Elastic Data Partitioning for Cloud-based SQL Processing $stems

Lipyeow Lim
University of Hawai‘i at Manoa
Honolulu, HI 96822, USA
lipyeow@hawaii.edu

Abstract—One of the key advantages of cloud computing is
the elasticity in which computing resources such as virtual
machines can be increased or decreased. Current state-of-
the-art shared-nothing parallel SQL processing systems, on
the other hand, are often designed and optimized for a fixed
number of database nodes. To take advantage of the elasticity
afforded by cloud computing, cloud-based SQL processing
systems need the ability to repartition the data easily when the
number of database nodes is scaled up or down. In this paper,
we investigate the problem of supporting elastic partitioning
of data in cloud-based parallel SQL processing systems. We
propose several algorithms and associated data organization
techniques that minimizes the re-partitioning of tuples and the
movement of data between nodes. Our experimental evaluation
demonstrates the effectiveness of the proposed methods.

I. INTRODUCTION

avoid scanning through each tuple to re-partition the data
? Can we minimize moving data between nodes during the
re-organization ? We describe a brute force, naive method
for performing the reorganization and propose three novel
methods that are significantly more efficient in terms of

the number of tuples that need to be re-partitioned and the
number of tuples that need to be moved.

The naive method (Method N) is based on a simple
matching between the current partitions or fragments a@d th
target partitions or fragments. For range partitioningsth
partitions or fragments can be represented as range itgerva
Current ranges that straddle multiple target ranges reqeir
partitioning. Deciding which tuples to move to what databas
nodes depends on how nodes are assigned to the target
ranges. In the worst case, when resizing a parallel database

Cloud computing platforms whether public (eg. Amazonto more nodes, the naive method needs to re-partition all

EC2) or private is gaining acceptance as an economical wathe tuples. We proposed a chunk-based method (Method
of sharing and managing computing resources [1]. In theC) that organizes data using fine-grain partitions called
scientific computing community, where users deal with largechunks. Partitioning of the data for a parallel database is
amounts of data (terabytes and above), running large pathen required to respect chunk boundaries, thus elimigatin
allel databases on a cloud computing platform is especiallfhe need for re-partitioning tuples during reorganization
attractive given the exponential growth of scientific datd a Method N and C both respect the partitioning constraint
the severely limited (financial) resources [2], [3]. A key of the partitioning function. For example, for equi-width
advantage of a cloud computing platform is the ability of partitioning function, the equi-width constraint is prega
scientific users to pay for the computing resources they,needfter the data is reorganized for the target number of databa
when they need it [4]. To take advantage of this “elasticity”nodes. In Method C the alignment to chunk boundaries
afforded by a cloud computing platform, a cloud-basedmay cause the equi-width property to be approximated,
parallel SQL processing system needs to be able exparult it is still preserved. On one hand, the preservation
and shrink the number of database nodes with ease [5hf the partitioning constraint is a good property from a
Unfortunately, conventional parallel SQL processingsyst parallelization and load balancing perspective, on theroth
are designed to run on a dedicated cluster with a relativelyhand, it causes significant data move during reorganization
fixed number of machines. Changing the number of ma- To minimize data movements, we propose a tree-based
chines requires a re-deployment of the parallel databasmethod (Method T) that uses a tree of partitions. The
which typically involves a mostly manual process of (1) re-tree encodes a set of allowed partitions, thereby avoiding
partitioning the data, (2) moving the partitioned data te th the arbitrary partitions in Method N and Method C that
right database nodes and (3) loading the partitioned data. necessitates the large amount of data movement. Method T

In this paper we take a first stab at the problem ofsacrifices the preservation of the partitioning constriming
supporting elastic data partitioning in a cloud-basedlfdra simple way of deciding which fragment to split or which two
DBMS. We consider shared-nothing parallel DBMSs de-fragments to merge. Partition boundaries remain moreestabl
ployed on a cluster of virtual machines in a cloud computingacross reorganization, thus minimizing data movements.
platform. Given that the data is partitioned amgndatabase We also propose a hash-based method (Method H) that
nodes in a parallel DBMS, how do we efficiently scale thisspecifically addresses hash-based partitioning (in csintoa
parallel database up or down tonodes? (Replication of range partitioning). A deeper analysis of Method H reveals
data fragments is deferred to our future work). Can wethat it is a specific variant of Method T.

Equi-size Database Fragment Relation T Fragment Database Equi-width

Our contributions. Ranges Node RID Node Ranges
o We introduce and highlight the important problem of 0181 0 7 | oo __|
. no fo

11
13
23
23 f2 n2
23
24
25 3 n3

supporting elastic data partitioning in a shared-nothing, fn n1 (1020]

cloud-based parallel database system. The best of our
knowledge this problem has not been addressed in the"®
literature before.

o We describe a straightforward ‘naive’ algorithm for the =
problem and propose three algorithms that significantly o — a1

. . (28,40] n3 3 4 n4 (30,40]

reduces the need for re-partitioning and data move- L L 39 [I _
m_ents. Method .C _uses the ide'.a.Of _Chunks and bOundarryigure 1. Range partitioning on relatioi with partitioning key
allgr_1ment o e“mmate_ re-partitioning. MethOd T_USQS T.B. The left side illustrates equi-size partitioning, the right side
the idea of precomputing a tree of possible partitioningjjystrates equi-width partitioning.
to minimize data movements. Method H extends the
previous methods to handle the hash partitioning type.

« We perform a comprehensive empirical evaluation ofsingle-column partitioning keys, because the columns in a
the proposed methods and present a subset of repreaulti-column partitioning key can always be replaced with

sentative results in this paper. a single concatenated column.

The rest of the paper is organized as follows. Section lipgpiitioning constraint. A partitioning constraint specifies
formulates the problem and describes the proposed methodggitions that the partitions of a partitioning functioeed

in greater detail. Section Ill presents an experimentalueva satisfy. The following are three partitioning consttain
ation of the proposed methods. Section 1V discusses relatgg 5 apply to range partitioning.

work. We draw conclusions in Section V.

23] n1 f1

e (2030]

(23.28] n2 f2

© ® N OO s W N R

[
o

« The equi-widthconstraint requires the range of values

Il. OUR APPROACH that the partitioning key takes for each partition to be
L equal.
A. Preliminaries « The equi-sizeconstraint requires the size of each par-
A relation T is a set of tuples that is (horizontally) tition (eg. in the number of tuples) to be equal.
partitioned [6], [7] into a set op partitions or fragments, « Theequi-loadconstraint requires the workload on each

partition (eg. average number of query hits per unit
time) to be equal.

In a shared nothing parallel DBMS, each data fragn#€nt Figure 1 illustrates how a relatidh can be range partitioned
resides on a database nodé the cluster. Each fragment with the equi-width and equi-size partitioning constraint

T=T,UT,U...UT,.

T; is itself a set of tuples. A partitioning functioft is Equi-width partitioning computes the ranges based purely
a mapping ofT to {11,T5,...,T,} given p and can be on the minimum and maximum possible values of the
described by several parameters. partitioning key. When the data distribution of the partitio

ing key is fairly uniform, the number of tuples associated
with each range would also be fairly uniform. When some

uses a set of disjoint ranges on the values of the partitg)ninSkeW 's present, the variance in the number of tples per

key (described next) to decide which tuple belong to which:gnrgei]gscomis ?:)gbr;gﬁagt' EigEi;Slzsaﬁ:kratllgovr\]/Iig?h argimé)st
partition. Hence, the data partitions from a range partitig y P y P 9 9

. . T rto ensure that the number of tuples associated with each
can be equivalently represented using the set of disjoin

O range is approximately uniform. Obviously both partitiogi
ranges. Hash partitioning, on the other hand, uses a hasc:Fa]c‘)nstraints can be foiled by extremely skewed distribwgion

function on the partitioning key to compute a hash ValueFor example, when one particular value of the partitioning

for a tuple that is used to decide which partition the tuple . X . o
e key occurs in 50% of the relation, equi-size partitioning
belong to. In both partitioning types, the set of ranges or .) . . N .
S . . cannot split a single value into two “ranges”. Equi-load
the hash function is typically stored in the database cgtalo LT T o .
. . partitioning is similar to equi-size except that instead of
so that queries and updates can be routed to the appropn%e . .
alancing the number of tuples per range, it balances some
database nodes. .
load measure such as number of query hits etc. Note that
Partitioning Key. A partitioning key consists of one or other partitioning constraints are possible dependinghen t
more columns of a relation chosen to be the basis of parapplication and requirements.
titioning the relation. For range partitioning, a compans A partitioning functionF (T, a,p) partitions a relatioril”
function must exist to sort the values of the partitioning ke into p fragments according to some partitioning constraint

into a total ordering. Without loss of generality, we comsid on a user-chosen partitioning attribute In this paper, the

Partitioning Type. Two partitioning types are currently in
use in state-of-the-art parallel databases. Range paitit

relation T' and the partitioning attribute. often remains nodes are assigned as well. We formalize Step 2 imtue
constant in the equations and algorithms, hence, we wilassignment problenGiven ap-node database with ranges
omit relation name and partitioning attribute arguments orR, and a target number of nodesvith rangesRk,, we wish
subscripts for readability. We denote the fragments riggplt to find the assignment of nodes to the target rarges
from applying the partitioning functiotF(p) asII,. In the In general, we would like to assign tienodes and add or
case of range partitioning, the resulting set of ranges oremove thep —¢| nodes in order to optimize some measure
intervals on the partitioning attribute is denoted7as. In (in this case, maximize the number of common tuples
the case of hash partitioning, the notati®), will denote between the assigned ranges). The intuition then is to Bort a
the set of bit strings that encode the address of the hagbairs of overlapping ranges betwe®), andR, according
bucket. In most cases, there will be a one-to-one correto the measure and assidfode,(r;) to s; wherer; ands;
spondence between ranges (or hash buckets) and fragmerntsve the most number of tuples in common. The algorithm
However, when there is significant skew in the values ofexamines all pairs of ranges between the curgenanges
the partitioning key, it is possible that two fragments (&n and the targey ranges. The pairs are sorted in decreasing
database nodes) are required for a single range interval (@rder of the number of common tuples. The current nodes
hash bucket). However, for ease of exposition, we assumethat have not been assigned are assigned to the range with
one-to-one correspondence between ranges (or hash Bucketfse largest number of common tuples. After all current
and fragments, and between fragments and database nodesdes have been assigned, target ranges that do not have
Hence fragments and ranges (or hash buckets) will oftemn assigned node are assigned new nodes. The conceptual
be used interchangeably in the context of range partitgpnin cross product in the ASIGNNODES algorithm to find all
Investigating strategies for managing skewed non-orn@- overlapping pairs can be implemented very efficiently using
correspondences is part of our future work. a linear scan similar to merging two sorted lists. Finding th
number of common tuples can also be approximated using
histogram techniques [8] in practice.

At the end of Step 2, we have the current ran@gswith
their node assignments and the target rariggswith their
node assignments. Step 3 uses thelV¥ RESIZERANGE
Algorithm to match the current and target ranges in order to
move and/or re-partition the tuples associated with a atirre
node. The algorithm first deals with all the current ranges

nodesNode,(-), . that are completely contained in a target range. The tuples

« a target number of partitiong associated with these fully contained ranges do not need to
find a mapping of{T1,T3,...,T,} to {T1,Ts,...,T;}, be re-partitioned, but moved to the target node if theiratrg
and a mapping of the data partitions to database nodesnode is different. The algorithm then proceeds to deal with
that minimizes the number of tuples re-partitioned, and th@hose current ranges that are mapped to two or more target
number of tuples moved between database nodes. ranges. The tuples associated with these current rangds nee
B. Method N: Naive Resize to be re-part_itiorjed and moved to the target nodes (if their

. o i . target node is different from their current node).
Consider a tablel’ that is initially partitioned intop Example 1 (Naive Resizeonsider the following

data partitions using range partitioning functiéhon some 5nqes and node assignments for decreasing the number of
partitioning key. These data partitions are then assigned y5tapase nodes frop=5 to g—4

to p database nodes. Suppose we want to resize the number

Problem Statement. Without loss of generality consider a
single relatiorl” that is initially partitioned intg fragments
and needs to be resized gdoragments. Given

« a relationT,

« a partitioning function” on a fixed partitioning key,

« an initial number of partitiong,

« an initial mapping of data fragments to database

of partitions tog. The following steps illustrates the naive R, = {[0,8],(8,16], (16,24], (24, 32], (32,40} .
approach. R, = {[0,10],(10,20],(20,30], (30,40]} .

1) Find the set ofj ranges according t&. Node,(-) = {1,2,3,4,5},

2) Assign existing and/or new database nodes to theNodeq(-) — {1,2,4,5).

g ranges using a heuristic such as maximizing the

number of common tuples — the S&IGNNODES

algorithm (pseudocode in Appendix A Algorithm 1). The Nalve RESIZERANGE algorithm would first iterate over
3) Match up the current and the new ranges to decidearget rangeq (0, 10], (30,40]}, because there exists some

which tuples need to be re-partitioned and/or movedcurrent ranges that are fully contained in these targetasng
to a different node — the NVERESIZERANGE al-

gorithm (pseudocode in Appendix A Algorithm 2) (0,8 < (0,10] and (32,40] C (30,40].
Step 1 is straightforward. Step 2 tries to assign existingHowever, since these subsumed ranges map to the same
database nodes to thepartitions and wherg > p, new database nodes, no movement of tuples are required. The

second part of the algorithm would iterate over the cur-will need to use an approximate range partitioning function
rent ranges{[8, 16], (16, 24], (24, 32|} because these ranges that aligns ranges to chunk boundaries.

straddle at least two target ranges each. Choosing k. The parametert should be chosen as the
« For current range(8,16], the tuples will be re- maximum number of database nodes that would ever be
partitioned to{(0,10], (10,20]} and tuples for(0,10] geployed until the next major database re-organizatiomwhe
will be moved to node 1. the data can be re-partitioned according to a ket largek
« For current range(16,24], the tuples will be re- \qoy|d resultin small chunks that could better isolate cleang
partitioned to{(10,20], (20,30]} and moved to node \yhen resizing fromp to ¢, but it also translates to more
2 and node 4 respectively. chunks that need to be managed by the database catalog.
o For current range(24,32], the tuples will be re-]) i
partitioned to {(20, 30], (30,40]} and the tuples for Allgnment to chunk boundar'les. A stralghtforwarq tech-
(30,40] will be moved to node 5. nigue f_or chunk b_oundary alignment would be to mclude_ a
chunk in a range if at least 50% of the chunk overlaps with
the range. For example, to decide if a rari@el 1.5] should
(iinclude the chunk(10,12], we compute the percentage
overlap (11.5 — 10)/2.0 = 75% and since the overlap is
signiﬁcant, the range is adjusted to include the chunk, i.e.
,12]. The subsequent range then starts at 12.

Compared to moving tuples from one database node t
another database node, re-partitioning is a relativelyeexp
sive operation. Our experiments on the Amazon EC2 clou
showed that moving a TPC-H lineitem tuple between two
instances in the same U.S. east coast zone takes 0.0225
on average and partitioning a lineitem tuple on a small on-
demand instance takes 0.0478 ms on average. Partitioniri§esizing. The following steps outlines the chunk-based
requires every tuple to be scanned from disk, the value of thelastic resize approach.
partitioning key accessed for partitioning, and then \eritt 1) Find the set of; ranges according t&.
out to disk. The re-partitioned tuples can then be moved in 2) Align the q ranges to chunk boundaries.

a batch fashion to the corresponding target nodes. Consider 3) Assign existing and/or new database nodes togthe

the case where the same equi-width partitioning function is ranges using the #sIGNNODES algorithm.

used to compute both the current and target ranges. If the 4) Match up the current and the new ranges to decide

number of target partitiong is greater than the number of which chunks need to be moved to a different node

current partitionsp, it is clear that allp partitions need to using the chunk-basedLESTICRESIZERANGE algo-

be re-partitioned. If; is less tharp, the number of current rithm (pseudocode in Appendix A Algorithm 3)

partitions that need to be re-partitioned is dependent en thSteps 1-2 are straightforward. Step 3 uses the same node

greatest common divisor betwegrand ¢. More formally, assignment algorithm to obtain a node assignment fogthe

ranges. Step 4 uses the ASTICRESIZERANGE algorithm

partitions to be spli { ¢ p<q @ which is a modifie_d ve_rsion of t_he MVERESIZERANGE
g—gedp,q) p>4q e}lgonthm. Thg main difference lies in how the two algo-

rithms deal with current ranges that straddle two or more

In fact, this characterization holds as long as the samearget ranges. In the chunk-based method, re-partitioofng

range partitioning function is used to compute the currentuples is no longer needed. Instead AGTICRESIZERANGE

and target ranges, irrespective of the partitioning caisfr jterates through each chunk in the current range, finds

Observe that the number of partitions that need to be splithe target range that the chunk maps to, and move the

becomes zero whenever is a multiple of ¢ and hence chunk to the node for that target range if the chunk is

ged(p,q) = q. This observation leads us to a method ofon a different node. In another sense, we have replaced

resizing without re-partitioning tuples. tuple-based re-partitioning to chunk-based re-partitignlf

_ i) each chunk holds an average $ftuples, wheren is the

C. Method C: Chunk-based Elastic Resize total number of tuples in the relation, then chunk-based

The key ideas to a method of elastic resizing of a cloudprocessing represents a factor gf improvement in re-
based parallel DBMS without splits are (1) pre-partitior th partitioning cost.
data intok fine-grained partitions callechunks(k > p, k > Example 2 (Chunk-based Resiz€onsider the follow-

q), and (2) any range partitioning function must align rangesing ranges and node assignments,
to chunk boundaries. Since any changes to the ranges are

0 P=q

always aligned to chunk boundaries, the tuples within a Ri = {(0,25],(25,5],...,(37.5,40]},
chunk are never re-partitioned. R, = {[0,10],(10,20],(20,30], (30,40},
R, = {[0,7.5],(7.5,15], (15,25, (25,32.5], (32.5,40]} ,

Initialization. An additional initialization step is required.
The data table is initially partitioned intochunks using any Nodey(-
existing range partitioning function. Subsequent paritig ~ Node, (-

{]‘7 27 37 4} i

)
) = {1,2,53,4}.

Since there are no current ranges that are fully containefinds a cover as follows. Start with the current ranges as an
in a target range, EASTICRESIZERANGE simply iterates initial cover. Letc be the number of tree nodes in the current

through each range iR, and perform the following. cover. If ¢ < ¢, increase number of tree nodes in the cover
« For current rangg0, 10], the chunk(7.5,10] will be by finding a tree node in the current cover to splitc I g,
moved to node 2. decrease number of tree nodes in the cover by finding the
« For current rangg 10, 20], the chunks(15,17.5] and WO sibling tree nodes in the current cover to merge. Repeat
(17.5,20] will be moved to node 5. until ¢ = q.
« For current rangg20, 30], the chunks(20,22.5] and How do we pick the nodes for splitting or merging ? The
(22.5,25] will be moved to node 5. heuristic used for picking nodes can be used to approximate
« For current rangé30, 40], the chunk(30,32.5] will be the partitioning constraint.
moved to node 3. « Pick the tree node with the widest range to split. Pick

A natural question to ask next is whether the data the two sibling nodes with the narrowest range to
movements can be minimized. If we insist on the target merge.
ranges satisfying the same partitioning constraint, tien t « Pick the tree node with the most number of tuples to
answer is unfortunately no. If we are able to accept target split. Pick the two sibling nodes with the least number

ranges that partially satisfy the partitioning constrairee- of tuples to merge.
based techniques can be used to reduce the amount of datas Pick the tree node with the most number of query hits
movement. to split. Pick the sibling nodes with the least number

of query hits to merge.

D. Method T: Tree-based Elastic Resize . - . .
Note that using heuristics such as the above requires main-
In the previous methods, the data of the partitionedaining a priority queue which could be expensive. A com-
relation is re-distributed to satisfy the partitioning stmaint putationally simple heuristic would be to split the leftmos
on the target ranges resulting in much data movements. IRighest node in the tree that is in the current cover and to
the tree-based method, we relax the need to satisfy the paferge the rightmost, lowest two siblings in the tree that is
titioning constraint. In addition to the key ideas introddc in the current cover.
in the chunk-based method, the tree-based method relies onReturning to our discussion of Step 3 of the initialization,
the idea of a pre-computed hierarchy of ranges (see Fig. 3)e can simply call D TREECOVER using the root node
where each partitioning intp or ¢ ranges corresponds 10 of the tree as the current cover and the algorithm will keep
finding a cover of (internal) tree nodes that subsumes all thgpjitting till p nodes are obtained.

leaf nodes.) .) .
Resize. The following steps outline the tree-based resize

Initialization. Before the parallel database is deployed onmethod for resizing fronp partitions tog partitions. The
p nodes, the following steps are used to initialize the tree ofpynk rangesR;, and the tree of range® are assumed to
ranges. be stored in the database catalog.
1) PartitionT into k > p special fragments which we 1) Find theq ranges given the tre@ using the FnD-
shall cal chunks. Choosl@ to be a power of.2. TREECOVER algorithm (pseudocode in Appendix A
2) Construct a binary tree in bottom-up fashion where Algorithm 4)
each leaf is associated with one of theshunks. 2) Resize the parallel database system using thesEEi -

3) Find a set op (internal) nodes that cover all the leaves. CRESIZERANGE algorithm (Appendix A Algorithm 3)
Each of thep fragments consists of the chunks asso-

ciated with the leaves descended from that (internalj\'Ote that an alternative to the steps outline above is to keep
node. Algorithm 4 FNDTREECOVER can be used. track of the current ranges as a list of tree nodes.d ¢

the number of current ranges. ¢f < ¢, increase number
Finding a tree cover. The key algorithm in the tree-based of database nodes by finding a tree node in the current
method is the RDTREECOVER algorithm (pseudocode in ranges to split, and move the chunks associated with the
Appendix A Algorithm 4). Given a tree of ranges, the right child to a new database nodeclf ¢, decrease number
current set of rangeR ,, and a target number of ranggsve of database nodes by finding the two sibling tree nodes to
wish to find a set of; tree nodes that subsumes or cover allmerge, and move the chunks associated with right sibling to
the leaf nodes. Note that each leaf node is associated withthe left sibling (the database node associated with the left
chunk and hence a chunk range. The current set of réRges sibling gets “promoted”, i.e., associated with the parese t
is aligned to chunk boundaries and hence has a one-to-om®de). Repeat until = ¢q. Note that since data movement is
correspondence to a set of tree nodes. In this section we wiflerform one tree node at a time, it is possible that a paaticul
refer to (chunk aligned) ranges and tree nodes synonymousbhunk can be moved multiple times compared to the Step 2
because of this one-to-one correspondence. The algorithasing the EASTICRESIZERANGE algorithm.

©20 on the other hand, does not try to preserve the partitioning

constraint. The variance in the partition sizes would depen

(0,10] (10,20] on the heuristic used to pick splitting/merging nodes. For
/\ A the simple split-leftmost-highest and merge-rightmostést
(0,51 (5,10] (10,15] (15,20] heuristic, the difference in partition sizes for uniformtala
/\ A A A can be bounded by a factor of two, since the partitions for a
(0251 (25.5] (.75] 7510 (101251 125,15 (15.17.5] (17.5:20] p-node database correspond to tree nodes atltper | and

[log p] levels only. While this is true for equi-width range
Figure 2. Example of a tree of ranges. partitioning on uniform data, hash partitioning, on theesth
hand, is inherently random and the partition sizes are not

balanced in general.
Example 3 (Tree-based Resiz&onsider partitioning a

table T with partitioning attribute values frort0, 40]. Sup- Ill. EXPERIMENTAL EVALUATION
pose we choosé = 16 and use the equi-width partitioning \We evaluated the effectiveness and efficiency of the
function to obtain the chunk ranges, proposed methods on the TPC-H benchmark data as well
Ry = {(0,2.5], (2.5, 5] (37.5,40]} . as synthetically generated data from the uniform and Zipf
’ ’ ’ distributions.
The binary tree of ranges fdR,, is illustrated in Fig. 2. For the TPC-H data, we used the lineitem table generated

Suppose we wish deploy the parallel database with- using a scale factor of 0.01 and 1.0 (henceforth denoted
4 database nodes initially. Using the split-leftmost-hgthe as TPC-H(0.01) and TPC-H(1.0)). The lineitem table with
node heuristic, we obtain the following covering ranges, scale 0.01 contains 60,175 rows and about 7.5 MB of data,
while the table with scale 1.0 contains 6,001,215 rows
Ry = {[0,10]; (10, 20]; (20, 30], (30, 40]} and about 759 MB of data. We experimented using the
Suppose, we wish to increase the number of database noda#iributesL_ ORDERKEY, L_PARTKEY, L_SUPPKEY as
to ¢ = 5. The ANDTREECOVER algorithm picks a range the partitioning key.
from amongR, to split. If we use the split-leftmost-highest ~ The synthetic data are generated by drawing the values
node heuristic, the rang@®, 10] will be split into (0,5] and of the partitioning key from the uniform distribution and
(5,10], resulting in the Zipf distribution. A ‘uniform’ dataset is generated by
drawing 100,000 random variates between zero and 500
Rq = {[0,5], (5, 10], (10, 20], (20, 30], (30, 40]} . from a uniform distribution. A ‘Zipf 1’ dataset is generated
If we use the heuristic that picks the range with the mosty drawing 10,000 random variates in the same range from
tuples, then using the data in Fig. 1, the rarige, 30] will ~ a Zipf distribution with exponent one. A ‘Zipf 2’ dataset is
be chosen, because it contains 6 tuples. Hence, generated by drawing 10,000 random variates in the same
, range from a Zipf distribution with exponent two. Note
Ry = {0, 10], (10, 20], (20, 25}, (25, 30], (30, 40]} . that since Zipf random variates represent the rank and not
Using ELASTICRESIZERANGE on R/, a new database the data value itself, we randomly permute the generated
node is instantiated and only the two chunksranks to simulate values. For random datasets, experiments
{(25,27.5],(27.5,30]} is moved to the new database are run over 10 randomly generate datasets with the same
node. parameters in order to observe average behavior.
o Four performance metrics are used: (1) elapsed running
E. Implications for Query Performance time in a serial execution, (2) elapsed running time in a
Consider a simple query that scans the entire partitione@arallel execution, (3) the number of tuples moved from
relationT =71 UT>U...UT,. The running time of a table one node in the cluster to another, (4) the number of
scan queryQ(T) is the time of the longest scan on each tuples re-partitioned. The number of tuples moved and re-
of the data partitions@(7') = max’_, Q(7;). The perfor- partitioned are expressed as a percentage of the total mumbe
mance of table scans is dependent on the size of each das&tuples in the table. The number of tuples re-partitioned
partition 7; which in turn is dependent on the partitioning counts the number of tuples of which the value of the
constraint. A detailed exposition of the relationship bedw partitioning key needs to be examined in order to map the
parallel query performance and partitioning constraint istuples to the appropriate partition. We present a subset of
beyond the scope of this paper. When the partitioning keyour experimental results due to space constraints.
is relatively uniform, equi-width partitioning would ensu
relatively balanced partitions. Method N and C tries to”A End-to-End Efficiency
preserve the partitioning constraint and hence would also In this experiment, we measure the elapsed time of
preserve the query performance characteristics. Method Tising our proposed method to resize a cloud-based parallel

Method N Method C Method T

same for Method N and C, but Method T is almost 40

Q'g_‘;,[:{;{t?on 3252597 3'52% O'OOS seconds faster. This is due to number of tuples that needed
Move+Load 266.452 261.236 226.848 to be moved under the three methods: 4,909,377 for Method
Total Serial 533478 264762 226.854 N, 4,875,307 for Method C, and 4,125,866 for Method T.
Total Parallel 321.391 134290 120.899 Fourth, sincep=2, the level of parallelism is limited to two.
Table | Table Il shows the results for=11, ¢=7. For Method C
TIME (SECONDS TO SCALE A 2-NODE DATABASE TO 11 NODES . .
ONEC2. and T, 128 chunks were used. In this case, Method T is the
clear winner, since it minimizes the number of tuples that
need to be moved. In fact, only 4 out of the 11 partitions
Method N Method C Method T need to be moved. For Method N and C, 6 out of the 11
Algorithm 3.382 3.909 0.002 partitions need to be split and moved. The number of tuples
Re-partition 167.892 0 0 moved are 3,272,833 for Method N, 3,187,478 for Method
Move+Load 203.558 204.611 85.867
Total Serial 533478 208520 85869 C, and 1,500,796 for Method T. The amount of concurrency
Total Parallel 66.730 39.795 22.608 for Method N, C, T is 6,6,4 respectively which accounts for
Table Ii the improved parallel time compared to the previous case.
TIME (SECONDS TO SCALE AN 11-NODE DATABASE TO 7 In both cases, we observe speedups of 2 and 3 for Method
NODES ONEC2. C and Method T over the naive Method N. We also note that

the number of tuples moved and the number of tuples re-
partitioned are good predictors of performance; hence, we

. focus on these two measures for the rest of the paper.
database fromp nodes tog nodes running on the Amazon

EC2 cloud. For initialization, we partition and load the TPC B. Elasticity Characteristics

H(1.0) dataset on a cluster pfiBM DB2 database instances We wish to understand how “elastic” we can scale our
running on small, on-demand instances. The partitioniryg ke cloud-based parallel database from a fixechumber of

is L_ORDERKEY and the partitioning constraint is equi- nodes to varying numbers of nodes. We measure the num-
width. We then use the proposed method to elastically resizBer of tuples moved and re-partitioned as a percentage of the
the database tg instances. Ifg > p, we assume that total number of tuples fop=32 and ¢ {2,3,4,...,256}.
additional EC2 instances are already started and do not couror Method C and T, 256 chunks were used.

the time required for EC2 instances to be started. We also Fig. 3(a) and Fig. 3(b) shows the results for TPC-H(0.01)
assume that the data fragment at each database node atistaset. Observe the general shape of the curves in Fig. 3(a)
exists as a CSV file at that node. We measure the followingAs |¢ — p| increases, the number of tuples to be moved

« the running time of the proposed method, increases. The ideal curves should have gradual slopes as
. the time to re-partition the data fragment for target|¢—p| increases. Note that Method T is almost always better
partitions at each node, in terms of the number of tuples moved, but Method N
. the time to send the re-partitioned data to the targefnd T are about the same. Recall that Method N requires
node, re-partitioning whereas Method C and T does not. Hence
« the time to load the re-partitioned data into the databas®ethod C is still superior to Method N. Fig. 3(b) shows

instance at the target node, the periodic nature of the re-partitioned tuples as gowkrne
. the total time required if all the steps were executeddy Edn. 1. Recall that when > p, all tuples need to be
serially, and re-partitioned under Method N.

« the total time required if the re-partitioning, move, and Fig. 3(c)-3(f) shows the results for synthetically genedat
load steps are executed concurrently at each node ifiata. The synthetic datasets ‘Uniform’, ‘Zipf 1', and “Zipf
parallel. 2’ represents datasets with increasing skew. Observetteat t

Table | shows the results fgp=2,¢=11. For Method curves shift lower with increasing skew. While this seems to

C and T, 128 chunks were used. The first observation i?e a positive, but pgz_zling res_ult, it can be e_xplained by a
that the time required for executing the proposed methodﬁmalII number of partitions ho_ldlr_1g a Iarge. po_rt|0n of theedat
is negligible compared to the time required to re-partition n skewe_d d_atasets. For faqU|-W|dth_part|t_|on|ng, the eéffec
move or load the data fragments. Among the proposecrjhat the I|I_<eI|hood of movmgaparunqn thhasmall number
methods, Method T is the speediest. Second, re-partitjpninOf tuples increases with skew, resulting in less tuples move

is more expensive to moving and loading data. Sinde in total. Fig 3(f) seems to indicate that skew does not affect
larger thanp, every tuple needs to be re-partitioned under

the number of re-partitioned tuples significantly for Medho
Method N. Method C and T keep track of tuples at the chunk ™

level, and thus avoid the costly re-partitioning operation Number of Chunks. We also investigated the effect of
Third, the time for moving and loading is roughly the the number of chunks (the parametein Method C and

100
n Method N —— Method N —— i Method N ——
100 f Method C - 100 =. Method C -

Melhod‘T Methogd T

8o i

80 Hi 80
60 [i

60 | | 60

40 -

40 - 40

Percentage of table moved
Percentage of table moved

20 - 20 200

Percentage of table repartitioned

0 0

0 50 100 150 200 250 300 0 5 10 15 20 25 30 35 40 0 50 100 150 200 250 300

Target number of partitions Target number of partitions Target number of partitions
(a) TPC-H(0.01) : Tuples moved (b) TPC-H(0.01) : Tuples re-partitioned (c) Uniform : Tuples moved
100 T T 100 T T 120 T T T T
Method N —— Method N —— Method N Uniform
Method C - Method C - Method N Zipf 1 -
Method T Method T 100 F Method N Zipf

80 |t 80
| 80 |

60 60

M i 60 |

w0 | 40t
\ s

Percentage of table moved
Percentage of table moved

20 - 20

20 -

Percentage of table repartitioned

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 5 10 15 20 25 30 35 40

Target number of partitions Target number of partitions Target number of partitions
(d) Zipf 1 : Tuples moved (e) Zipf 2 : Tuples moved (f) Uniform+Zipf : Re-partitioned Tuples

Figure 3. Elasticity of scaling from32-nodes to{2, 3,4, ...,256}-nodes for TPC-H(0.01) and synthetic datasets.

100

Method C'64 —— model.

Method C 128 -
Method C 256

o N Method T 64,125,256] A closely related area of theoretical research is the prob-
o lem of data migration in storage area networks (SAN) [13],
[14], [15]. The data migration problem computes a migration
plan for moving data objects over a network of storage
devices from one configuration to another. Even if we
o conceptualize the tuples of our partitioned relation agd'da

o 10 20 2 4 0 e objects” in the data migration problem, there are significan

Tergetnumber of partiions differences. First, our problem is more general and incdude

Figure 4. Elasticity of scaling fronB82-nodes to{2, 3,4, ...,256}- not just the data migration problem as a subproblem, but

nodes for TPC-H(0.01) dataset over varying numbers of chunks. the subproblem of computing the next configuration given
certain constraints. Second, previous theoretical fomtian

of the data migration problem has assumed that each device
T). Fig. 4 shows the number of tuples moved over differentcan only handle one object at one time. This is true in the
values ofk for the TPC-H(0.01) dataset. The parameters context of SAN, but not true in the context of a parallel SQL
andq are set ap=32 andq¢c{2,3,4,...,256}. Method T processing system. Each node in the SQL processing system
is not sensitive to the number of chunks at all, because onds capable of multi-threading and processing multiple cisje
the tree of ranges is constructed, the tuple movements a@ a time. Third, data repartitioning is the most expensive
fixed. Method C, on the other hand, moves less tuples witloperation in our problem and not data movement across a
larger k, because more chunks translates to smaller chunketwork.
size and better isolation of the fragments that need to be The chunking technique that we used to eliminate tuple
split and moved. repartitioning is similar in spirit to techniques used in
text indexing. Glimpse [16] uses chunking to reduce the
IV. RELATED WORK granularity of the pointers in an inverted index so that the
Recent work on exploiting cloud computing platform for pointers point to pages rather than to individual words & th
datamanagement has focused mainly on building systentext. Similarly, landmarks are used in [17], [18] to speed up
and identifying challenges [9], [10], [11], [1], [5], [12Dur update processing in inverted indexes.
work complements these effort in that the proposed elastic Data partitioning is also closely related to histogram
data partitioning techniques could be applied to cloud dat@onstruction [8], [19]. Histograms partitions data intoea af
management systems that use a partitioned, relational dabackets and approximate the number of tuples in each bucket

60

40 -

Percentage of table moved

20

0

with an average. We adopted some of the concepts and6] M. T. Ozsu and P. ValduriezPrinciples of distributed
terminology for data partitioning from partitioning in his
tograms [19]. In contrast to histogram partitioning prabje
this paper addresses the orthogonal problem of migrating 7]

one set of partitions to another. Our proposed Method T uses

a tree of partitions which in the case of range partitioning

type is similar to the hierarchical ranges used in [20] for [

selectivity estimation.

To the best of our knowledge, the problem of partitioning
and organizing data in support of elasticity in a parallel [9]
DBMS has not been addressed before.

V. CONCLUSION

database systems (2nd ed.lUpper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1999.

D. J. DeWitt and J. Gray, “Parallel database systems: The
future of high performance database systenSgmmun.
ACM, vol. 35, no. 6, pp. 85-98, 1992.

] Y. loannidis, “The history of histograms (abridged),” in

We have highlighted an interesting problem of supporting[10]
elastic data partitioning in cloud-based parallel databas
order to exploit the elasticity feature of a cloud computing

platform. We proposed several methods to scale parallel

databases from nodes tog nodes. Method N does a naive [11]
and brute force matching of the existipgdata partitions to

the targety data partitions while preserving the partitioning
constraint. Method C pre-partitions the data into finesgrai
chunks and manages data partitions that are aligned ar{az]

mapped to the chunks in order to avoid re-partitioning each
data tuple. Method T improves on data movement by using
a hierarchy of pre-computed partitions. Scaling frento

g must use a covering set of partitions from the tree. We

have implemented our proposed methods in a prototype and
have demonstrated its effectiveness and efficiency through

extensive experimentation. As future work, we plan to
investigate the issue of skewed data distributions as wel14]

as extending the current techniques to leverage replicated

data fragments.

REFERENCES

(13]

[1] D. Agrawal, S. Das, and A. E. Abbadi, “Big data and cloud [15]

(2]

(3]

(4]

(5]

computing: New wine or just new bottlesPVLDB, vol. 3,
no. 2, pp. 1647-1648, 2010.

L. Wang, J. Tao, M. Kunze, A. Castellanos, D. Kramer, and
W. Karl, “Scientific cloud computing: Early definition and

experience,” irHigh Performance Computing and Communi-
cations (HPCC) IEEE, sep. 2008, pp. 825 —830.

(16]

(17]

S. Loebman, D. Nunley, Y.-C. Kwon, B. Howe, M. Bal-
azinska, and J. Gardner, “Analyzing massive astrophysical
datasets: Can pig/hadoop or a relational dbms help?”
Cluster Computing and Workshops (CLUSTEREEE, aug.
2009, pp. 1-10.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, |. Stoica, and
M. Zaharia, “A view of cloud computing,Commun. ACM
vol. 53, no. 4, pp. 50-58, 2010.

S. Das, D. Agrawal, and A. E. Abbadi, “Elastras: An
elastic transactional data store in the clou@bRR vol.
abs/1008.3751, 2010.

[20

1)

(19]

]

VLDB. VLDB Endowment, 2003, pp. 19-30.

A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silber-
schatz, and A. Rasin, “HadoopDB: an architectural hybrid
of MapReduce and DBMS technologies for analytical work-
loads,”Proc. VLDB Endow.vol. 2, no. 1, pp. 922-933, 2009.

A. Aboulnaga, Z. Wang, and Z. Y. Zhang, “Packing the most
onto your cloud,” inCloudDB '09: Proceeding of the first
international workshop on Cloud data managememCM,
2009, pp. 25-28.

D. Agrawal, A. E. Abbadi, S. Antony, and S. Das, “Data
management challenges in cloud computing infrastructures,”
in DNIS, 2010, pp. 1-10.

S. Das, D. Agrawal, and A. E. Abbadi, “G-store: a scalable
data store for transactional multi key access in the cloud,” in
SoCC 2010, pp. 163-174.

J. Hall, J. Hartline, A. R. Karlin, J. Saia, and J. Wilkes, “On
algorithms for efficient data migration,” iRroceedings of the
12th annual ACM-SIAM Symposium on Discrete Algorithms
ser. SODA '01. Society for Industrial and Applied Mathe-
matics, 2001, pp. 620-629.

E. Anderson, J. Hall, J. Hartline, M. Hobbs, A. Karlin, J. Saia,
R. Swaminathan, and J. Wilkes, “An experimental study of
data migration algorithms,” irAlgorithm Engineering ser.
Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2001, vol. 2141, pp. 145-158.

S. Khuller, Y.-A. Kim, and Y.-C. J. Wan, “Algorithms for
data migration with cloning,” inProceedings of the 22th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systemser. PODS '03. ACM, 2003, pp. 27-36.

U. Manber and S. Wu, “Glimpse: A tool to search through
entire file systems,” iUSENIX Wintey 1994, pp. 23-32.

L. Lim, M. Wang, S. Padmanabhan, J. S. Vitter, and R. C.
Agarwal, “Dynamic maintenance of web indexes using land-
marks,” in WWW 2003, pp. 102-111.

——, “Efficient update of indexes for dynamically changing
web documents,World Wide Web Journalol. 10, no. 1, pp.
37-69, March 2007.

V. Poosala, P. J. Haas, Y. E. loannidis, and E. J. Shekita,
“Improved histograms for selectivity estimation of range
predicates,SIGMOD Rec.vol. 25, no. 2, pp. 294-305, 1996.

N. Koudas, S. Muthukrishnan, and D. Srivastava, “Optimal
histograms for hierarchical range queries (extended abstract),”
in PODS ACM, 2000, pp. 196-204.

APPENDIX

Algorithm 1 ASSIGNNODEST, R,, R,) Algorithm 3 ELASTICRESIZERANGE(T, Ry, Rp, Rq)

Input: 7' is the relation instance that is currently partitioned INPut: 7"is the relation instance that is currently partitioned
using R, into p partitions, g is the new desired number of USINGR, into p partitions, g is the new desired number of
partitions, R, is the set of ranges for the desirggartitions. ~ Partitions, R, is the set of ranges for the desirggartitions.
Output: An assignment of database nodes to each range f}SSume that node assignment f&; has been computed.

Ry Output: A migration path
1 LetR,={r,....7%....,Tm} L Let Ry = {t1,...,t:}
22 Let Ry ={s1,...,8j,...,8n} 2 Let Ry = {ri,...,rm}
3: Initialize all Doneg;) — false 3 LetRy = {s1,...,sn}
4: Initialize all Node,(s;) — L 4 for all s; € R, do
5: for all (r;,s;) € R, x R, ranked in decreasing number 5 Let Containeds;) = {r; : r; C s;}
of common tuplesio 6: for all r; € Containeds;) do
6: if Dongr;)=false AN Node,(sj)=L then [£ if Node,(r:) # NOdeq(.Sj) the_n
7 Nodey(s;) « Nodey(r;) 8: Move chunks associated with to Node,(s;)
8: Don€r;) « true 9 end if
o endif 10: end for
10: end for 11: end for
11: Assign new nodes to all unassignede R, 12: Let StraddI€R,) =

{’I"i : E|Sj, Sj4+1,T4 N Sj#@, i N Sj+17é®}
13: for all r; € Straddl¢R,) do
14: Letr; straddles;, sjt11,..., 554
15. for all chunkst, C r; do

Algorithm 2 NAIVERESIZERANGE(T, Ry, R,)

Input: T is the relation instance that is currently partitioned 16: Lett, C sjiz

using R,, into p partitions,q is the new desired number of 17 if Nodeg;) # Node,(s;+-) then
partitions, R, is the set of ranges for the desirggartitions. 1g: Move chunkt, to Node,(s;-)
Assume that node assignment 8, has been computed. 19 end if

Output: A migration path 20: end for

1 LetR, ={r1,...."m} 21: end for
2. Let Ry = {s1,...,5n}

3: for all s; € R, do

4: Let Containeds;) = {r; : r; C s;}
5. for all r; € Containeds;) do
6

7

8

9

if Nodey(r;) # Node,(s;) then

Move tuples associated with to Node,(s;) Algorithm 4 FINDTREECOVER(7, R, q)
end if Input: The current range®R,, for the p partitions, 7T is
. end for the binary tree of rangeg, is the new desired number of
10: end for partitions. Assume < k
11: Let Straddl¢R,) = Output: R,
{ri:3sj, 841, N 570,75 O 551170} 1: Let R, = {r1,...,mn}, eachr; is a node in7.

12: for all r; € Straddl¢R,) do 2 Reur — Rp.

13: Letr; straddles;, sji1, .., 8j+1 3: while ¢ # [Rey,| do

14: Repartition each tuple in; onto the nodes for 4 jf 4> |Reur| then

Sjs Sj4ly ey SiHl 5: Pick a noder; € R, to split

15: end for 6: Replacer; with Children(r;) in Ry
7. elseif ¢ < |Reur| then
8: Pick two sibling nodes;, r; € R, to merge
o: Replacer;, r; with Parentr;,r;) in Ry

10: end if
11: end whileR; <+ Reyr

