of x̃. (6) and (8) are both based on the
definition of g.
We start with a random value of I0 (a simple choice is

1), and we calculate the correspondent x̃0 and the value of
g(x̃0, I0). If the value is small than α, we use 21I0, 2

2I0, · · · ,
2sI0 until g(x̃s, 2

sI0) is bigger than α; otherwise we use
2−1I0, 2

−2I0, · · · , 2sI0. After the process, we have

g(x̃s−1, 2
s−1I0) ≤ α ≤ g(x̃s, 2

sI0), s ∈ Z

Then we just do a binary search in the interval [2s−1I0, 2
sI0]

to get the final value of I.

5. EXPERIMENTS
In this section we describe the implementation of our pro-

totype and present an experimental evaluation of our greedy
synchronization method.

5.1 Settings

Methods. Our implementation considers all possible key-
word subsets up to a fixed size. We found empirically that
considering all subsets up to size two is already sufficient for
good performance. A keyword query often returns multi-
ple pages of ranked results. We use two methods to extract
results from them.

Method 1 Scan through all result pages to extract as many
tuples in the local relation as possible.

Method 2 Scan only the first page of results.

Data sets. We present experimental results for two appli-
cation scenarios: paper citations and on-line DVD stores.
For the paper citation scenario, we used the real citation
data from Google scholar as the server database. To esti-
mate the server coverage in the query efficiency heuristics,
we used statistics extracted from DBLP. We also generated
synthetic citation update data for the experiments measur-
ing content freshness since it is not possible to obtain up-
date and the data generation procedure will be described in
Sec. 5.2. For the on-line DVD stores, we used real DVD pric-
ing data from Amazon.com as our server database and the

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

Time

C
on

te
nt

 F
re

sh
ne

ss

Naive 2
Naive 1
Greedy

Figure 2: Content Freshness of Different Methods
with the Same Query Frequency

statistics extracted from Internet Movie Database3 (IMDB)
to estimate the query efficiency heuristics.

Performance Measures. We use three different measures
in our experiments. Content freshness measures the up-
to-dateness of the local database with respect to a server
database. Since update characteristics of the data elements
on the server database cannot be observed, we use the for-
mula with Poisson approximation in Eqn. (3). Coverage ra-
tio measures the expected fraction of the number of tuples
in the local relation covered by a set of queries Q,

Coverage Ratio =

∑
q∈Q Ecoverage(q)

|L| .

Ecoverage(q) is the expected number of tuples in the local
relation associated with query q. In Method 1, Ecoverage(q)
is |RL(q)|. In Method 2, Ecoverage(q) is computed as,

Ecoverage(q) =
p · |RL(q)|
|RS(q)|

,

where p is the number of tuples in a result page and the
server coverage term |RS(q)| is estimated using statistics
(eg. |RS(q)| ∝ |RDBLP (q)| in our citation scenario). Finally,
Speedup ratio measures the number of queries send to the
server divided by the expected number of tuples in the local
relation covered by the queries,

Speedup Ratio =

∑
q∈Q N(q)

| ∪q∈Q RL(q)|
.

N(q) is the total number of queries send to the server for
query q. In Method 1, N(q) is computed as

N(q) =
|RS(q)|

p
,

where p is the number of tuples in a result page. In Method
2, N(q) is simply 1 for all q ∈ Q. Coverage ratio measures
the number of tuples in the local relation covered by Q.
Then for the tuples covered by Q, we need | ∪q∈Q RL(q)|
simple queries (i.e., ID based query) to synchronize them all.
However, using our method, only

∑
q∈Q N(q) keyword based

queries are needed. Speedup ratio measures the speedup
between these two methods. These two measures should
be considered together as we need both high coverage ratio
and high speedup ratio.

3Internet Movie Database: http://www.imdb.com

5.2 Content Freshness
In this experiment we investigate the performance in terms

of content freshness for the“Naive 1”,“Naive 2”and“Greedy”
refresh algorithms. “Naive 1” sends simple queries (that is,
ID based query). “Naive 2” also sends simple queries while
the λ of every corresponding item is less than 1 (i.e., the
item does not change too frequent). “Greedy” sends key-
word queries picked by our approach.
The experiment is performed under the paper citations

scenario. We generate synthetic citation data for this ex-
periment based on statistics from the Physical Review jour-
nal [12]. The generated data contains 1000 papers with a
citation distribution [12] following a power law, NC(x) ∼
x−α, with α ≈ 3. We set the minimum number of cita-
tion to one, and use α = 3 to get the normalize factor
2(i.e., calculate the constant factor in the citation distri-
bution for

∫∞
x=1

NC(x) = 1). So our citation distribution

is NC(x) = 2
x3 . Every paper is assigned an initial citation

number from the NC(x) distribution. [13] uses attachment
rate Ak to characterize the development of citations. Ak

gives the likelihood that a paper with k citations will be
cited by a new article. The data of 110 years of Physical
Review suggests that Ak is a linear function of k(the scale
factor is about 0.25), especially for k less than 150. We
choose Ak to be 0.25k, thus the λ of every paper is equal
to a quarter of the initial citation number. As the update
model of paper citation is assumed to be a Poisson process,
we generate the citation update events of every paper based
on its λ. In order to simulate the grouping effect of the
greedyProbes algorithm, we generate a group number for
each paper. We have 200 groups while each can cover at
most 10 papers. On average, a group covers about 5 papers.
Then the papers in a group are synchronized by one query
together.
Fig. 2 shows the content freshness of different refresh al-

gorithms with the same query frequency. The “Naive 1”
line, “Naive 2” line and “Greedy” line represent the content
freshness of sending 10 queries using the corresponding algo-
rithm. During the first 100 time units, the content freshness
of these methods looks similar. From 100 time unit to 500
time unit, the content freshness of the “Naive 1” and “Naive
2” line experiences a stepped climbing procedure. Both line
grow over 2000 at time 200 while the “Greedy” line is only
about 200. Using our greedy synchronization strategy, more
than 10 papers are synchronized during a time unit while the
other two methods synchronize only 10 papers. So the con-
tent freshness of the “Greedy” line is much lower. Although
the “Naive 1” method and “Naive 2” method synchronize
the same number of papers during a time unit, but some
papers will never get synchronized due to the synchroniza-
tion strategy of the “Naive 2” method. When the time is
long enough, the content freshness of these unsynchronized
elements become extremely big and dominate the final value
of the content freshness of the set. So the content freshness
of “Naive 2” line finally goes beyond the “Naive 1” line. It
keeps growing over 2500 at 500 time unit and appears to
keep growing in the later time. The content freshness of
“Greedy” line is controlled under 600 and the average con-
tent freshness is only about 350. It is clear that “Greedy”
algorithm performs the best among these three methods.

5.3 Quality of Query Probes
In the next series of experiments, we investigate the per-

formance of our greedy synchronization approach by look-
ing at the quality of the query probes generated by our
greedyProbes algorithm at each refresh event. The qual-
ity of a set of query probes is measured using the coverage
ratio and speedup ratio.

Paper citations scenario. In the paper citations scenario,
we want to maintain the citations of a set of papers. We
use the DBLP data dump to estimate the value of RS(q) for
query q. RDBLP (q) is the set of papers in the DBLP data

associated with query q. Assume the ratio of |RS(q)|
|RDBLP (q)| is

a specific constant c. Based on the results of several queries,
we estimate the constant c as 4.6.

We create a paper set with 671 papers on 7 topics from
the Google Scholar search result. Title and author are the
attributes used in the experiment.

Using author as the keyword, we make a bag to hold all
authors related to not covered papers. Then these authors
are ranked based on their occurrences. The top-k frequent
authors are selected to make up the keyword set K. Smaller
k makes the greedyProbes algorithm faster while bigger k
one is slower. But bigger k one is more likely to find an op-
timal solution as it tries more situation than smaller k one.
So we change the value of k to see the value of the coverage
ratio and the speedup ratio. Then we select the smallest k
which achieves a high enough coverage and speedup ratio,
i.e., we use the smallest computational resource to execute
the greedyProbes algorithm. The result of different k is
shown in Fig. 3(a) and Fig. 3(b). The “Method 1 on Au-
thor” line and “Method 2 on Author” line in Fig. 3(a) are
overlapping. Both line stay at the same value. So k does
not affect the coverage ratio criteria in this case. As for
the speedup ratio, the value of Method 1 remains the same
while the value of Method 2 also remains the same. Method
2 performs slightly better than Method 1 on speedup ra-
tio. To sum up, the keyword set size does not affect the
performance of the algorithm for the author attribute. So
directly choosing the most frequent author as a query will
get a satisfactory result.

Experiment on title is carried out similarly. Every title is
broken into single words and collected by a bag. Stopwords
are removed from the bag and the remaining words are still
ranked by their occurrences. The top-k frequent words are
selected as the keyword set. Result is also shown in Fig. 3(a)
and Fig. 3(b). When the keyword size is 1 (k = 1), the algo-
rithm will always return single word queries as the keyword
set has only one word. But the selectivity of single word
queries from titles is extremely low, that is, you will get
millions of papers if you send a single word query from ti-
tles to the search engine. It is easy to see that single word
queries from titles can always cover the local paper set. So
the coverage ratio of “Method 1 on Title” is 100%. But if
you use Method 2 to retrieve the results, you will get an
extremely low coverage ratio as the expected number of pa-
pers in the first result page is small. In the experiment, the
coverage ratio of “Method 2 on Title” is nearly zero when k
is 1. However, when the keyword size is exactly 2 (k = 2),
the iteration procedure is more likely to return query of two
keywords as the selectivity of two keywords query is much
higher than single word query. The “Method 2 on Title”
line starts from about 55%, drops below 20% immediately,
and then increases to about 60% as k varies from 2 to 100.
Intuitively, large keyword set size is more likely to return a

0 20 40 60 80 100
0%

20%

40%

60%

80%

100%

Keyword Set Size

C
o
ve

ra
g
e
 R

a
tio

Method 1 on Title
Method 1 on Author
Method 2 on Author
Method 2 on Title

(a) Coverage Ratio

0 20 40 60 80 100
0%

200%

400%

600%

800%

1000%

Keyword Set Size

S
p

e
e

d
u

p
 R

a
tio

Method 2 on Title
Method 1 on Title
Method 1 on Author
Method 2 on Author

(b) Speedup Ratio

0 2 4 6 8 10 12 14
0%

20%

40%

60%

80%

100%

Iteration

C
o
ve

ra
g
e
 R

a
tio

Coverage

(c) Coverage Ratio Growth (Top 5 frequent
keyword from titles & Method 1)

Figure 3: Coverage ratio, speedup ratio and coverage ratio growth of the Google paper citations data set.
Note that in the coverage ratio plot, the lines for “Method One on Author” and “Method Two on Author” are
overlapping, and in the speedup plot, the lines for Method One on Author” and “Method Two on Author”
are overlapping.

0 20 40 60 80 100
0%

20%

40%

60%

80%

100%

Keyword Set Size

C
o
ve

ra
g
e
 R

a
tio

Method 1 on Author
Method 1 on Title
Method 2 on Author
Method 2 on Title

(a) Coverage Ratio

0 20 40 60 80 100
0%

50%

100%

150%

200%

250%

300%

350%

Keyword Set Size

S
p

e
e

d
u

p
 R

a
tio

Method 2 on Author
Method 1 on Author
Method 2 on Title
Method 1 on Title

(b) Speedup Ratio

0 500 1000 1500
0%

20%

40%

60%

80%

100%

Iteration

C
o
ve

ra
g
e
 R

a
tio

Coverage

(c) Coverage Ratio Growth (Top 1 frequent
keyword from authors & Method 1)

Figure 4: Coverage ratio, speedup ratio, and coverage ratio growth of Microsoft Research paper citations
data set. Note that in the coverage ratio plot, the lines for “Method One on Author” and “Method One on
Title” are overlapping.

better group of queries in the query generation. But in this
case, the performance of keyword size set 75 is worse than
that of keyword size set 2 and the performance of keyword
size set 100 is roughly the same as that of keyword size set
2. The reason lies in the query generation algorithm is a
greedy one. Greedy algorithm does not guarantee to return
an optimal solution as there is chance for the selection pro-
cedure to return a query which does not lead to the optimal
solution.
Similar for the coverage ratio, the speedup ratio of Method

1 and Method 2 on title is nearly zero when the keyword size
is 1. This is also because of the extremely low selectivity of
single keyword query. The speedup ratio of Method 1 and
Method 2 on title changes a lot in Fig. 3(b). The reason
also lies in the algorithm is a greedy one. As the coverage
ratio line of “Method 1 on Title” stays at about 100% for all
keyword set size, then the keyword set size which achieves
the highest speedup ratio performs best for “Method 1 on
title”. In this case, the speedup ratio of keyword size set 5
and keyword size set 10 are roughly the same. So we choose
the smaller one 5 to achieve a better time efficiency.
As the coverage ratio of “Method 2 on Title” is low, the

speedup ratio of “Method 1 on Author” and “Method 2 on
Author” are lower than that of “Method 1 on Title”, Method
1 on title with top 5 frequent keyword (keyword set size 5)

achieves the best performance in this case. The growth of
coverage ratio as the iteration time increases in this config-
uration is shown in Fig. 3(c). During the first 8 iteration,
high coverage queries are generated, so the curve increases
sharply. The last five iterations generate relatively lower
coverage queries, so the curve increases smoothly.

We also conduct experiments on larger data sets. 6839
papers from Microsoft Research are used as the local data
set. In this case, affiliation is the best attribute to make a
query, i.e., you can simply send “Microsoft Research” to the
search engine to get the list of all these papers. However,
Google Scholar does not support affiliation as the search at-
tribute. So we still have to use title and author as attributes
to make queries. Result is shown in Fig. 4(a) and Fig. 4(b).
The best performance is taken when using top-1 frequent
keyword from authors and the coverage ratio growth of this
best performance case is shown in Fig. 4(c). In this case,
the performance of author attribute is still very stable while
the performance of title attribute changes a lot. When the
keyword set size is 1, the title attribute achieves the worst
performance for the low selectivity of single keyword query.
However, there is still difference between the performance of
the two data sets. In the Google paper citations data set,
the best performance is taken on the title attribute. But
in the Microsoft Research paper citations data set, the best

0 20 40 60 80 100
0%

20%

40%

60%

80%

100%

Keyword Set Size

C
o

ve
ra

g
e

 R
a

tio

Method 1 on Name
Method 1 on Director
Method 2 on Director
Method 1 on Actor
Method 2 on Actor
Method 2 on Name

(a) Coverage Ratio

0 20 40 60 80 100

40%

80%

120%

160%

Keyword Set Size

S
p

e
e

d
u

p
 R

a
tio

Method 2 on Name
Method 2 on Actor
Method 1 on Director
Method 2 on Director
Method 1 on Actor
Method 1 on Name

(b) Speedup Ratio

0 50 100 150 200 250 300 350 400
0%

20%

40%

60%

80%

100%

Iteration

C
o
ve

ra
g
e
 R

a
tio

Coverage

(c) Coverage Ratio Growth (Top 1 frequent
keyword from actors & Method 1)

Figure 5: Coverage ratio, speedup ratio and coverage ratio growth for the Amazon price data set. Note that
in the coverage ratio plot, the lines for “Method One on Director”, “Method Two on Director”“Method One
on Actor” and “Method Two on Actor” are overlapping, and in the speedup plot, the lines for “Method One
on Director”, “Method Two on Director” and “Method One on Actor” are overlapping.

performance is taken on the author attribute. The differ-
ence between the results reveals the characters of the data
set. As the Google paper citations data set is generated
using several topics, there is a lot of common words in the
titles of the papers. So the performances of title attribute is
the best. The Microsoft Research paper citations data set is
a collection of papers published by researchers in Microsoft
and many papers share the same author in the data set. So
the performance of author attribute is the best.

The Online DVD Stores Scenario. In the online DVD
stores scenario, we keep track of the price information of
a movie set through synchronization with the Amazon.com
data source. We use the IMDB (an online database of in-
formation related to movies, actors, television shows, etc.)
statistics to estimate the value of RS(q) as 0.58·|RIMDB(q)|.
Name, director and actor are attributes chosen to carry out
the experiment. Results on these three attributes are shown
in Fig. 5(a) and Fig. 5(b). The best performance is achieved
when using top 1 frequent keyword from actors and the cov-
erage ratio growth is shown in Fig. 5(c).

6. CONCLUSION
Many applications keep local copies of data that is fre-

quently updated on the web. In this paper, we introduce
the concept of content freshness as opposed to the tradi-
tional concept of data freshness. Our goal is to keep a local
copy of remote data up-to-date. Unlike previous approaches,
we take advantage of the semantics of the data in designing a
synchronization strategy which gives priority to highly im-
portant and/or volatile data. Assuming the remote data
is only accessible via keyword search, we solve an optimiza-
tion problem that minimizes the number of keyword searches
while maximizing the up-to-dateness of the local data.

7. REFERENCES
[1] L. Barbosa and J. Freire. Searching for hidden-web

databases. In Proceedings of WebDB, volume 5, pages
1–6. Citeseer, 2005.

[2] L. Barbosa and J. Freire. An adaptive crawler for
locating hidden-Web entry points. In World Wide
Web, pages 441–450. ACM New York, NY, USA, 2007.

[3] Junghoo Cho and Hector Garcia-Molina.
Synchronizing a database to improve freshness.
SIGMOD Rec., 29(2):117–128, 2000.

[4] P. Deolasee, A. Katkar, A. Panchbudhe,
K. Ramamritham, and P. Shenoy. Adaptive push-pull:
disseminating dynamic web data. In World Wide Web,
pages 265–274. ACM New York, NY, USA, 2001.

[5] Ping Li and Kenneth W. Church. A sketch algorithm
for estimating two-way and multi-way associations.
Comput. Linguist., 33(3):305–354, 2007.

[6] Hao Liang, Wanli Zuo, Fei Ren, and Junhua Wang.
Translating query for deep web using ontology. In
CSSE (4), pages 427–430, 2008.

[7] Jianguo Lu, Yan Wang, Jie Liang, Jessica Chen, and
Jiming Liu. An approach to deep web crawling by
sampling. In Web Intelligence, pages 718–724, 2008.

[8] Jayant Madhavan, David Ko, Lucja Kot, Vignesh
Ganapathy, Alex Rasmussen, and Alon Y. Halevy.
Google’s deep web crawl. PVLDB, 1(2):1241–1252,
2008.

[9] A. Ntoulas, P. Pzerfos, and J. Cho. Downloading
textual hidden web content through keyword queries.
In Digital Libraries, 2005. JCDL’05. Proceedings of
the 5th ACM/IEEE-CS Joint Conference on, pages
100–109, 2005.

[10] C. Olston and J. Widom. Best-effort cache
synchronization with source cooperation. In SIGMOD,
pages 73–84. ACM New York, NY, USA, 2002.

[11] S. Raghavan and H. Garcia-Molina. Crawling the
hidden web. In VLDB, pages 129–138, 2001.

[12] S. Redner. How popular is your paper? An empirical
study of the citation distribution. The European
Physical Journal B, 4(2):131–134, 1998.

[13] S. Redner. Citation statistics from 110 years of
Physical Review. Physics today, 58(6):49–54, 2005.

[14] K.C. Sia, J. Cho, and H. Cho. Efficient monitoring
algorithm for fast news alerts. TKDE, 19(7):950, 2007.

[15] V.V. Vazirani. Approximation algorithms. Springer,
2004.

[16] Yan Wang, Jianguo Lu, and Jessica Chen. Crawling
deep web using a new set covering algorithm. In
ADMA, pages 326–337, 2009.

[17] P. Wu, J.R. Wen, H. Liu, and W.Y. Ma. Query
selection techniques for efficient crawling of structured
web sources. In ICDE, pages 47–47, 2006.

