
Schema Advisor for Hybrid Relational-XML DBMS

Mirella M. Moro
∗

University of California
Riverside, CA, USA

mirella@cs.ucr.edu

Lipyeow Lim
IBM T.J. Watson Research Ctr.

Hawthorne, NY, USA

liplim@us.ibm.com

Yuan-Chi Chang
IBM T.J. Watson Research Ctr.

Hawthorne, NY, USA

yuanchi@us.ibm.com

ABSTRACT
In response to the widespread use of the XML format
for document representation and message exchange, major
database vendors have started supporting XML in terms
of persistance, querying and indexing. Specifically, the re-
cently released IBM DB2 9 (for Linux, Unix and Windows)
is a hybrid data server with optimized management of both
XML and relational data. With the new option of storing
and querying XML in a relational DBMS, data architects
face the problem of deciding what portion of their data to
persist as XML and what portion as relational data. This
problem has not been addressed yet and represents a seri-
ous need in the industry. Therefore, this paper describes
ReXSA, a schema advisor tool that is being prototyped for
IBM DB2 9. ReXSA proposes candidate database schemas
given an information model of the enterprise data. It has
the advantage of considering qualitative properties of the in-
formation model such as reuse, evolution and performance
profiles for deciding how to persist the data. Finally, we
show the viability and practicality of ReXSA by applying
it to custom and real usecases.

1. INTRODUCTION
It is no longer a conjecture that XML data and relational

data will always co-exist and complement each other in en-
terprise data management. XML documents and messages
pervade enterprise systems such that XML formats have
been standardized for data storage and exchange in many
industries. While much critical data are still in relational
format, practitioners have increasingly turned to XML for
storing data that do not fit into the relational model.

In the healthcare industry, for example, XML is widely
used for sharing the metadata of medical records in backend
repositories. In one real-world scenario, the schema for the
metadata contains over 200 variations in order to support
the diverse types of medical documents being persisted and

∗
Research done while visiting IBM T J Watson Research Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

queried. These 200 variant types have a shared common
section and specific individual extensions. Persisting such
metadata in relational format results in a large number of
tables and poor performance. Moreover, adding a new type
of document requires at least two weeks for re-engineering
the relational schema to accommodate the new type.

In another example, XML is heavily employed in trading
systems for representing financial products such as options
and derivatives. New types of derivatives are invented every
week, which in turn triggers weekly data model changes and
hence schema changes. Again, using a relational format re-
quires lengthy database schema changes and data migration
that, consequently, affect the agility of the business.

As those two real cases, enterprises in various industries
have turned to XML for greater flexibility and easier mainte-
nance, when compared to relational representation. On the
other hand, much legacy data and transactional data re-
mains highly rigid and well-suited for the relational model.
It is clear that neither pure relational nor pure XML data
management systems will suffice. Instead, a system that can
deal with both types of data is much needed.

Commercial DBMS (Database Management System) ven-
dors have long recognized the need for hybrid relational-
XML systems. Hence, all major commercial DBMSs include
some level of support for XML data in terms of persistance,
querying and indexing [18]. In particular, the recently re-
leased IBM DB2 9 (for Linux, Unix and Windows) is a hy-
brid data server with optimized management of both XML
and relational data. While XML is now a first-class citizen
in the DBMS, data architects are still unsure of how exactly
to persist their data because it is still not trivial to decide
what portion of the enterprise data to persist as XML and
what portion as relational data.

In this paper, we describe ReXSA (Relational-XML

Schema Advisor), a tool that addresses the challenge of de-
signing hybrid database schemas. Given an annotated in-
formation model of the enterprise data, ReXSA evaluates
it and recommends a database schema that harmonizes re-
lational and XML data models. ReXSA fills a void in the
currently available set of database tools. While tools for
designing and generating pure relational schemas and pure
XML schemas exist, there is currently no tool available to
help data architects design database schemas for both re-
lational and XML data. Moreover, ReXSA complements
information modeling tools such as IBM’s Rational Data
Architect [15] in that the information model produced from
such tool can be fed as input into ReXSA.

The problem of generating relational-XML schemas from

1

an information model is particularly challenging for many
reasons. First, while major database vendors support XML
within their relational products, few industry and academic
studies have ventured to suggest methodologies for such new
design environment. Second, the parameters and require-
ments of the problem are many and diverse. Given a par-
ticular usage scenario, there are many ways to model the
information needs and there are several ways to annotate
the model. Similarly, the users (data architects) may also
have different priorities for the schema. In some cases, flex-
ibility is of paramount importance, in other cases, query
performance is. Third, in general, the solutions are not
unique because different relational-XML schemas can sat-
isfy the same set of parameters and requirements.

Focusing on those challenges, ReXSA is able to generate
different candidate schemas for the user to choose, then sim-
plifying the whole process by avoiding the many options that
create much confusion. In summary, ReXSA’s approach is
to pick a default schema for the user, while allowing the more
savvy user to examine the different candidate schemas.

A key sub-problem in the hybrid schema design is deciding
what portion of the data to be relational and what portion
to be XML. Our usecases and practical knowledge tells us
that data with high schema variability, data with rapidly
evolving schema, and data that is sparse should be ideally
persisted in XML [3]. ReXSA’s approach is to determine
the level of flexibility of each entity in the information model
(an entity-relationship model can be assumed for concrete-
ness) and classify each entity as relational or XML according
to various requirements. However, this classification is not
final. The relationships that an entity participates in can
affect its classification. ReXSA then examines each rela-
tionship and transforms the entities and relationships into
an appropriate collection of candidate schemas.

The contributions of this paper are summarized as follows.

• We address the new problem of hybrid relational-XML
schema design, which has not been adequately ex-
plored yet, representing a serious need in the industry.

• We present ReXSA, an advisor tool for generating
candidate hybrid relational-XML schemas to help data
architects to deal with this problem. ReXSA presents
the candidate schemas interactively to the user, who
simply accept the default mappings or configure new
default options.

• A key feature in ReXSA is a method for deciding what
portion of the data to persist as relational and what
portion as XML. No relational and XML design tools
today present any solution for this issue.

• ReXSA considers qualitative properties of modeling
elements such as variation and evolution that no other
tool considers. Moreover, ReXSA is able to define
schemas for hierarchies composed of both XML and
relational entities. ReXSA also recommends schema
alternatives to address different performance profiles.

The rest of this paper is organized as follows. Section 2
discusses related work and overviews the main XML-related
features on IBM DB2. Section 3 discusses how to annotate
the information model, which is the input to ReXSA, so as
to capture data requirements. Section 4 details the ReXSA

prototype, its main functionalities and algorithms. Section 5
discusses the main features of the prototype by employing it

for modeling custom and real case scenarios. Finally, section
6 concludes the paper and presents future work.

2. RELATED WORK
The major commercial DBMSs (i.e. IBM DB2, Oracle

and Microsoft SQL Server) provide support for storing and
querying XML data in addition to relational data [18]. De-
signing high performance XML-relational DBMSs is a sub-
ject that has received a great deal of attention in recent
years, but considerable less efforts are directed toward pro-
viding a solid modeling methodology for designing databases
on such hybrid data model.

While modeling relational databases is a well understood
subject, modeling XML databases has yet to have a stan-
dard, well accepted methodology. Most approaches focus
on extending traditional modeling techniques in order to
support XML data. For example, [4] uses ORM as concep-
tual model and proposes heuristics for generating the “best”
XML Schema, [10] improves the Extended Entity Relation-
ship (EER), and [8, 16] are based on the UML. A more prac-
tical approach is [7] that proposes a conceptual model based
on UML for defining complex XML schema. The tool also
generates the schema based on specific designs (plain design,
Russian doll, salami slice, Venetian blinds). Finally, [11]
proposes normalization rules (XNF - XML Normal Forms)
to DTD (not XML Schema) focusing on two main properties
of maximum connectivity and minimal redundancy.

Regarding commercial tools, several exist for translat-
ing ER models and/or UML models to relational database
schema, such as: IBM Rational Data Architect, Visual
Paradigm’s Database Visual Architect, Toad Data Mod-
eler, XCase, Silverrun ModelSphere. For generating XML
schemas, IBM [14, 13] and Sparx Systems [19] have soft-
ware packages or libraries for converting a conceptual model
(UML, ECORE, etc.) to XML schemas.

All those previous works focus on designing pure-XML
databases by using well known methodologies for modeling
relational and object-oriented databases. Our work is inde-
pendent of which tool or methodology is used for modeling
the data. In fact, following the implementation of IBM DB2,
we focus on a new context where XML data is part of a re-
lational database by being defined as an atomic type. This
way, the problem is not how to model an XML schema but
rather how to incorporate XML data to a relational DB.

On the other hand, there has been much previous work
on automatically shredding XML data into relational tables.
Since there is no unique relational equivalent to a given XML
schema or dataset, shredding algorithms pick an XML-to-
Relational mapping based on some cost model. As previ-
ously stated, various considerations in logical to physical
schema mapping lend difficulties in defining quality metrics
that consistently reflect the trade-offs among workloads, per-
formance, flexibility and evolution. Our work differs from
shredding in several aspects. First, we are mapping from
a given logical model to a physical model that consists re-
lational tables that could have XML columns. Second, our
approach relies on human experts’ intuition to choose among
mapping alternatives recommended by our tool. Earlier
published work took view of workload-aware and workload-
ignorant mappings from XML to relational. For example, [2]
ignored the workload to discover regularities in XML data
and store the ’structured’ regular elements in a relation,
while leaving ’irregular’ fragments in XML. Alternatively,

2

[5] reported cost-based schema mapping from XML data
to relational tables, by estimating query performance for a
given workload. It must be recognized, however, that fur-
ther tuning of relational databases with techniques includ-
ing index, partitioning and materialized views can lead the
performance away from the initial cost estimates. Multiple
latitudes in tuning hybrid databases aggravate the challenge
further in defining a workload-based cost measure.

Hybrid Relational-XML DBMSs. The recently re-
leased IBM DB2 9 (for Linux, Unix and Windows) is a hy-
brid data server with optimized management of both rela-
tional and XML data, where XML is treated as a first-class
data type [3, 17]. Moreover, it supports XML data natively,
ie. XML documents are internally stored in the tree for-
mat, following the XML data model. DB2’s query proces-
sor handles both SQL and XQuery in a single framework,
without translating XQuery statements to SQL [3]. When
a document is inserted in a table, it may be associated with
a schema. The same column may have many XML docu-
ments associated with different schemas. DB2 also provides
specialized indexes for improving the performance of queries
on values, paths and full text [17].

Figure 1: Table with a column of data type XML

For example, figure 1 shows a create table statement for
personal information and resume, which is a column of data
type XML. After creating the table, an index is defined on
the value of the element gradschool, which is a subelement
of educ within the resume document. Then, an insert state-
ment populates the table with some values for the relational
columns and a document for the XML column. Note that
the document is validated against the schema resume.xsd.

3. THE INFORMATION MODEL
ReXSA is based on model-driven approach. The user first

creates an annotated information model using a visual editor
(eg. IBM Rational Data Architect) for capturing the data
requirements. ReXSA then analyzes the model and recom-
mends candidate schemas. Before detailing all the prototype
functionalities, this section describes the data features and
annotations that the information model supports.

The information model is presented in a standard format
such as UML or EER (ie. ER diagrams with entity inheri-
tance). An information model is a conceptual specification

of the data and is the result of the first phase in the tradi-
tional three step database design methodology (ie. concep-
tual design, logical design and physical design). The basic
features of a model are well-known [9] and include: entities,
attribute names and types, relationships between entities
and semantic constraints (eg. cardinality and participation
constraints). ReXSA assumes that the model is annotated

with other features relevant to the hybrid design: business
artifacts, XML messages, schema variability, schema evolu-
tion, data versioning, and performance requirements.

Business Artifacts. In enterprise applications, it is
common to find data elements naturally grouped into “doc-
uments” that are artifacts of business processes. Usually,
these artifacts need to be processed as a single unit (eg.
travel expense forms, insurance claims, merchandise in-
voices) and hence should not be normalized across different
storage units. Moreover, they often contain both structured
and free text fields. Considering those factors, there are
two main approaches for defining business artifacts within
the information model. First, an artifact is modeled as an
atomic attribute, preserving its details implicitly within the
DBMS. Second, the data elements and relationships within
a business artifact are modeled explicitly. The main advan-
tage of the latter is that the logical and physical designs
can be optimized for accessing the data elements within the
artifact. ReXSA supports both ways of modeling business
artifacts, but requires entities and relationships that are as-
sociated with the same artifact to be explicitly annotated so
that the artifact boundaries are defined. The boundaries are
specified by assigning a name to the artifact, so that XML
entities (an their relationships) that model the same artifact
are mapped to only one table with one XML schema.

XML Messages. Many information systems exchange
data via XML messages using a service-oriented architec-
ture (SOA). These XML messages often need to be persisted
for audit trail. In terms of conceptual modeling, XML mes-
sages are somewhat similar to business artifacts with two
important differences. First, data architects often prefer to
have the option of persisting these messages as-is in their
original XML format. Second, when these messages are to
be persisted as XML, their original XML schema needs to
be used. Therefore, ReXSA allows a business artifact to
be annotated with its own XML Schema, so that it does
not define yet another one (since the original schema for the
messages must be used due to compatibility purposes).

Schema Variability. A data element whose content
takes on many variant structural forms is said to have high
schema variability. In an information model, schema vari-
ability is closely associated with the presence of sparse at-
tributes, optional values, multiple inheritance1 and deriva-
tion. Modeling such information explicitly is important for
ReXSA, because schema variability is a key factor on de-
ciding whether an entity should be persisted as relational
or XML. Modeling optional attributes in relational tables
requires columns that support NULL values. Moreover, the
presence of sparse attributes in the table often results in
poor space utilization and sub-optimal query optimization.
On the other hand, XML allows those attributes to be mod-
eled and stored easily by including their values only when
necessary. In other words, instead of storing NULL values,
the elements are just absent in the XML data. Schema vari-

1At the current stage, ReXSA does not support multiple
inheritance, which is left for future work.

3

ability does not require any additional annotation in the
information model other than the minimum cardinality of
attributes and entities (0 if it is optional).

Schema Evolution. Very often, it is necessary to adapt
the information model for considering changes on the ap-
plication and user requirements. Usually, an update in
the model generates changes on the database schema, then
constituting a schema evolution processing. For relational
data, schema evolution can trigger adding and deleting en-
tities (tables), attributes (columns), updating data types
and names, and relationship constraints. Updating the re-
lational schema of a populated DB is not an easy task be-
cause it usually requires costly data migration. For XML
data, schema evolution often results in changes to the XML
schema. In a DBMS that supports XML-schema-agnostic
columns (ie. each document in a column is registered to
a different schema or no schema at all), changes in XML
schema do not necessarily require any data migration. How-
ever, the application needs to be robust over XML data
from different XML schema versions. For ReXSA, highly
evolving entities need to be explicitly annotated in the in-
formation model, so that schema evolution schemas can be
chosen for such entities. Note that, in principle, any entity
may have its design changed, which can make it hard to
predict which entities will evolve. However, depending on
the application, it is possible to know at modeling time that
some of the entities will evolve for sure. For example, the
entity for derivatives in a financial application. Therefore,
this kind of entity, whose evolution is certain and frequent,
must be annotated in the information model.

Data Versioning. Schema evolution deals with changes
in the structure of data elements. Data versioning deals
with changes within the content of the data itself. Tra-
ditional transactional database applications are only con-
cerned with the most up-to-date content. However, many
enterprises (eg. financial applications) require the history
of the content changes to be kept for auditing purposes.
Efficient versioning control is still a challenge for most com-
mercial relational DBMS, in spite of the amount of research
already published on the subject. On the other hand, with
the advance of XML, new, less complex and more perfor-
mance effective techniques have appeared (eg. [6]). Entities
or attributes to be versioned need to be explicitly annotated
so that ReXSA can generate the appropriate schemas with
additional versioning metadata such as a version identifier.

Performance Critical Elements. Often some critical
data elements need to be accessed or updated with much
stricter level of response time requirements. Entities in-
volved in such cases may be explicitly annotated in the infor-
mation model. There are several ways that such annotations
can be used. An index advisor can use such annotations as
hints for recommending indexes. ReXSA can use such an-
notations to decide whether to recommend additional ma-
terialization or denormalization. In a DBMS where XML
access is not as high performing as relational, our tool can
recommend that these entities be materialized in relational
format for better partial update performance.

In summary, ReXSA considers as input an information
model with the following concepts.

• Entities are defined by a name and an optional set of
attributes. An entity may be annotated as evolving,
versioned and performance critical.

• Attributes are associated with an entity or a rela-
tionship and are defined by a name and a data type.
An attribute may also be annotated as optional, multi-
valued, versioned or artifact. Multi-valued attributes
may also be modeled as independent entities connected
to the main entity by one-to-many relationships.

• Business artifacts are modeled as regular entities or
attributes annotated as artifact. These artifacts may
be modeled as (i) atomic entities or attributes with
no detail specified, or (ii) decomposed entities and re-
lationships for explicit modeling. In the first case, if
artifacts are tightly associated with only one entity,
then they should be modeled as attributes of that en-
tity. Otherwise, they should be individual entities.

• Relationships connect two entities and have name,
cardinalities for the involved entities, and an optional
set of attributes.

• Hierarchies connect a parent entity to a derived child
entity. The child entity inherits all attributes and re-
lationships of the parent entity.

• Annotations are used to tag elements of the informa-
tion model with additional information (eg. keywords
and/or values) that captures additional user require-
ments. For example, an entity annotated as evolving

and an attribute annotated as versioned.

Figure 2: Simple academic model: entities in rect-
angles, attributes in ovals, multi-valued attributes in
double-ovals (phone, refLetter), relationships in di-
amonds, inheritance with arrow, business artifacts
within brackets (Resume, Publication, refLetter),
versioned attribute within curly brackets (salary).

As a an example of an annotated information model, fig-
ure 2 illustrates a simple academic design. For clarity rea-
sons, not all attributes are shown and graphic notations are
used for identifying annotations. A hierarchy is defined with
Person as parent entity and Faculty, Student and Applicant

as its children. Attribute salary in Person is optional and
annotated as versioned. Entities Person and Applicant have
each one multi-valued attribute, phone and refLetter (refer-
ence letter), where the latter is also annotated as a business
artifact. Entities Resume and Publication are also defined
as a business artifacts. This example clarifies the choice of
leaving the details of a business artifact implicitly, as done
in refLetter, and defining the details explicitly, as done in
Resume. Such decision is up to the designer and the conse-
quences of such choice will be clarified later on.

4. SCHEMA ADVISOR
Having discussed the information model and the annota-

tions used for capturing data requirements, we now describe

4

ReXSA. Section 4.1 gives an overview of the main algorithm
for mapping the information model to DDL statements. Sec-
tion 4.2 details the scoring function that uses a measure of
flexibility and other annotations for deciding how the entity
will be modeled. Sections 4.3 and 4.4 detail how relation-
ships and hierarchies are handled in ReXSA.

Algorithm 1 generateDBSchema(M, t)

Input: A Conceptual Model M, and a threshold t
Output: A Set of DDLs
1: for all entities E ∈M do // phase 1
2: score ←scoreEntity(E,M)
3: if score > t then

4: type(E)← XML
5: schema(E)← defSchema(E)

// defSchema returns the DDL statements for E
// if type(E)=XML, it assigns XML schema:
// it creates a new schema if none annotated yet

6: else

7: type(E)← Relational
8: schema(E)← defSchema(E)
9: for all hierarchies H ∈M do // phase 2a
10: Process H according to section 4.4
11: Output schema(H)
12: for all entities E ∈ H do

13: done.add(E)
14: for all entities E /∈ done do // phase 2b
15: Output schema(E)
16: done.add(E)
17: for all relationship R ∈M do // phase 3
18: Output DDL according to Table 1

4.1 Overview
The main algorithm of the ReXSA is illustrated by Algo-

rithm 1 and works in three phases: (i) it scores each entity
and decides if it is mapped to relational data or XML data,
(ii) it refines that classification according to hierarchies and
outputs the DDL statements, and (iii) it processes and out-
puts their relationships as DDL statements.

Phase 1. This phase classifies each entity as either rela-
tional or XML entity (a relational entity is an entity whose
attributes will be translated into relational columns, and an
XML entity is one whose attributes will be translated into
an XML column). The classification is based on the result
of the scoreEntity function (line 2), which is based on the
measures of flexibility (explained ahead). After receiving
its score, an entity is classified as relational or XML using
a user-specified threshold t on the score (lines 3-8). If the
score exceeds the threshold, the entity is classified as XML,
otherwise it is classified as relational. The user-specified
threshold can be loosely interpreted as the percentage of
NULL values the data architect is willing to tolerate if an
entity is represented in a relational table.

An internal map structure schema keeps the DDL state-
ments for creating each entity. The statements are defined
by a special function defSchema that receives as input the
entity specification from the model (lines 5, 8). If the entity
is XML, then the DDL statements create an table with an
XML column and also define the XML Schema for that col-
umn. The techniques for transforming an information model
to XML schemas are well-known and we refer to [4, 10, 8, 16,
7] for more information. Note that if the XML entity is an-
notated with an schema already, then that one is assigned
to the column. The variable schema is necessary because
tables may be merged or dropped in the next phases.

Phase 2. This phase outputs the DDL statements that
create the entities and is divided in two parts. First, lines
9-13 process the hierarchies of the model as explained in sec-
tion 4.4. In summary, there are different ways of mapping
a hierarchy to the DBMS. The tool selects a default map-
ping and presents the alternatives to the user. Whenever
ReXSA presents alternative schemas, it does so by either
explaining which scenarios would benefit from each alterna-
tive or pointing out why there is an alternative to the de-
fault option. This information is fundamental for the user to
make a more appropriate decision. Furthermore, when pro-
cessing each hierarchy, it may be necessary to merge entities
in one table or one XML schema. That is why the output

function returns the schema of the whole hierarchy, rather
then of each individual entity. Then, lines 14-16 process the
remaining entities that do not belong to any hierarchy.

Phase 3. This phase examines each relationship and
translates it to the respective DDL statements. Specifi-
cally, Algorithm 1 examines each relationship (lines 17-18)
in the model and generates DDL statements for the result-
ing schema. One important detail (not shown for clarity
reasons) is that the tool keeps tracks of the entities that
were merged into the previous phase. For example, consider
two entities A and B, and a set of relationships R between
A and other entities. Also, A and B belong to one hierarchy
and were merged so that the columns of A were added to
the table for B. In this case, there is no specific table for A

anymore. The tool keeps track that A “became” B and all
relationships in R are then directed to B.

4.2 Scoring Entities
A crucial part of ReXSA is to decide whether an entity

in the information model is persisted as relational or XML.
Practical knowledge and clients’ reports tell us that data
with high schema variability and data that is sparse should
ideally be persisted in XML [3]. Therefore, we use the notion
of flexibility to describe how variable the structure of an
entity’s content is.

Measure of Flexibility. An entity is said to be flexible

if it has many sparse (optional and multivalued) attributes.
Another way of looking at flexibility is that if a relational
table is used for an entity where the columns contain all the
possible attributes the entity has, then flexibility is a rough
measure of the number of NULL values in columns and rows
of the table. Conversely, the table for a totally inflexible en-
tity has its columns and rows populated by non-NULL val-
ues. Hence, relational tables are better for inflexible entities
and XML columns are better for flexible entities.

Annotations. Besides flexibility, the decision to persist
in relational or XML also depends on whether an entity is
annotated as evolving, business artifact, XML message or
performance critical. ReXSA’s approach is to assign each
entity in the information model a score based these criteria.

Score Function. The pseudocode for the scoring func-
tion based on the measure of flexibility and the anno-
tated information is outlined in Algorithm 2. Specifically,
each entity keeps 3 variables: attribs as the total num-
ber of attributes, flex as the measure of flexibility (num-
ber of optional and multi-value attributes), and spec as
the number of attributes defined as artifact, XML mes-
sage and versioned. Lines 1-3 assign those values to the
entity through functions countAttribs, countOptAttribs, and
countSpecialAttribs. Note that the latter does not consider

5

REL-REL Relationship Schema Well-known

XML-REL Relationship Schema

A : XML B : RELR
0..1 1 if A has other relationships, create separate tables:

tableA(ID int, A xml, BID int)

tableB(ID int, b1type1
, . . . , bntype

n
)

Foreign Key (tableA:BID references tableB:ID)

if A has no other relationship, inline the XML entity:

tableB(b1type1
, . . . , bntype

n
, A xml)

A : XML B : RELR
N 1 tableA(ID int, A xml, BID int)

tableB(ID int, b1type1
, . . . , bntype

n
)

Foreign Key (tableA:BID references tableB:ID)

if A has no other relationships, it can be composed into one XML document:

tableB(ID int, b1type1
, . . . , bntype

n
, SetOfA xml)

A : XML B : RELR
1 N tableA(ID int, A xml)

tableB(ID int, b1type1
, . . . , bntype

n
, AID int)

Foreign Key (tableB:AID references tableA:ID)

A : XML B : RELR
M N tableA(ID int, A xml)

tableB(ID int, b1type1
, . . . , bntype

n
, AID int)

tableR(AID int, BID int, r1type1
, . . . , rntype

n
)

Foreign Key (tableR:AID references tableA:ID)

Foreign Key (tableR:BID references tableB:ID)

XML-XML Relationship Schema

A : XML B : XMLR
0..1 1 if A has other relationships, create separate tables:

tableA(ID int, doc xml, BID int)

tableB(ID int, doc xml)

Foreign Key (tableA:BID references tableB:ID)

if A has no other relationships, it can be merged with B

tableB(ID int, B xml, A xml)

tableB(ID int, BandA xml)

A : XML B : XMLR
N 1 tableA(ID int, A xml, BID int)

tableB(ID int, B xml)

Foreign Key (tableA:BID references tableB:ID)

if A has no other relationships, it can be merged

tableB(ID int, b1type1
, . . . , bntype

n
, SetOfA xml)

tableB(ID int, BandSetOfA xml)

A : XML B : XMLR
M N tableA(ID int, A xml)

tableB(ID int, B xml)

tableR(AID int, BID int, r1type1
, . . . , rntype

n
)

Foreign Key (tableR:AID references tableA:ID)

Foreign Key (tableR:BID references tableB:ID)

Table 1: Summary of how relationships are mapped to tables. Each relationship R relates two entities A and
B. An entity B has attributes {b1, . . . , bn} of type {type1, . . . , typen}. A many-to-many relationship R can also
have attributes {r1, . . . , rn}. For ease of presentation, the primary key of each table is denoted by ID.

those attributes already counted as optional.
Lines 4-6 decide if the entity is to be persisted as XML by

considering the annotations that define the entity as busi-
ness artifact, XML message, evolving, versioned (ie. all its
attributes are versioned). The value of variable flex is up-
dated so that flex + spec = attribs (this is to force the for-
mula at the end of the algorithm to result in 1). Likewise,
lines 7-9 decide it is persisted as relational because the entity
is defined as performance critical, and the values of flex and
spec are updated accordingly. Then, lines 10-13 traverse the
hierarchy of the entity (if it exists) in a bottom-up manner
and updates the entity values by considering the values of
its parents. Note that the prototype main algorithm that
calls the score function takes care that each hierarchy is tra-
versed top-down (so that when it processes line 10, all the
parents of the current entity are already processed). Line
14 returns the score value according to a formula that sums
up the values for flex and spec and divides the result by
attribs. As a future improvement, one idea is to let the user
provide different weights for the values of flex and spec to

be considered in this formula.
For example, considering the academic model from figure

2, entity Person has a score 0.4 since it has two out of five
attributes defined as multi-valued and optional/versioned.
Entities Faculty, Student and Applicant have scores that also
consider the score of their parent Person. Entity Resume

(independent from the specification of its attributes) has a
score 1, because it is defined as business artifact.

4.3 Mapping Relationships
Table 1 summarizes the DDL generation rules for rela-

tionships between two entities that do not participate in a
hierarchy. Each entity has a set of attributes not shown
in the table. A many-to-many relationship can also have a
set of attributes. However, one-to-many (or many-to-one)
relationships generally do not have attributes, because at-
tributes that are specific to the relationship can be inlined
into the entity with the larger cardinality. Each rule is de-
scribed as follows (considering [A:XML]-0..1-〈R〉-N-[B:REL]
as the textual representation for a relationship R between

6

Algorithm 2 scoreEntity(E,M)

Input: An entity E in a Conceptual Model M
Output: Returns a score for E

1: E .attribs ← countAttribs(E)
2: E .flex ← countOptAttribs(E)

// count optional and multi-valued attributes
3: E .spec ← countSpecialAttribs(E)

// count attributes annotated as artifact, message,
// or versioned

4: if specialAnnot(E) then

5: E .flex ← E .attribs − E .spec
6: return 1

// specialAnnot is true if E annotated as
// artifact, message, evolving, or versioned

7: if criticalAnnot(E) then

8: E .flex ← 0 ; E .spec ← 0
9: return 0

// criticalAnnot is true if E annotated as
// critical performance

10: for all entity P ∈ Parent(E,M) do

11: attribs ← attribs + P.attribs
12: flex ← flex + P.flex
13: spec ← spec + P.spec
14: return ((flex + spec)÷ attribs)

entities A and B, where A is an XML entity with minimum
cardinality of 0 and maximum of 1, and B is a relational
entity with cardinality N).

For relationships between two relational entities, the map-
ping to DDL statements is well-known and covered into any
database textbook. For relationships between an XML en-
tity and a relational entity, there are four main cases.

(1) [A:XML]-0..1-〈R〉-1-[B:REL] (each relational in-
stance of B can be related to zero or one instance of A).
In the general case, two tables are created, one for each en-
tity. Table A has an XML column with the content of its
attributes. The relationship is then established by a foreign
key constraint on table A. If A is not involved in any other
relationship, it can be inlined into B as an XML column of
B, thus saving one table.

(2) [A:XML]-N-〈R〉-1-[B:REL] (each relational instance
of B can be related to many instances of A). In the general
case, two tables are created, one for each entity, and linked
through a foreign key constraint into table A. Table A has
an XML column for the content of its attributes. If A is not
involved in any other relationship, all the instances of A that
are related to a particular instance of B can be composed
into a single XML document. The resulting document can
be inlined into B as an XML column, thus saving one table.

(3) [A:XML]-1-〈R〉-N-[B:REL] (each XML instance of A

can be related to many instances of B). Similar to the first
case, two tables are created and a foreign key constraint
establishes their relationship.

(4) [A:XML]-M-〈R〉-N-[B:REL] (many-to-many relation-
ship between A and B). As the counterpart case of pure
relational modeling, three tables are created, one for each
entity and one for the relationship. The relationship table
R contains the relationship’s attributes, a foreign key to ta-
ble A, and a foreign key to table B.

Likewise, for relationships between two XML entities,
there are three cases.

(1) [A:XML]-0..1-〈R〉-1-[B:XML] (each instance of entity
B can be related to zero or one instance of A).

(2) [A:XML]-N-〈R〉-1-[B:XML] (each instance of B can
be related to many instances of A).

(3) [A:XML]-N-〈R〉-1-[B:XML] (many-to-many relation-
ship between A and B).

All three cases are similar to their counterparts when
only one entity is XML. The difference is that the XML
documents from A and B can be merged in one docu-
ment (BandA, BandSetOfA), except when the relationship is
many-to-many. Futhermore, since each entity has its schema
specified (in phases 1 and 2 of Algorithm 1), if the entities
are merged when mapping the relationships, so are their
schemas. In this case, there are two main options: (i) XML
entity becomes an individual column within another entity,
then its schema is assigned to the respective column as well;
(ii) XML entity is merged with another XML entity in one
column (for both entities), then their schemas are merged
into one and assigned to the respective column. Note that
merging is not recommended if the XML entities have other
relationships (to different entities). In this case, they stay in
separate tables with a primary key so that the other incident
relationships can refer to the respective entities easily.

4.4 Mapping Entity Hierarchies
We have described how to map simple entities and rela-

tionships to DDL statements. In this section, we discuss
how to map entities and relationships that involve entity
hierarchies to DDL statements. The problem of mapping
hierarchies to a pure relational schema has been studied by
the Object-Relational DBMS community [20] and addressed
by several commercial products (eg. Object-Relational map-
ping systems such as Oracle’s Toplink and Hibernate). The
mapping that we address in this section differs from previ-
ous work in that the entity hierarchies are not mapped to
a pure relational schema, but a hybrid or mixed relational-
XML schema. Mapping to a hybrid schema introduces the
extra flexibility of having parts of the hierarchy as relational
schema and others as XML schema. This section takes the
first steps on how to do such mapping.

We assume each hierarchy may be further specified with
disjointness and completeness constraints (following nomen-
clature from [9]). The first constraint specifies that the spe-
cialization is either disjoint (a parent instance belongs to at
most one of the child entities) or overlapping (it may belong
to more than one child entity). The second constraint spec-
ifies that the specialization is either total (a parent instance
must belong to some child entity) or partial (it may belong
to the parent only). ReXSA considers that a specialization
is total disjoint by default. Considering these features, the
translation of hierarchies to DDL statements is divided into
two parts: (i) mapping entities to tables, and (ii) mapping
the relationships between entities.

4.4.1 Mapping Entities from a Hierarchy
Considering only the relational case, there are four basic

ways for mapping a hierarchy to a database schema, as illus-
trated in Figure 3, and each way of mapping may be more
suitable for one type of hierarchy. Besides that, each map-
ping has its advantages and disadvantages. Method 1 maps
each entity to an individual table. It preserves each entity
individually at the cost of processing multiple joins when
querying for attributes from different entities. Method 2 cre-
ates tables only for the leaves of the hierarchy, then mapping
the attributes of the parent entities to each of its children. It
solves the join problem at the cost of replicating information
of the parent and processing an outer union for recovering

7

Figure 3: Example of generic entity hierarchy and
four possible mappings to a DB schema.

all instances of the parent. Method 3 maps the whole hi-
erarchy to one table and adds a control attribute in order
to identify to which child entity the instance belongs. It re-
quires no join or outer union to retrieve any of the entities
but leads to many NULL values in the subclasses attributes.
Method 4 is similar to the previous one, but it has one con-
trol attribute for each child (usually a boolean value). It
also does not require join or outer union and will probably
have less NULL values when the specialization is overlap-
ping. ReXSA chooses by default method 1 for mapping
relational hierarchies, and presents the other methods as al-
ternatives according to the hierarchy constraints. Finally,
the impact of those options on the mapping of relationships
will be discussed in section 4.4.2.

For hierarchies composed by XML entities, ReXSA de-
cides how to map the entities to XML columns and then
it defines an XML schema for each XML column. Similar
to the relational case, there are three options: (i) mapping
each entity to its own table; (ii) mapping the leaves to tables;
and (iii) mapping the whole hierarchy to one table. The first
and the second options define the tables and foreign keys as
the relational counterparts. The difference is that each ta-
ble has one XML column associated to the respective XML
schema. The third option creates a unique table with one
XML column associated to one schema.

ReXSA uses the approach in [1] for defining the XML
schema for the second and third options2. For example, for
the hierarchy in figure 3, ReXSA defines complex types A,
B, and C where B and C are derived by extension from
A. Depending on the hierarchy constraints, A is abstract
(total) or not (partial), and the identifier is unique among
the types (disjoint) or not (overlapping). The combinations
of constraints entail matching those features. For example, a
total disjoint hierarchy is mapped to XML schema by having
the parent entity as an abstract type and unique identifiers
among all complex types defined for that hierarchy.

This approach works well because the XML model is made
for data with hierarchical structure. Nevertheless, merging
the whole hierarchy within one document may not be the

2However, the types of hierarchy constraints follow a differ-
ent nomenclature in [1]: mutual exclusion is partial disjoint,
partition is total disjoint, union is total overlapping, and
without constraint is partial overlapping.

Figure 4: Example of an entity hierarchy for stu-
dents and courses in a university.

user’s intention. In fact, considering the other properties
of the hierarchy and the relationships within it, it may be
a better option to define one table for each entity or one
table for each child. Hence, ReXSA deals with these three
options by having the third one (unique XML schema) as
default option, and presenting the other two as alternatives.

4.4.2 Mapping Relationships from a Hierarchy
While mapping entities follows deterministic methodolo-

gies, mapping the relationships of the entities within a hier-
archy is more challenging. Furthermore, although ReXSA

uses approaches based on [9, 1] for mapping the entities of a
hierarchy to the schema, to the best of our knowledge, there
is no standard procedure for mapping hierarchies with re-
lationships to database schemas. Given an entity hierarchy
composed of relational entities, XML entities or both, the
problem is how to properly map the constraints imposed by
the relationships defined for those entities.

One simple solution would be to apply the mappings from
Table 1 to the entities on the hierarchy. However, due to the
inheritance constraints established by a hierarchy, the map-
pings from Table 1 may not be directly applied. Therefore,
in this section we discuss in detail the challenges imposed by
three main scenarios and their variations. We also introduce
the main reasoning for the solutions employed by ReXSA.
Then, we summarize the resulting mapping methodology in
Table 2 (which is employed by Algorithm 1).

The scenarios are discussed considering the EER diagram
in Figure 4, a partial view of an academic system. There are
two entity hierarchies, one for students, and one for courses,
where attributes are omitted for clarity purposes. Graduate
students enroll only on graduate courses and undergrad stu-
dents on undergrad courses, and each student is in a major.

Other factors are considered for mapping each scenario.
Specifically, the tool must be able to map hierarchies com-
posed of relational entities, XML entities and sometimes
both. It also needs to evaluate the hierarchy constraints of
disjointness and completeness. Clearly, the main challenge
is to solve each of the possible combinations of scenario,
type of entity within the hierarchy and type of hierarchy
constraint. Hence for each hierarchy within the model, the
tool proceeds as follows: first, it identifies which levels of the
hierarchy have relationships (ie. identifies one of the three
scenarios); second, it checks whether the entities within the
hierarchy are all relational, all XML or mixed; last, it verifies
the type of hierarchy (total/partial, disjoint/overlapping)
and proposes candidate schemas accordingly.

Scenario 1: Parent Relationships. The first scenario
presents the parent entity with relationships and the chil-
dren with none. This scenario is illustrated by the hierarchy
defined by entities Graduate, PhD and Master in Figure 4

8

(let’s disregard entity Student for a moment). The entity
Graduate has a relationship gEnroll with entity GradC, and
its children have no relationship. In this case, students on
both PhD and Master may also enroll in graduate courses,
since the classes inherit such relationship. Effectively, the
entire hierarchy subtree rooted at Graduate is considered as
a single entity with respect to the relationship gEnroll.

As already mentioned, different solutions may be proposed
according to the hierarchy participants and constraints.
First, consider that all entities in the hierarchy are rela-
tional. In this case, mapping the relationships is similar to
mapping the entities, where the four mappings presented
in Figure 3 may be applied regarding the relationship as a
regular attribute. Specifically, defining individual tables for
each entity (method 1) has the advantage that the relation-
ship relates to the parent table and no other mapping is
necessary. On the other hand, defining tables only for the
children (method 2) has the disadvantage that the relation-
ship needs to relate to each of the children (since there is
no table for the parent). Merging the hierarchy in one table
(methods 3 and 4) requires that the relationship be related
to the one table itself, and no other mapping is necessary.

Mapping the relationships when the hierarchy is composed
of XML entities also depends on the way the hierarchy is
mapped. Defining the hierarchy as one table Graduate (the
default option for XML hierarchy) or three individual tables
(one per entity) implies that the relationship gEnroll relates
directly to Graduate. Then, no additional constraint is nec-
essary. Defining tables only for the children results in the
same problem as the relational case.

In both cases (relational and XML hierarchies), having ta-
bles only for the children when there is a relationship with
the parent is not the best idea. Therefore, when presenting
such mapping as an alternative, this warning is presented
as well. Finally, the default option is to keep the tables
for Graduate separated from those with which it has rela-
tionships. However, when the whole hierarchy is mapped to
one XML column, it can also be merged with the related
entity. This merging can only happen on the following situ-
ations: (i) the parent has only one relationship, then it can
be merged as a column on the related entity; or (ii) the par-
ent has other relationships, but the related entity has only
this one, then it can be merged to the parent table.

Scenario 2: Children Relationships. The second sce-
nario presents the opposite case, where the child entities
have relationships and the parent has none. An illustration
of this scenario is the hierarchy defined by entities Course,
UGradC, and GradC, where each child entity has one rela-
tionship. Having a relational hierarchy, the relationships are
mapped similar to the previous scenario. Defining individ-
ual tables for each entity is easier and no other mapping is
necessary. Defining tables only for the children may be even
better, since the parent has no other relationship. Merg-
ing the hierarchy as one table is more complicated. In this
case, it is necessary to specify additional check constraints
in order to verify the correctness of the relationship.

For example, according to either method 3 or 4 from
Figure 3, the entities Course, UGradC, and GradC are
then merged into one table CourseUG. The information
model specifies relationship gEnroll in which instance of the
entity Graduate relates only to instances of GradC (now
merged into CourseUG). In order to preserve the informa-
tion model specification, defining the relationship gEnroll to

Figure 5: Tables for merged courses and the respec-
tive student tables. The x indicates that there is
some value for that column. In the shaded area the
student tables refer to the course table. At the bot-
tom, the course table refers to the students.

entity CourseUG requires an extra check constraint assuring
the related instance in CourseUG has the control attribute
defining the instance as member of GradC.

In this case, figure 5 illustrates two alternatives. Even
though gEnroll and uEnroll are N-to-M relationships, this
figure has the mappings of 1-to-N relationships, for the sake
of discussion. In the first case (within the shaded area),
the student tables refer to CourseUG. The referential in-
tegrities specified by the foreign keys on those tables simply
ensure that courseU and courseG refer to rows on table
CourseUG. The question is how to specify that the row re-
ferred by courseU (within CourseUG) has the control value
equal to ‘U’. Specifically on DB2, a check constraint can only
refer to values on the same table. Hence, the only solution
in DB2 is to specify the condition within triggers and stored
procedures, which is what ReXSA does in this case.

The same problem arises when the foreign keys go on re-
verse, from CourseUG to the student tables as illustrated at
the bottom of figure 5. In this case, CourseUG has two for-
eign keys, one for Undergrad and other for Graduate. The
procedure needs to specify that if control is ‘U’ then the
foreign key for Graduate is null. Otherwise, if control is ‘G’
then the foreign key for Undergrad is null.

Now, consider a hierarchy composed of XML entities. As
the relational case, mapping each entity or each child to
individual tables presents no problem for the relationship
constraints. On the other hand, mapping the hierarchy to
one document within a table presents the same concerns as
the relational case. The solution is to define triggers and
stored procedures for the XML tables as well.

Scenario 3: Parent and Children Relationships.
The third scenario combines the previous ones such that
both parent and child entities have different relationships.
An illustration of this scenario is the hierarchy composed of
entities Student, Graduate and Undergrad, and it is neces-
sary to preserve the constraints entailed by all relationships
at the same time. Therefore, the first mapping with individ-
ual tables is probably the easiest one, since the relationships
will relate the respective entity tables. Defining tables only
for the children may incur in update anomalies due to the
redundancy of the parent information stored into the chil-
dren tables. Collapsing the hierarchy in one table is equally
complicated because additional checking is necessary to ver-

9

Table 2: Summary of how relationships within hier-
archies are mapped to tables.

ify the correctness of the relationship. All these problems
happen to both relational and XML hierarchies. Therefore,
in this case, the default option adopted by ReXSA is to keep
each entity in an individual table in order to preserve the
relationships. However, the other options and the required
triggers and stored procedures may also be presented to the
user, with their respective pros and cons.

4.4.3 Discussion
These variability in how entity hierarchies are mapped to

database schema is partly a modeling problem and partly a
mapping problem. A user may prefer to model the hierarchy
flattened to the children or as individual entities, which is a
modeling decision. When a user model the whole hierarchy

with individual entities, then mapping it to individual tables
or flattening it to children tables is a mapping decision. The
schema advisor must support both ways of designing the
tables, which results in more candidate schemas. Hence,
when a hierarchy is defined (ie. the user chose to model
the hierarchy composed of individual entities), the default
approach for mapping it to the schema is to keep individual
tables. Moreover, ReXSA allows the user to set up the

Figure 6: Academic scenario with personal informa-
tion on the members of a department. The nota-
tion is the same as previously defined with special
elements in gray: business artifacts within brack-
ets (eg. Resume), versioned attributes within curly
brackets (eg. salary), optional (eg. maritalSt) and
multi-value attributes (eg. phone).

default as defining children tables or unique tables as well.
Finally, table 2 has a summary of the mapping possibili-

ties. It shows only the scenarios for parent relationships and
children relationships, because the third scenario (both have
relationships) is a merge of those two. The table has the op-
tions separated by relational and XML hierarchies, and by
the three possible entity mappings (the fourth method is the
same as the third one with more control attributes).

5. APPLYING REXSA TO USE CASES
In this section, we apply ReXSA on two use cases to

analyze how the prototype works. The prototype input is
a conceptual model encoded as a text file. The prototype
analyzes the input by specifying a score to each entity ac-
cording to Algorithm 2. Then it writes the output as a set
of DDL statements according to Algorithm 1. Our use cases
are composed by two scenarios: a custom created academic
model with different features supported by the tool, and a
real-case scenario of a clinical document repository.

The alternative statements are shown to the user interac-
tively, so that he/she can choose what better applies to the
application. For presentation purposes, we opted for illus-
trating all alternatives as comments within a DDL file (even
though this is not how the user receives the output file).

Custom Model. The first scenario is a traditional aca-
demic model with focus on the personal information of
the members within department. Figure 6 illustrates an
EER diagram with the following entities Department, Per-

son (the main entity) with its hierarchy formed by Faculty,
Lecturer, Professor, Student, Undergrad, Graduate, Master,
PhD, Applicant, and the secondary entities Resume, Educa-

tion, Grant, Scholarship, Thesis. Each entity has a set of
attributes and relationships. The element names are self-

10

Own values Inherited values

Entity Score Flex Attribs Flex Attribs

Department 0 0 2

Scholarship 0 0 3

Grant 0.33 1 3

Person 0.33 2 6

Lecturer 0.37 0 1 3 7

Student 0.37 1 2 2 6

Applicant 0.37 1 2 2 6

Master 0.40 0 1 4 9

Faculty 0.42 1 1 2 6

Undergrad 0.44 1 1 3 8

Graduate 0.44 1 1 3 8

Professor 0.50 1 1 3 7

PhD 0.50 1 1 4 9

Thesis 0.67 2 3

Resume∗ 1 3 3

Education∗ 1 5 5
∗Resume and Education have flex=attribs because the

entities are defined as business artifacts (ie. 100% flexibility)

Table 3: Final score and component values for aca-
demic model (ordered by final score)

explanatory, with special ones marked in gray. Note that
we do not intent to model the whole scenario, but rather
the minimal information necessary to illustrate some of the
main points of our approach.

Table 3 presents the score for each entity and its compo-
nents (flex and attribs) separated by the values of entity and
the values inherited within the entity hierarchy. For simplic-
ity, the academic design does not specify any entity as per-
formance critical. The values for the final score vary from 0
to 1. Since entities Resume and Education are annotated as
business artifact with the same name (not illustrated), the
flex value is the same as attrib, composing a score 1.

According to Algorithm 1, the threshold defines an entity
as relational or XML. Assuming a high threshold of 60%,
then the business artifact entities Resume and Education

are defined as XML, and so is the entity Thesis. Figure 7
presents some of the DDL statements generated by the tool.

Specifically, the CREATE TABLE statements for person,
department, and student are as usual, but with optional and
multi-valued attributes defined as XML data type (multi-
valued are always mapped to XML column; if the user
prefers an individual table for it, then he/she has to model
the attribute as an entity). Alternatively, the tool also offers
the option of specifying multi-valued attributes as indepen-
dent tables (not illustrated for space limitation). Note that
the tool assigns primary keys to all those entities that do
not have one specified in the conceptual model.

The entities defined as XML (thesis, resume, education)
have the same columns: one for the primary key, and one for
the XML data type. The name of the XML column is the
name of the entity with an “X” at the end. When an XML
column is specified for an entity, the XML schema file is also
created. When an attribute is specified as business artifact
in the information model, no schema is defined for it (since
there is no detailed information for defining one). As an
option, the user may also annotate the respective schema
information to be defined for that business artifact. The
annotation must include the parameters for the REGISTER

XMLSCHEMA statement. In this case, besides the DDL
statements shown, there are also the statements that register
each XML schema to its respective column, as for example:

Figure 7: DDL statements for academic example
with threshold = 60%.

REGISTER XMLSCHEMA ’http://univ.place/resume.xsd’

FROM ’file:///c:/ReXSA/schemas/resume.xsd’

AS academia.resumeSchema

The inheritance in this example is mapped so that each
entity has an individual table with the inheritance links
mapped to foreign keys. Then, the relationships are mapped
to DDL as ALTER TABLE statements. The relationship in

between person and department is simple. Note that the
tool makes sure all constraint names are unique by adding
a serial number at the end of each constraint name.

The relationship writes is an 1-to-1 relationship (between
graduate and thesis) and hence, there are two options for
the direction of the foreign key. One of them is chosen by
default and the second one is presented as alternative to the
user (illustrated in the figure as comments). Moreover, since
this is a relationship with an XML entity, the alternative of
having the XML entity as a column within the relational
table is also presented to the user (if the XML entity has no
other relationship, following Table 1).

The relationship educ is an 1-to-N relationship between
two XML entities that belong to the same business artifact.
In this case, the individual table for Education is deleted
and its schema is merged to the schema of Resume.

Real Case Scenario. This use case considers HL7
(Health Level Seven) [12], an organization that specifies a
messaging standard for healthcare applications to exchange
key sets of clinical and administrative data. Specifically,
HL7 has defined an XML architecture for exchange of clin-
ical documents based on XML DTDs and whose seman-
tics are defined using the HL7 RIM (Reference Information
Model) and HL7 registered coded vocabularies. Finally, the
RIM is expressed using UML and can be extended by HL7
international affiliates in order to meet local needs.

11

Figure 8: Partial view of HL7 RIM

Figure 8 illustrates a partial view of HL7 RIM. The main
classes are: Act (actions that are executed and must be doc-
umented), Participation (context of an act: who, for whom,
where...), Entity (physical things and beings in health care),
Role (entity’s role in an act), ActRelationship (bind one act
to another), and RoleLink (relationship between individual
roles). One central piece is the class Entity that includes
living subjects, organizations, material, pharmaceutical sub-
stances, places, etc (not shown for lack of space).

In order to make this example more interesting, the enti-
ties were not annotated as evolving, versioned, nor artifact.
Only those attributes that are optional, multivalued and ar-
tifact were annotated as so. Hence, Table 4 has the score
according to the attributes information only. All entities
have score greater than 0.83 (except RoleLink), which hap-
pens because most of the attributes are either optional or
multivalued, and sometimes both. The DDL statements for
HL7 create one table with an XML schema because, in fact,
all entities are part of the same artifact (not shown due to
space constraints).

Discussion. We have applied ReXSA to the artificially
constructed academic usecase and to the HL7 reference in-
formation model and analyzed the resulting schemas. For
the academic usecase, the schema recommended by ReXSA

is qualitatively comparable to what a data architect would
have produced. For HL7, ReXSA recommends that all its
data elements be persisted using XML. This recommenda-
tion is actually quite good, because human experts have also
made the same [12].

6. CONCLUSION
XML support has become a standard feature in all ma-

jor commercial DBMS. However, practitioners are still un-
sure of how to design relational-XML schemas. One of the
key problems is which portion of the data to persist as re-
lational, which portion as XML. Other challenges are how

Own values Inherited

Entity Score Flex Att. Flex Att.

LanguageComun. 1 4 4

Entity 0.83 10 12

LivingSubject 0.89 7 7 10 12

Person 0.92 8 8 17 19

NonPersonLiv. 0.90 2 2 17 19

RoleLink 0.50 1 2

Role 0.90 10 11

Patient 0.92 2 2 10 11

Employee 0.94 8 8 10 11

Participation 0.92 12 13

ActRelationhip 0.93 14 15

Act 0.90 19 21

Observation 0.92 4 4 19 21

PublicHealthC. 0.92 3 3 23 25

DiagnosticImage 0.92 1 1 23 25

Table 4: Final score and score component values for
HL7 model

to incorporate XML data to relational tables and how to
maintain relationship constraints when defining the schema
for hierarchies. This paper reports on ReXSA, a tool that
is being prototyped for IBM DB2 9. Given an annotated
information model, ReXSA generates DDL statements for
candidate schemas. We described how to annotate an infor-
mation model and outlined ReXSA’s algorithms and map-
ping procedures. We applied ReXSA on two usecases and
discussed the results qualitatively. Our work on ReXSA has
uncovered many avenues for future work. We plan to explore
how to incorporate data instances and data statistics in the
design and mapping process, how to measure the quality of
a mapping that would be meaningful to the user, and also
how to integrate with other DB2 and Rational tools.

7. ACKNOWLEDGEMENTS
The authors gratefully acknowledged Sharon C. Adler and

Anders Berglund for their insightful discussions on the XML
design process.

8. REFERENCES
[1] R. Al-Kamha, D. W. Embley, and S. W. Liddle.

Representing Generalization/Specialization in XML
Schema. In EMISA, 2005.

[2] M. F. Alin Deutsch and D. Suciu. Storing
semistructured data with stored. In SIGMOD, 1999.

[3] K. S. Beyer et.al. System RX: One Part Relational,
One Part XML. In SIGMOD Conference, 2005.

[4] L. Bird, A. Goodchild, and T. Halpin. Object Role
Modelling and XML-Schema. In ER, 2000.

[5] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From
XML schema to relations: A cost-based approach to
XML storage. In ICDE, 2002.

[6] S.-Y. Chien et.al. Supporting complex queries on
multiversion xml documents. ACM Trans. Inter.

Tech., 6(1):53–84, 2006.

[7] C. Combi and B. Oliboni. Conceptual modeling of
XML data. In SAC, 2006.

[8] R. Conrad, D. Scheffner, and J. C. Freytag. XML
conceptual modeling using UML. In Proc. ER

Conference, pages 558–571, 2000.

[9] R. Elmasri and S. B. Navathe. Fundamentals of

12

Database Systems. Benjamin/Cummings, 5th edition,
2006.

[10] R. Elmasri et.al. Conceptual Modeling for Customized
XML Schemas. In ER, 2002.

[11] D. W. Embley and W. Y. Mok. Developing XML
Documents with Guaranteed “Good” Properties. In
ER, 2001.

[12] HL7 Reference Information Model. http://www.hl7.
org/library/data-model/RIM/C30204/rim.htm.

[13] IBM Alphaworks. Model Transformation Framework.
http://www.alphaworks.ibm.com/tech/mtf.

[14] IBM Rational Software. Generating XSD schemas
from UML models.
http://publib.boulder.ibm.com/infocenter/

rtnlhelp/v6r0m0/topic/com.ibm.xtools.

transformations.doc/topics/txsdover.html.

[15] IBM Rational Software.
http://www.ibm.com/software/rational.

[16] H. Liu, Y. Lu, and Q. Yang. XML Conceptual
Modeling with XUML. In ICSE, 2006.

[17] M. Nicola and B. V. der Linden. Native XML Support
in DB2 Universal Database. In VLDB, 2005.

[18] M. Rys, D. Chamberlin, and D. Florescu. XML and
Relational Database Management Systems: the Inside
Story. In SIGMOD, 2005.

[19] Sparx system’s uml to xml schema transformation.
http://www.sparxsystems.com/resources/mda/

xsd transformation.html.

[20] M. Stonebraker and D. Moore. Object-Relational

DBMSs: The Next Great Wave. Morgan Kaufmann,
1996.

13

