
Elastic Data Partitioning for Cloud-based SQL Processing Systems

Lipyeow Lim
University of Hawai‘i at M̄anoa

Honolulu, HI 96822, USA
lipyeow@hawaii.edu

Abstract—One of the key advantages of cloud computing is
the elasticity in which computing resources such as virtual
machines can be increased or decreased. Current state-of-
the-art shared-nothing parallel SQL processing systems, on
the other hand, are often designed and optimized for a fixed
number of database nodes. To take advantage of the elasticity
afforded by cloud computing, cloud-based SQL processing
systems need the ability to repartition the data easily when the
number of database nodes is scaled up or down. In this paper,
we investigate the problem of supporting elastic partitioning
of data in cloud-based parallel SQL processing systems. We
propose several algorithms and associated data organization
techniques that minimizes the re-partitioning of tuples and the
movement of data between nodes. Our experimental evaluation
demonstrates the effectiveness of the proposed methods.

I. I NTRODUCTION

Cloud computing platforms whether public (eg. Amazon
EC2) or private is gaining acceptance as an economical way
of sharing and managing computing resources [1]. In the
scientific computing community, where users deal with large
amounts of data (terabytes and above), running large par-
allel databases on a cloud computing platform is especially
attractive given the exponential growth of scientific data and
the severely limited (financial) resources [2], [3]. A key
advantage of a cloud computing platform is the ability of
scientific users to pay for the computing resources they need,
when they need it [4]. To take advantage of this “elasticity”
afforded by a cloud computing platform, a cloud-based
parallel SQL processing system needs to be able expand
and shrink the number of database nodes with ease [5].
Unfortunately, conventional parallel SQL processing systems
are designed to run on a dedicated cluster with a relatively
fixed number of machines. Changing the number of ma-
chines requires a re-deployment of the parallel database
which typically involves a mostly manual process of (1) re-
partitioning the data, (2) moving the partitioned data to the
right database nodes and (3) loading the partitioned data.

In this paper we take a first stab at the problem of
supporting elastic data partitioning in a cloud-based parallel
DBMS. We consider shared-nothing parallel DBMSs de-
ployed on a cluster of virtual machines in a cloud computing
platform. Given that the data is partitioned amongp database
nodes in a parallel DBMS, how do we efficiently scale this
parallel database up or down toq nodes? (Replication of
data fragments is deferred to our future work). Can we

avoid scanning through each tuple to re-partition the data
? Can we minimize moving data between nodes during the
re-organization ? We describe a brute force, naive method
for performing the reorganization and propose three novel
methods that are significantly more efficient in terms of
the number of tuples that need to be re-partitioned and the
number of tuples that need to be moved.

The naive method (Method N) is based on a simple
matching between the current partitions or fragments and the
target partitions or fragments. For range partitioning, these
partitions or fragments can be represented as range intervals.
Current ranges that straddle multiple target ranges require re-
partitioning. Deciding which tuples to move to what database
nodes depends on how nodes are assigned to the target
ranges. In the worst case, when resizing a parallel database
to more nodes, the naive method needs to re-partition all
the tuples. We proposed a chunk-based method (Method
C) that organizes data using fine-grain partitions called
chunks. Partitioning of the data for a parallel database is
then required to respect chunk boundaries, thus eliminating
the need for re-partitioning tuples during reorganization.
Method N and C both respect the partitioning constraint
of the partitioning function. For example, for equi-width
partitioning function, the equi-width constraint is preserved
after the data is reorganized for the target number of database
nodes. In Method C the alignment to chunk boundaries
may cause the equi-width property to be approximated,
but it is still preserved. On one hand, the preservation
of the partitioning constraint is a good property from a
parallelization and load balancing perspective, on the other
hand, it causes significant data move during reorganization.

To minimize data movements, we propose a tree-based
method (Method T) that uses a tree of partitions. The
tree encodes a set of allowed partitions, thereby avoiding
the arbitrary partitions in Method N and Method C that
necessitates the large amount of data movement. Method T
sacrifices the preservation of the partitioning constraintfor a
simple way of deciding which fragment to split or which two
fragments to merge. Partition boundaries remain more stable
across reorganization, thus minimizing data movements.

We also propose a hash-based method (Method H) that
specifically addresses hash-based partitioning (in contrast to
range partitioning). A deeper analysis of Method H reveals
that it is a specific variant of Method T.

Our contributions.
• We introduce and highlight the important problem of

supporting elastic data partitioning in a shared-nothing,
cloud-based parallel database system. The best of our
knowledge this problem has not been addressed in the
literature before.

• We describe a straightforward ‘naive’ algorithm for the
problem and propose three algorithms that significantly
reduces the need for re-partitioning and data move-
ments. Method C uses the idea of chunks and boundary
alignment to eliminate re-partitioning. Method T uses
the idea of precomputing a tree of possible partitioning
to minimize data movements. Method H extends the
previous methods to handle the hash partitioning type.

• We perform a comprehensive empirical evaluation of
the proposed methods and present a subset of repre-
sentative results in this paper.

The rest of the paper is organized as follows. Section II
formulates the problem and describes the proposed methods
in greater detail. Section III presents an experimental evalu-
ation of the proposed methods. Section IV discusses related
work. We draw conclusions in Section V.

II. OUR APPROACH

A. Preliminaries

A relation T is a set of tuples that is (horizontally)
partitioned [6], [7] into a set ofp partitions or fragments,

T = T1 ∪ T2 ∪ . . . ∪ Tp.

In a shared nothing parallel DBMS, each data fragmentTi

resides on a database nodei in the cluster. Each fragment
Ti is itself a set of tuples. A partitioning functionF is
a mapping ofT to {T1, T2, . . . , Tp} given p and can be
described by several parameters.

Partitioning Type. Two partitioning types are currently in
use in state-of-the-art parallel databases. Range partitioning
uses a set of disjoint ranges on the values of the partitioning
key (described next) to decide which tuple belong to which
partition. Hence, the data partitions from a range partitioning
can be equivalently represented using the set of disjoint
ranges. Hash partitioning, on the other hand, uses a hash
function on the partitioning key to compute a hash value
for a tuple that is used to decide which partition the tuple
belong to. In both partitioning types, the set of ranges or
the hash function is typically stored in the database catalog
so that queries and updates can be routed to the appropriate
database nodes.

Partitioning Key. A partitioning key consists of one or
more columns of a relation chosen to be the basis of par-
titioning the relation. For range partitioning, a comparison
function must exist to sort the values of the partitioning key
into a total ordering. Without loss of generality, we consider

(0,18]

Node
Equi−width
Ranges

(0,10]

(10,20]

(20,30]

(30,40]

Database
Node A C ...B

7

11

13

23

23

23

24

25

26

31

3910

9

8

7

6

5

4

3

2

1

0

Relation T
Ranges
Equi−size

f0

f1

f2

f3

f4 n4

n3

n2

n1

n0

Fragment

f0

f3

f1

Fragment

n0

n2

n3

n1

f2

RID

(18,23]

(23,28]

(28,40]

Database

Figure 1. Range partitioning on relationT with partitioning key
T.B. The left side illustrates equi-size partitioning, the right side
illustrates equi-width partitioning.

single-column partitioning keys, because the columns in a
multi-column partitioning key can always be replaced with
a single concatenated column.

Partitioning constraint. A partitioning constraint specifies
conditions that the partitions of a partitioning function need
to satisfy. The following are three partitioning constraints
that apply to range partitioning.

• The equi-widthconstraint requires the range of values
that the partitioning key takes for each partition to be
equal.

• The equi-sizeconstraint requires the size of each par-
tition (eg. in the number of tuples) to be equal.

• Theequi-loadconstraint requires the workload on each
partition (eg. average number of query hits per unit
time) to be equal.

Figure 1 illustrates how a relationT can be range partitioned
with the equi-width and equi-size partitioning constraint.

Equi-width partitioning computes the ranges based purely
on the minimum and maximum possible values of the
partitioning key. When the data distribution of the partition-
ing key is fairly uniform, the number of tuples associated
with each range would also be fairly uniform. When some
skew is present, the variance in the number of tuples per
range becomes significant. Equi-size partitioning attempts
to remedy this problem by picking variable width ranges
to ensure that the number of tuples associated with each
range is approximately uniform. Obviously both partitioning
constraints can be foiled by extremely skewed distributions.
For example, when one particular value of the partitioning
key occurs in 50% of the relation, equi-size partitioning
cannot split a single value into two “ranges”. Equi-load
partitioning is similar to equi-size except that instead of
balancing the number of tuples per range, it balances some
load measure such as number of query hits etc. Note that
other partitioning constraints are possible depending on the
application and requirements.

A partitioning functionF(T, a, p) partitions a relationT
into p fragments according to some partitioning constraint
on a user-chosen partitioning attributea. In this paper, the

relation T and the partitioning attributea often remains
constant in the equations and algorithms, hence, we will
omit relation name and partitioning attribute arguments or
subscripts for readability. We denote the fragments resulting
from applying the partitioning functionF(p) asΠp. In the
case of range partitioning, the resulting set of ranges or
intervals on the partitioning attribute is denoted asRp. In
the case of hash partitioning, the notationRp will denote
the set of bit strings that encode the address of the hash
bucket. In most cases, there will be a one-to-one corre-
spondence between ranges (or hash buckets) and fragments.
However, when there is significant skew in the values of
the partitioning key, it is possible that two fragments (hence
database nodes) are required for a single range interval (or
hash bucket). However, for ease of exposition, we assume a
one-to-one correspondence between ranges (or hash buckets)
and fragments, and between fragments and database nodes.
Hence fragments and ranges (or hash buckets) will often
be used interchangeably in the context of range partitioning.
Investigating strategies for managing skewed non-one-to-one
correspondences is part of our future work.

Problem Statement. Without loss of generality consider a
single relationT that is initially partitioned intop fragments
and needs to be resized toq fragments. Given

• a relationT ,
• a partitioning functionF on a fixed partitioning key,
• an initial number of partitionsp,
• an initial mapping of data fragments top database

nodesNodep(·),
• a target number of partitionsq,

find a mapping of{T1, T2, . . . , Tp} to {T1, T2, . . . , Tq},
and a mapping of theq data partitions to database nodes
that minimizes the number of tuples re-partitioned, and the
number of tuples moved between database nodes.

B. Method N: Naive Resize

Consider a tableT that is initially partitioned intop
data partitions using range partitioning functionF on some
partitioning key. Thesep data partitions are then assigned
to p database nodes. Suppose we want to resize the number
of partitions toq. The following steps illustrates the naive
approach.

1) Find the set ofq ranges according toF .
2) Assign existing and/or new database nodes to the

q ranges using a heuristic such as maximizing the
number of common tuples — the ASSIGNNODES

algorithm (pseudocode in Appendix A Algorithm 1).
3) Match up the current and the new ranges to decide

which tuples need to be re-partitioned and/or moved
to a different node — the NAIVE RESIZERANGE al-
gorithm (pseudocode in Appendix A Algorithm 2)

Step 1 is straightforward. Step 2 tries to assign existing
database nodes to theq partitions and whereq > p, new

nodes are assigned as well. We formalize Step 2 in thenode
assignment problem: Given ap-node database with ranges
Rp and a target number of nodesq with rangesRq, we wish
to find the assignment of nodes to the target rangesRq.

In general, we would like to assign thep nodes and add or
remove the|p−q| nodes in order to optimize some measure
(in this case, maximize the number of common tuples
between the assigned ranges). The intuition then is to sort all
pairs of overlapping ranges betweenRp andRq according
to the measure and assignNodep(ri) to sj whereri andsj

have the most number of tuples in common. The algorithm
examines all pairs of ranges between the currentp ranges
and the targetq ranges. The pairs are sorted in decreasing
order of the number of common tuples. The current nodes
that have not been assigned are assigned to the range with
the largest number of common tuples. After all current
nodes have been assigned, target ranges that do not have
an assigned node are assigned new nodes. The conceptual
cross product in the ASSIGNNODES algorithm to find all
overlapping pairs can be implemented very efficiently using
a linear scan similar to merging two sorted lists. Finding the
number of common tuples can also be approximated using
histogram techniques [8] in practice.

At the end of Step 2, we have the current rangesRp with
their node assignments and the target rangesRq with their
node assignments. Step 3 uses the NAIVE RESIZERANGE

Algorithm to match the current and target ranges in order to
move and/or re-partition the tuples associated with a current
node. The algorithm first deals with all the current ranges
that are completely contained in a target range. The tuples
associated with these fully contained ranges do not need to
be re-partitioned, but moved to the target node if their target
node is different. The algorithm then proceeds to deal with
those current ranges that are mapped to two or more target
ranges. The tuples associated with these current ranges need
to be re-partitioned and moved to the target nodes (if their
target node is different from their current node).

Example 1 (Naive Resize):Consider the following
ranges and node assignments for decreasing the number of
database nodes fromp=5 to q=4,

Rp = {[0, 8], (8, 16], (16, 24], (24, 32], (32, 40]} .

Rq = {[0, 10], (10, 20], (20, 30], (30, 40]} .

Nodep(·) = {1, 2, 3, 4, 5} ,

Nodeq(·) = {1, 2, 4, 5} .

The NAIVE RESIZERANGE algorithm would first iterate over
target ranges{(0, 10], (30, 40]}, because there exists some
current ranges that are fully contained in these target ranges,

(0, 8] ⊂ (0, 10] and (32, 40] ⊂ (30, 40].

However, since these subsumed ranges map to the same
database nodes, no movement of tuples are required. The

second part of the algorithm would iterate over the cur-
rent ranges{[8, 16], (16, 24], (24, 32]} because these ranges
straddle at least two target ranges each.

• For current range(8, 16], the tuples will be re-
partitioned to{(0, 10], (10, 20]} and tuples for(0, 10]
will be moved to node 1.

• For current range(16, 24], the tuples will be re-
partitioned to{(10, 20], (20, 30]} and moved to node
2 and node 4 respectively.

• For current range(24, 32], the tuples will be re-
partitioned to {(20, 30], (30, 40]} and the tuples for
(30, 40] will be moved to node 5.

Compared to moving tuples from one database node to
another database node, re-partitioning is a relatively expen-
sive operation. Our experiments on the Amazon EC2 cloud
showed that moving a TPC-H lineitem tuple between two
instances in the same U.S. east coast zone takes 0.0225 ms
on average and partitioning a lineitem tuple on a small on-
demand instance takes 0.0478 ms on average. Partitioning
requires every tuple to be scanned from disk, the value of the
partitioning key accessed for partitioning, and then written
out to disk. The re-partitioned tuples can then be moved in
a batch fashion to the corresponding target nodes. Consider
the case where the same equi-width partitioning function is
used to compute both the current and target ranges. If the
number of target partitionsq is greater than the number of
current partitionsp, it is clear that allp partitions need to
be re-partitioned. Ifq is less thanp, the number of current
partitions that need to be re-partitioned is dependent on the
greatest common divisor betweenp andq. More formally,

partitions to be split=

0 p = q
q p < q
q − gcd(p, q) p > q

(1)

In fact, this characterization holds as long as the same
range partitioning function is used to compute the current
and target ranges, irrespective of the partitioning constraint.
Observe that the number of partitions that need to be split
becomes zero wheneverp is a multiple of q and hence
gcd(p, q) = q. This observation leads us to a method of
resizing without re-partitioning tuples.

C. Method C: Chunk-based Elastic Resize

The key ideas to a method of elastic resizing of a cloud-
based parallel DBMS without splits are (1) pre-partition the
data intok fine-grained partitions calledchunks(k ≥ p, k ≥
q), and (2) any range partitioning function must align ranges
to chunk boundaries. Since any changes to the ranges are
always aligned to chunk boundaries, the tuples within a
chunk are never re-partitioned.

Initialization. An additional initialization step is required.
The data table is initially partitioned intok chunks using any
existing range partitioning function. Subsequent partitioning

will need to use an approximate range partitioning function
that aligns ranges to chunk boundaries.

Choosing k. The parameterk should be chosen as the
maximum number of database nodes that would ever be
deployed until the next major database re-organization when
the data can be re-partitioned according to a newk. A largek
would result in small chunks that could better isolate changes
when resizing fromp to q, but it also translates to more
chunks that need to be managed by the database catalog.

Alignment to chunk boundaries. A straightforward tech-
nique for chunk boundary alignment would be to include a
chunk in a range if at least 50% of the chunk overlaps with
the range. For example, to decide if a range(0, 11.5] should
include the chunk(10, 12], we compute the percentage
overlap (11.5 − 10)/2.0 = 75% and since the overlap is
significant, the range is adjusted to include the chunk, i.e.,
(0, 12]. The subsequent range then starts at 12.

Resizing. The following steps outlines the chunk-based
elastic resize approach.

1) Find the set ofq ranges according toF .
2) Align the q ranges to chunk boundaries.
3) Assign existing and/or new database nodes to theq

ranges using the ASSIGNNODES algorithm.
4) Match up the current and the new ranges to decide

which chunks need to be moved to a different node
using the chunk-based ELASTICRESIZERANGE algo-
rithm (pseudocode in Appendix A Algorithm 3)

Steps 1-2 are straightforward. Step 3 uses the same node
assignment algorithm to obtain a node assignment for theq
ranges. Step 4 uses the ELASTICRESIZERANGE algorithm
which is a modified version of the NAIVE RESIZERANGE

algorithm. The main difference lies in how the two algo-
rithms deal with current ranges that straddle two or more
target ranges. In the chunk-based method, re-partitioningof
tuples is no longer needed. Instead, ELASTICRESIZERANGE

iterates through each chunk in the current range, finds
the target range that the chunk maps to, and move the
chunk to the node for that target range if the chunk is
on a different node. In another sense, we have replaced
tuple-based re-partitioning to chunk-based re-partitioning. If
each chunk holds an average ofn

k
tuples, wheren is the

total number of tuples in the relation, then chunk-based
processing represents a factor ofn

k
improvement in re-

partitioning cost.
Example 2 (Chunk-based Resize):Consider the follow-

ing ranges and node assignments,

Rk = {(0, 2.5], (2.5, 5], . . . , (37.5, 40]} ,

Rp = {[0, 10], (10, 20], (20, 30], (30, 40]} ,

Rq = {[0, 7.5], (7.5, 15], (15, 25], (25, 32.5], (32.5, 40]} ,

Nodep(·) = {1, 2, 3, 4} ,

Nodeq(·) = {1, 2, 5, 3, 4} .

Since there are no current ranges that are fully contained
in a target range, ELASTICRESIZERANGE simply iterates
through each range inRp and perform the following.

• For current range(0, 10], the chunk(7.5, 10] will be
moved to node 2.

• For current range(10, 20], the chunks(15, 17.5] and
(17.5, 20] will be moved to node 5.

• For current range(20, 30], the chunks(20, 22.5] and
(22.5, 25] will be moved to node 5.

• For current range(30, 40], the chunk(30, 32.5] will be
moved to node 3.

A natural question to ask next is whether the data
movements can be minimized. If we insist on the target
ranges satisfying the same partitioning constraint, then the
answer is unfortunately no. If we are able to accept target
ranges that partially satisfy the partitioning constraint, tree-
based techniques can be used to reduce the amount of data
movement.

D. Method T: Tree-based Elastic Resize

In the previous methods, the data of the partitioned
relation is re-distributed to satisfy the partitioning constraint
on the target ranges resulting in much data movements. In
the tree-based method, we relax the need to satisfy the par-
titioning constraint. In addition to the key ideas introduced
in the chunk-based method, the tree-based method relies on
the idea of a pre-computed hierarchy of ranges (see Fig. 2)
where each partitioning intop or q ranges corresponds to
finding a cover of (internal) tree nodes that subsumes all the
leaf nodes.

Initialization. Before the parallel database is deployed on
p nodes, the following steps are used to initialize the tree of
ranges.

1) Partition T into k > p special fragments which we
shall call chunks. Choosek to be a power of 2.

2) Construct a binary tree in bottom-up fashion where
each leaf is associated with one of thek chunks.

3) Find a set ofp (internal) nodes that cover all the leaves.
Each of thep fragments consists of the chunks asso-
ciated with the leaves descended from that (internal)
node. Algorithm 4 FINDTREECOVER can be used.

Finding a tree cover. The key algorithm in the tree-based
method is the FINDTREECOVER algorithm (pseudocode in
Appendix A Algorithm 4). Given a tree of rangesT , the
current set of rangesRp, and a target number of rangesq, we
wish to find a set ofq tree nodes that subsumes or cover all
the leaf nodes. Note that each leaf node is associated with a
chunk and hence a chunk range. The current set of rangesRp

is aligned to chunk boundaries and hence has a one-to-one
correspondence to a set of tree nodes. In this section we will
refer to (chunk aligned) ranges and tree nodes synonymously
because of this one-to-one correspondence. The algorithm

finds a cover as follows. Start with the current ranges as an
initial cover. Letc be the number of tree nodes in the current
cover. If c < q, increase number of tree nodes in the cover
by finding a tree node in the current cover to split. Ifc > q,
decrease number of tree nodes in the cover by finding the
two sibling tree nodes in the current cover to merge. Repeat
until c = q.

How do we pick the nodes for splitting or merging ? The
heuristic used for picking nodes can be used to approximate
the partitioning constraint.

• Pick the tree node with the widest range to split. Pick
the two sibling nodes with the narrowest range to
merge.

• Pick the tree node with the most number of tuples to
split. Pick the two sibling nodes with the least number
of tuples to merge.

• Pick the tree node with the most number of query hits
to split. Pick the sibling nodes with the least number
of query hits to merge.

Note that using heuristics such as the above requires main-
taining a priority queue which could be expensive. A com-
putationally simple heuristic would be to split the leftmost,
highest node in the tree that is in the current cover and to
merge the rightmost, lowest two siblings in the tree that is
in the current cover.

Returning to our discussion of Step 3 of the initialization,
we can simply call FINDTREECOVER using the root node
of the tree as the current cover and the algorithm will keep
splitting till p nodes are obtained.

Resize. The following steps outline the tree-based resize
method for resizing fromp partitions toq partitions. The
chunk rangesRk and the tree of rangesT are assumed to
be stored in the database catalog.

1) Find theq ranges given the treeT using the FIND-
TREECOVER algorithm (pseudocode in Appendix A
Algorithm 4)

2) Resize the parallel database system using the ELASTI-
CRESIZERANGE algorithm (Appendix A Algorithm 3)

Note that an alternative to the steps outline above is to keep
track of the current ranges as a list of tree nodes. Letc be
the number of current ranges. Ifc < q, increase number
of database nodes by finding a tree node in the current
ranges to split, and move the chunks associated with the
right child to a new database node. Ifc > q, decrease number
of database nodes by finding the two sibling tree nodes to
merge, and move the chunks associated with right sibling to
the left sibling (the database node associated with the left
sibling gets “promoted”, i.e., associated with the parent tree
node). Repeat untilc = q. Note that since data movement is
perform one tree node at a time, it is possible that a particular
chunk can be moved multiple times compared to the Step 2
using the ELASTICRESIZERANGE algorithm.

(0,20]

(0,2.5] (2.5,5] (5,7.5] (7.5,10] (10,12.5] (12.5,15] (15,17.5] (17.5,20]

(5,10](0,5] (10,15] (15,20]

(0,10] (10,20]

Figure 2. Example of a tree of ranges.

Example 3 (Tree-based Resize):Consider partitioning a
tableT with partitioning attribute values from(0, 40]. Sup-
pose we choosek = 16 and use the equi-width partitioning
function to obtain the chunk ranges,

Rk = {(0, 2.5], (2.5, 5], . . . , (37.5, 40]} .

The binary tree of ranges forRk is illustrated in Fig. 2.
Suppose we wish deploy the parallel database withp =
4 database nodes initially. Using the split-leftmost-highest
node heuristic, we obtain the following covering ranges,

Rp = {[0, 10], (10, 20], (20, 30], (30, 40]} .

Suppose, we wish to increase the number of database nodes
to q = 5. The FINDTREECOVER algorithm picks a range
from amongRp to split. If we use the split-leftmost-highest
node heuristic, the range(0, 10] will be split into (0, 5] and
(5, 10], resulting in

Rq = {[0, 5], (5, 10], (10, 20], (20, 30], (30, 40]} .

If we use the heuristic that picks the range with the most
tuples, then using the data in Fig. 1, the range(20, 30] will
be chosen, because it contains 6 tuples. Hence,

R′

q = {[0, 10], (10, 20], (20, 25], (25, 30], (30, 40]} .

Using ELASTICRESIZERANGE on R′

q, a new database
node is instantiated and only the two chunks
{(25, 27.5], (27.5, 30]} is moved to the new database
node.

E. Implications for Query Performance

Consider a simple query that scans the entire partitioned
relationT = T1 ∪T2 ∪ . . .∪Tp. The running time of a table
scan queryQ(T) is the time of the longest scan on each
of the data partitions,Q(T) = maxp

i=1
Q(Ti). The perfor-

mance of table scans is dependent on the size of each data
partition Ti which in turn is dependent on the partitioning
constraint. A detailed exposition of the relationship between
parallel query performance and partitioning constraint is
beyond the scope of this paper. When the partitioning key
is relatively uniform, equi-width partitioning would ensure
relatively balanced partitions. Method N and C tries to
preserve the partitioning constraint and hence would also
preserve the query performance characteristics. Method T,

on the other hand, does not try to preserve the partitioning
constraint. The variance in the partition sizes would depend
on the heuristic used to pick splitting/merging nodes. For
the simple split-leftmost-highest and merge-rightmost-lowest
heuristic, the difference in partition sizes for uniform data
can be bounded by a factor of two, since the partitions for a
p-node database correspond to tree nodes at the⌊log p⌋ and
⌈log p⌉ levels only. While this is true for equi-width range
partitioning on uniform data, hash partitioning, on the other
hand, is inherently random and the partition sizes are not
balanced in general.

III. E XPERIMENTAL EVALUATION

We evaluated the effectiveness and efficiency of the
proposed methods on the TPC-H benchmark data as well
as synthetically generated data from the uniform and Zipf
distributions.

For the TPC-H data, we used the lineitem table generated
using a scale factor of 0.01 and 1.0 (henceforth denoted
as TPC-H(0.01) and TPC-H(1.0)). The lineitem table with
scale 0.01 contains 60,175 rows and about 7.5 MB of data,
while the table with scale 1.0 contains 6,001,215 rows
and about 759 MB of data. We experimented using the
attributesL_ORDERKEY, L_PARTKEY, L_SUPPKEY as
the partitioning key.

The synthetic data are generated by drawing the values
of the partitioning key from the uniform distribution and
the Zipf distribution. A ‘uniform’ dataset is generated by
drawing 100,000 random variates between zero and 500
from a uniform distribution. A ‘Zipf 1’ dataset is generated
by drawing 10,000 random variates in the same range from
a Zipf distribution with exponent one. A ‘Zipf 2’ dataset is
generated by drawing 10,000 random variates in the same
range from a Zipf distribution with exponent two. Note
that since Zipf random variates represent the rank and not
the data value itself, we randomly permute the generated
ranks to simulate values. For random datasets, experiments
are run over 10 randomly generate datasets with the same
parameters in order to observe average behavior.

Four performance metrics are used: (1) elapsed running
time in a serial execution, (2) elapsed running time in a
parallel execution, (3) the number of tuples moved from
one node in the cluster to another, (4) the number of
tuples re-partitioned. The number of tuples moved and re-
partitioned are expressed as a percentage of the total number
of tuples in the table. The number of tuples re-partitioned
counts the number of tuples of which the value of the
partitioning key needs to be examined in order to map the
tuples to the appropriate partition. We present a subset of
our experimental results due to space constraints.

A. End-to-End Efficiency

In this experiment, we measure the elapsed time of
using our proposed method to resize a cloud-based parallel

Method N Method C Method T

Algorithm 3.369 3.526 0.006
Re-partition 363.657 0 0
Move+Load 266.452 261.236 226.848
Total Serial 533.478 264.762 226.854
Total Parallel 321.391 134.290 120.899

Table I
TIME (SECONDS) TO SCALE A 2-NODE DATABASE TO 11 NODES

ON EC2.

Method N Method C Method T

Algorithm 3.382 3.909 0.002
Re-partition 167.892 0 0
Move+Load 203.558 204.611 85.867
Total Serial 533.478 208.520 85.869
Total Parallel 66.730 39.795 22.608

Table II
TIME (SECONDS) TO SCALE AN 11-NODE DATABASE TO 7

NODES ONEC2.

database fromp nodes toq nodes running on the Amazon
EC2 cloud. For initialization, we partition and load the TPC-
H(1.0) dataset on a cluster ofp IBM DB2 database instances
running on small, on-demand instances. The partitioning key
is L_ORDERKEY and the partitioning constraint is equi-
width. We then use the proposed method to elastically resize
the database toq instances. Ifq > p, we assume that
additional EC2 instances are already started and do not count
the time required for EC2 instances to be started. We also
assume that the data fragment at each database node also
exists as a CSV file at that node. We measure the following,

• the running time of the proposed method,
• the time to re-partition the data fragment for target

partitions at each node,
• the time to send the re-partitioned data to the target

node,
• the time to load the re-partitioned data into the database

instance at the target node,
• the total time required if all the steps were executed

serially, and
• the total time required if the re-partitioning, move, and

load steps are executed concurrently at each node in
parallel.

Table I shows the results forp=2, q=11. For Method
C and T, 128 chunks were used. The first observation is
that the time required for executing the proposed methods
is negligible compared to the time required to re-partition,
move or load the data fragments. Among the proposed
methods, Method T is the speediest. Second, re-partitioning
is more expensive to moving and loading data. Sinceq is
larger thanp, every tuple needs to be re-partitioned under
Method N. Method C and T keep track of tuples at the chunk
level, and thus avoid the costly re-partitioning operation.
Third, the time for moving and loading is roughly the

same for Method N and C, but Method T is almost 40
seconds faster. This is due to number of tuples that needed
to be moved under the three methods: 4,909,377 for Method
N, 4,875,307 for Method C, and 4,125,866 for Method T.
Fourth, sincep=2, the level of parallelism is limited to two.

Table II shows the results forp=11, q=7. For Method C
and T, 128 chunks were used. In this case, Method T is the
clear winner, since it minimizes the number of tuples that
need to be moved. In fact, only 4 out of the 11 partitions
need to be moved. For Method N and C, 6 out of the 11
partitions need to be split and moved. The number of tuples
moved are 3,272,833 for Method N, 3,187,478 for Method
C, and 1,500,796 for Method T. The amount of concurrency
for Method N, C, T is 6,6,4 respectively which accounts for
the improved parallel time compared to the previous case.

In both cases, we observe speedups of 2 and 3 for Method
C and Method T over the naive Method N. We also note that
the number of tuples moved and the number of tuples re-
partitioned are good predictors of performance; hence, we
focus on these two measures for the rest of the paper.

B. Elasticity Characteristics

We wish to understand how “elastic” we can scale our
cloud-based parallel database from a fixedp number of
nodes to varyingq numbers of nodes. We measure the num-
ber of tuples moved and re-partitioned as a percentage of the
total number of tuples forp=32 and q∈{2, 3, 4, . . . , 256}.
For Method C and T, 256 chunks were used.

Fig. 3(a) and Fig. 3(b) shows the results for TPC-H(0.01)
dataset. Observe the general shape of the curves in Fig. 3(a).
As |q − p| increases, the number of tuples to be moved
increases. The ideal curves should have gradual slopes as
|q−p| increases. Note that Method T is almost always better
in terms of the number of tuples moved, but Method N
and T are about the same. Recall that Method N requires
re-partitioning whereas Method C and T does not. Hence
Method C is still superior to Method N. Fig. 3(b) shows
the periodic nature of the re-partitioned tuples as governed
by Eqn. 1. Recall that whenq > p, all tuples need to be
re-partitioned under Method N.

Fig. 3(c)-3(f) shows the results for synthetically generated
data. The synthetic datasets ‘Uniform’, ‘Zipf 1’, and ‘Zipf
2’ represents datasets with increasing skew. Observe that the
curves shift lower with increasing skew. While this seems to
be a positive, but puzzling result, it can be explained by a
small number of partitions holding a large portion of the data
in skewed datasets. For equi-width partitioning, the effect is
that the likelihood of moving a partition with a small number
of tuples increases with skew, resulting in less tuples moved
in total. Fig 3(f) seems to indicate that skew does not affect
the number of re-partitioned tuples significantly for Method
N.

Number of Chunks. We also investigated the effect of
the number of chunks (the parameterk in Method C and

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
er

ce
nt

ag
e

of
 ta

bl
e

m
ov

ed

Target number of partitions

Method N
Method C
Method T

(a) TPC-H(0.01) : Tuples moved

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

P
er

ce
nt

ag
e

of
 ta

bl
e

re
pa

rt
iti

on
ed

Target number of partitions

Method N

(b) TPC-H(0.01) : Tuples re-partitioned

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
er

ce
nt

ag
e

of
 ta

bl
e

m
ov

ed

Target number of partitions

Method N
Method C
Method T

(c) Uniform : Tuples moved

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
er

ce
nt

ag
e

of
 ta

bl
e

m
ov

ed

Target number of partitions

Method N
Method C
Method T

(d) Zipf 1 : Tuples moved

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
er

ce
nt

ag
e

of
 ta

bl
e

m
ov

ed

Target number of partitions

Method N
Method C
Method T

(e) Zipf 2 : Tuples moved

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40

P
er

ce
nt

ag
e

of
 ta

bl
e

re
pa

rt
iti

on
ed

Target number of partitions

Method N Uniform
Method N Zipf 1
Method N Zipf 2

(f) Uniform+Zipf : Re-partitioned Tuples

Figure 3. Elasticity of scaling from32-nodes to{2, 3, 4, . . . , 256}-nodes for TPC-H(0.01) and synthetic datasets.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

P
er

ce
nt

ag
e

of
 ta

bl
e

m
ov

ed

Target number of partitions

Method C 64
Method C 128
Method C 256

Method T 64,128,256

Figure 4. Elasticity of scaling from32-nodes to{2, 3, 4, . . . , 256}-
nodes for TPC-H(0.01) dataset over varying numbers of chunks.

T). Fig. 4 shows the number of tuples moved over different
values ofk for the TPC-H(0.01) dataset. The parametersp
and q are set atp=32 and q∈{2, 3, 4, . . . , 256}. Method T
is not sensitive to the number of chunks at all, because once
the tree of ranges is constructed, the tuple movements are
fixed. Method C, on the other hand, moves less tuples with
larger k, because more chunks translates to smaller chunk
size and better isolation of the fragments that need to be
split and moved.

IV. RELATED WORK

Recent work on exploiting cloud computing platform for
datamanagement has focused mainly on building systems
and identifying challenges [9], [10], [11], [1], [5], [12].Our
work complements these effort in that the proposed elastic
data partitioning techniques could be applied to cloud data
management systems that use a partitioned, relational data

model.
A closely related area of theoretical research is the prob-

lem of data migration in storage area networks (SAN) [13],
[14], [15]. The data migration problem computes a migration
plan for moving data objects over a network of storage
devices from one configuration to another. Even if we
conceptualize the tuples of our partitioned relation as “data
objects” in the data migration problem, there are significant
differences. First, our problem is more general and includes
not just the data migration problem as a subproblem, but
the subproblem of computing the next configuration given
certain constraints. Second, previous theoretical formulation
of the data migration problem has assumed that each device
can only handle one object at one time. This is true in the
context of SAN, but not true in the context of a parallel SQL
processing system. Each node in the SQL processing system
is capable of multi-threading and processing multiple objects
at a time. Third, data repartitioning is the most expensive
operation in our problem and not data movement across a
network.

The chunking technique that we used to eliminate tuple
repartitioning is similar in spirit to techniques used in
text indexing. Glimpse [16] uses chunking to reduce the
granularity of the pointers in an inverted index so that the
pointers point to pages rather than to individual words in the
text. Similarly, landmarks are used in [17], [18] to speed up
update processing in inverted indexes.

Data partitioning is also closely related to histogram
construction [8], [19]. Histograms partitions data into a set of
buckets and approximate the number of tuples in each bucket

with an average. We adopted some of the concepts and
terminology for data partitioning from partitioning in his-
tograms [19]. In contrast to histogram partitioning problem,
this paper addresses the orthogonal problem of migrating
one set of partitions to another. Our proposed Method T uses
a tree of partitions which in the case of range partitioning
type is similar to the hierarchical ranges used in [20] for
selectivity estimation.

To the best of our knowledge, the problem of partitioning
and organizing data in support of elasticity in a parallel
DBMS has not been addressed before.

V. CONCLUSION

We have highlighted an interesting problem of supporting
elastic data partitioning in cloud-based parallel databases in
order to exploit the elasticity feature of a cloud computing
platform. We proposed several methods to scale parallel
databases fromp nodes toq nodes. Method N does a naive
and brute force matching of the existingp data partitions to
the targetq data partitions while preserving the partitioning
constraint. Method C pre-partitions the data into fine-grain
chunks and manages data partitions that are aligned and
mapped to the chunks in order to avoid re-partitioning each
data tuple. Method T improves on data movement by using
a hierarchy of pre-computed partitions. Scaling fromp to
q must use a covering set of partitions from the tree. We
have implemented our proposed methods in a prototype and
have demonstrated its effectiveness and efficiency through
extensive experimentation. As future work, we plan to
investigate the issue of skewed data distributions as well
as extending the current techniques to leverage replicated
data fragments.

REFERENCES

[1] D. Agrawal, S. Das, and A. E. Abbadi, “Big data and cloud
computing: New wine or just new bottles?”PVLDB, vol. 3,
no. 2, pp. 1647–1648, 2010.

[2] L. Wang, J. Tao, M. Kunze, A. Castellanos, D. Kramer, and
W. Karl, “Scientific cloud computing: Early definition and
experience,” inHigh Performance Computing and Communi-
cations (HPCC). IEEE, sep. 2008, pp. 825 –830.

[3] S. Loebman, D. Nunley, Y.-C. Kwon, B. Howe, M. Bal-
azinska, and J. Gardner, “Analyzing massive astrophysical
datasets: Can pig/hadoop or a relational dbms help?” in
Cluster Computing and Workshops (CLUSTER). IEEE, aug.
2009, pp. 1–10.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “A view of cloud computing,”Commun. ACM,
vol. 53, no. 4, pp. 50–58, 2010.

[5] S. Das, D. Agrawal, and A. E. Abbadi, “Elastras: An
elastic transactional data store in the cloud,”CoRR, vol.
abs/1008.3751, 2010.

[6] M. T. Özsu and P. Valduriez,Principles of distributed
database systems (2nd ed.). Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1999.

[7] D. J. DeWitt and J. Gray, “Parallel database systems: The
future of high performance database systems,”Commun.
ACM, vol. 35, no. 6, pp. 85–98, 1992.

[8] Y. Ioannidis, “The history of histograms (abridged),” in
VLDB. VLDB Endowment, 2003, pp. 19–30.

[9] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silber-
schatz, and A. Rasin, “HadoopDB: an architectural hybrid
of MapReduce and DBMS technologies for analytical work-
loads,”Proc. VLDB Endow., vol. 2, no. 1, pp. 922–933, 2009.

[10] A. Aboulnaga, Z. Wang, and Z. Y. Zhang, “Packing the most
onto your cloud,” inCloudDB ’09: Proceeding of the first
international workshop on Cloud data management. ACM,
2009, pp. 25–28.

[11] D. Agrawal, A. E. Abbadi, S. Antony, and S. Das, “Data
management challenges in cloud computing infrastructures,”
in DNIS, 2010, pp. 1–10.

[12] S. Das, D. Agrawal, and A. E. Abbadi, “G-store: a scalable
data store for transactional multi key access in the cloud,” in
SoCC, 2010, pp. 163–174.

[13] J. Hall, J. Hartline, A. R. Karlin, J. Saia, and J. Wilkes, “On
algorithms for efficient data migration,” inProceedings of the
12th annual ACM-SIAM Symposium on Discrete Algorithms,
ser. SODA ’01. Society for Industrial and Applied Mathe-
matics, 2001, pp. 620–629.

[14] E. Anderson, J. Hall, J. Hartline, M. Hobbs, A. Karlin, J. Saia,
R. Swaminathan, and J. Wilkes, “An experimental study of
data migration algorithms,” inAlgorithm Engineering, ser.
Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2001, vol. 2141, pp. 145–158.

[15] S. Khuller, Y.-A. Kim, and Y.-C. J. Wan, “Algorithms for
data migration with cloning,” inProceedings of the 22th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, ser. PODS ’03. ACM, 2003, pp. 27–36.

[16] U. Manber and S. Wu, “Glimpse: A tool to search through
entire file systems,” inUSENIX Winter, 1994, pp. 23–32.

[17] L. Lim, M. Wang, S. Padmanabhan, J. S. Vitter, and R. C.
Agarwal, “Dynamic maintenance of web indexes using land-
marks,” in WWW, 2003, pp. 102–111.

[18] ——, “Efficient update of indexes for dynamically changing
web documents,”World Wide Web Journal, vol. 10, no. 1, pp.
37–69, March 2007.

[19] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita,
“Improved histograms for selectivity estimation of range
predicates,”SIGMOD Rec., vol. 25, no. 2, pp. 294–305, 1996.

[20] N. Koudas, S. Muthukrishnan, and D. Srivastava, “Optimal
histograms for hierarchical range queries (extended abstract),”
in PODS. ACM, 2000, pp. 196–204.

APPENDIX

Algorithm 1 ASSIGNNODES(T,Rp,Rq)

Input: T is the relation instance that is currently partitioned
usingRp into p partitions,q is the new desired number of
partitions,Rq is the set of ranges for the desiredq partitions.
Output: An assignment of database nodes to each range in
Rq

1: Let Rp = {r1, . . . , ri, . . . , rm}
2: Let Rq = {s1, . . . , sj , . . . , sn}
3: Initialize all Done(ri) ← false
4: Initialize all Nodeq(sj) ← ⊥
5: for all (ri, sj) ∈ Rp×Rq ranked in decreasing number

of common tuplesdo
6: if Done(ri)=false ∧ Nodeq(sj)=⊥ then
7: Nodeq(sj) ← Nodep(ri)
8: Done(ri) ← true
9: end if

10: end for
11: Assign new nodes to all unassignedsj ∈ Rq

Algorithm 2 NAIVE RESIZERANGE(T,Rp,Rq)

Input: T is the relation instance that is currently partitioned
usingRp into p partitions,q is the new desired number of
partitions,Rq is the set of ranges for the desiredq partitions.
Assume that node assignment forRq has been computed.
Output: A migration path

1: Let Rp = {r1, . . . , rm}
2: Let Rq = {s1, . . . , sn}
3: for all sj ∈ Rq do
4: Let Contained(sj) = {ri : ri ⊆ sj}
5: for all ri ∈ Contained(sj) do
6: if Nodep(ri) 6= Nodeq(sj) then
7: Move tuples associated withri to Nodeq(sj)
8: end if
9: end for

10: end for
11: Let Straddle(Rq) =

{ri : ∃sj , sj+1, ri ∩ sj 6=∅, ri ∩ sj+1 6=∅}
12: for all ri ∈ Straddle(Rq) do
13: Let ri straddlesj , sj+1, . . . , sj+l

14: Repartition each tuple inri onto the nodes for
sj , sj+1, . . . , sj+l

15: end for

Algorithm 3 ELASTICRESIZERANGE(T,Rk,Rp,Rq)

Input: T is the relation instance that is currently partitioned
usingRp into p partitions,q is the new desired number of
partitions,Rq is the set of ranges for the desiredq partitions.
Assume that node assignment forRq has been computed.
Output: A migration path

1: Let Rk = {t1, . . . , tl}
2: Let Rp = {r1, . . . , rm}
3: Let Rq = {s1, . . . , sn}
4: for all sj ∈ Rq do
5: Let Contained(sj) = {ri : ri ⊆ sj}
6: for all ri ∈ Contained(sj) do
7: if Nodep(ri) 6= Nodeq(sj) then
8: Move chunks associated withri to Nodeq(sj)
9: end if

10: end for
11: end for
12: Let Straddle(Rq) =

{ri : ∃sj , sj+1, ri ∩ sj 6=∅, ri ∩ sj+1 6=∅}
13: for all ri ∈ Straddle(Rq) do
14: Let ri straddlesj , sj+1, . . . , sj+l

15: for all chunkstu ⊆ ri do
16: Let tu ⊆ sj+z

17: if Node(ri) 6= Nodeq(sj+z) then
18: Move chunktu to Nodeq(sj+z)
19: end if
20: end for
21: end for

Algorithm 4 FINDTREECOVER(T ,Rp, q)

Input: The current rangesRp for the p partitions,T is
the binary tree of ranges,q is the new desired number of
partitions. Assumeq < k
Output: Rq

1: Let Rp = {r1, . . . , rm}, eachri is a node inT .
2: Rcur ← Rp.
3: while q 6= |Rcur| do
4: if q > |Rcur| then
5: Pick a noderi ∈ Rcur to split
6: Replaceri with Children(ri) in Rcur

7: else if q < |Rcur| then
8: Pick two sibling nodesri, rj ∈ Rcur to merge
9: Replaceri, rj with Parent(ri, rj) in Rcur

10: end if
11: end whileRq ← Rcur

