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Abstract

Databases and information retrieval systems storing data from the World Wide Web

require new optimization strategies to deal with the different types of data (textual,

semi-structured and relational), the massiveness of the data, and the dynamic nature

of the data. This dissertation investigates on-line methods for the optimization of

databases storing web data. On-line methods avoid access to the underlying data,

avoid the rebuilding of data structures from scratch, and adapt to changes in the

data and query workload characteristics. On-line techniques are therefore especially

suited to web data.

In this dissertation, we present on-line techniques for two general problems:

how to update inverted indexes and how to estimate the selectivity or result size

of queries in database systems. For the index update problem, we present the

landmark-diff method for updating the inverted index in response to changes in

previously indexed documents. The landmark-diff method allows indexes to be

updated incrementally without a complete rebuild.

For selectivity estimation, we propose three on-line techniques that address the

selectivity estimation problem in three different context. In the context of rela-

tional databases, we present SASH, a Self-Adapting Set of Histograms, that uses

probabilistic graphical models to address the following issues in an on-line manner:

which sets of attributes to build histograms on, how to build these histograms with-

out looking at data, and how much memory should be allocated to these histograms.
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For XML native databases, we present XPathLearner, an on-line workload-aware

method for estimating the result size of given XPath queries. XPathLearner learns

the path statistics from query feedback (past query answers) in an on-line manner,

and adapts itself to changes in the data and the query workload characteristics.

In a more general context, we present CXHist, an on-line classification based

histogram for estimating the selectivity of a broad class of queries. CXHist models

queries instead of data and stores the mapping between queries and their selectivity

using a naive Bayesian classifier. We show that CXHist is very accurate in estimating

the selectivity of exact match and substring predicates on leaf values reachable by

a given XPath in XML databases.
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Chapter 1

Introduction

The World Wide Web has revolutionized information storage and retrieval. Data

from the web is dynamic, massive, and heterogeneous, posing unique challenges to

storage and retrieval techniques for traditional data types (such as relational ta-

bles and text documents). Web data are often a mixture of relational (structured),

multi-media, textual, and semi-structured data. In particular, semi-structured data

as exemplified by documents in the extensible mark-up language (XML) [8] can-

not be neatly classified into relational data or text documents in the traditional

sense and hence require new optimization strategies in database and information

retrieval systems. The massiveness and the dynamic nature of web data also render

optimization techniques based on off-line scans of the data infeasible if not impossi-

ble. Methods that are incremental and do not require costly off-line data scans are

needed.

This dissertation investigates on-line methods for two general problems arising

from the optimization of databases and information retrieval systems storing web

data. On-line methods are algorithms that do not require costly scans of underlying

data, and do not rebuild data structures from scratch. On-line methods often have

the characteristics of being able to adapt to changes or updates in the underlying

data, and being able to tune themselves to workload characteristics as well.

1
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The two general problems studied in this dissertation are the inverted index

update problem and the selectivity estimation problem. The inverted index update

problem pertains to databases and information retrieval systems storing textual data

from the web. A search engine is one such system. It constructs an inverted index

for web documents in order to support keyword queries. Web documents change

over time at different rates and the inverted index needs to be incrementally updated

so that updated documents are searchable. Previous work has addressed inverted

index updates in response to the addition and deletion of documents. We present the

landmark-diff method that addresses the complementary problem of inverted index

updates in response to changes in previously indexed documents. The landmark-diff

method is a general approach applicable to many update scenarios including off-line

partial index rebuilds, but it is especially suited to on-line, incremental updates.

The selectivity estimation problem pertains to databases storing structured and

semi-structured (web) data. The selectivity of a query refers to the size of the

query result. Cost-based optimizers use selectivity estimates to evaluate the cost of

query execution plans during query optimization. Obtaining a quick estimate of the

selectivity of query without actually executing the query is therefore an important

problem in database systems. We propose on-line selectivity estimation methods

for three particular selectivity estimation problems.

The first selectivity estimation problem is building a set of multidimensional his-

tograms for estimating the selectivity of multi-attribute queries on relational data.

Previous work has focused mainly on off-line methods for building single multidi-

mensional histograms. We investigate on-line methods that address the problem

of which sets of attributes to build multidimensional histograms on, how to build

these histograms without looking at data, and how much memory or storage should
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be allocated to these histograms. We propose SASH, a Self-Adapting Set of His-

tograms, that uses probabilistic graphical models to address these issues. SASH

differs from related work in that it uses only query feedback information to decide

which sets of attributes to build histograms on, to learn the statistics for building

the set of histograms, and to allocate memory to each histogram.

The second selectivity estimation problem we address is estimating the selec-

tivity of XPath [22] queries. XPath is a navigational scheme for tree-like XML

documents similar to path names in the directory structure of file systems. Se-

lectivity estimation of XPath queries involves estimating the number of nodes in

the XML tree that are reachable via the given XPath. We propose XPathLearner,

an on-line method for estimating the selectivity of XPath query expressions. All

previous work require an off-line scan of the underlying XML data tree in order

to obtain the statistics required for selectivity estimation. XPathLearner models

path expressions as Markov chains, and learns the associated statistics from query

feedback (past query answers) in an on-line fashion. XPathLearner does not require

an off-line scan of the XML data, and tunes itself to changes in the data and in the

query workload characteristics.

The third selectivity estimation problem we address is building an on-line his-

togram for estimating the selectivity of a broad class of queries on possibly diverse

data types. We propose CXHist, an on-line histogram that is capable of storing

statistics of different types of queries on diverse data types in a single unified frame-

work. CXHist models queries instead of data and captures the mapping between

queries and their selectivity using a Bayesian classifier.

In the next two sections, we describe the problem of updating inverted indexes

and the problem of estimating selectivity in greater detail.
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Figure 1.1: Schematic of a simple search engine system.

1.1 The Inverted Index Update Problem

In this section, we describe how a search engine for web documents works and

introduce the inverted index update problem.

Most of the information on the World Wide Web consists of web pages. Web

pages are essentially textual information formatted in HTML or XML; hence, we

will refer to a web page as a web document. To find web documents on a particular

subject, users submit a keyword query to a search engine. The search engine pro-

cesses the query and returns an ordered list of uniform resource locators (URLs) [65]

to web documents containing the query keyword(s) ranked by some criterion such

as relevance to the given query.

Search engines maintain keyword indexes in order to answer keyword queries

efficiently. The indexing method of choice is the inverted index (also known as an

inverted file). Inverted indexes are similar to the indexes at the end of a book:

they store the locations (URLs and position in the document) where each keyword

can be found. A search engine system periodically downloads a collection of web

documents in a process called web crawling, and constructs an inverted index for

the downloaded documents (see Figure 1.1).
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Before the advent of the Internet, inverted indexes have been mainly used for

keyword search over a collection of static documents, i.e., documents whose contents

do not change over time. Web documents, however, differ from static documents in

that their contents may change: web authors may edit the contents of their websites,

and some web documents have content that is inherently time sensitive. How do we

ensure that newly updated documents are searchable? Updated documents need to

be detected, downloaded and indexed. Techniques to detect and download updated

documents already exist [9, 19, 20, 52]; however, efficient methods to update the

inverted index to incorporate information from the updated documents are still

lacking.

Chapter 2 of this dissertation addresses the problem of how to update inverted

indexes efficiently and incrementally without the need to rebuild the index from

scratch. We present the landmark-diff method that addresses the problem of up-

dating inverted index in response to changes in previously indexed documents. We

show that the landmark-diff method can be used in combination with existing tech-

niques for efficient, on-line, incremental index updates.

1.2 The Selectivity Estimation Problem

In this section, we introduce the selectivity estimation problem and its role in

database query optimization. More in-depth description can be found in several

excellent survey articles [14, 38].

The selectivity of a query is defined to be the size of the query result. In relational

databases, the selectivity of a query or query operator is traditionally specified as

a fraction of the input data size; however, in keeping with the use of the term in

XML databases (where data do not come in neat units of tuples), the more general
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Figure 1.2: Schematic of the query optimization process in database systems.

definition of selectivity in terms of query result size will be used throughout this

dissertation.

The process of approximating the result size (selectivity) of a given query with-

out actually executing the query is called selectivity estimation. Accurate approxi-

mations to query result size are more than crucial to query optimization in database

systems (see Figure 1.2). When a database system processes a query, it first trans-

lates the query into a set of equivalent query execution plans (QEPs) in a process

called plan enumeration. Each QEP will yield the correct query result when exe-

cuted by the query execution engine and differ in its execution time. In cost-based

query optimization, the query optimizer will approximate the cost of each QEP

using a cost model and choose the least cost plan to be executed by the query ex-

ecution engine. QEPs often resemble operator trees where the leaves are relations

or indexes. To approximate the cost of a QEP, the cost model requires as input the

QEP itself, system parameters like buffer pool usage etc., and most importantly,

selectivity estimates of the operators in the QEP. The accuracy of the selectivity

estimates therefore has a direct impact on the choice of the QEP. The following
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example illustrates how selectivity estimates affect the choice of a QEP.

Example 1.1 Consider the following Product(PID, Price, Sales) relation or table

in a relational database,

Product

PID Price Sales

1 10.50 120

2 13.00 1000

3 30.25 220

4 3.35 2020

and the following two queries that are similar in structure and differ only in the

range constraint they specify:

Query 1:

SELECT *

FROM Product

WHERE 100 < Sales < 500

AND 10 < Price < 20

Query 2:

SELECT *

FROM Product

WHERE 100 < Sales < 2000

AND 10 < Price < 50
Consider Query 1. Assuming that indexes have been created on both attribute Price

and Sales, the query will first be rewritten into a set of query execution plans

(QEPs):

filter

filter filter join

Sales Price

QEP 4

idsidstuplestuples

QEP 1 QEP 2 QEP 3

resultresultresult

result

PriceSalesTable

index0 index0index1 index1
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Note that Query 2 will be rewritten into the same set of QEPs, because of its sim-

ilarity in structure to Query 1. The cost of each QEP will depend (among other

parameters) on the selectivity of the query itself and of the different operators. The

selectivity of Query 1 is 1 since only the tuple with PID 1 satisfy both range con-

straints. The cost of QEP 1 is almost certainly higher than the cost of the other

index-based QEPs. In the case of Query 2, the selectivity of the query is 3, that is,

almost the entire relation will be returned as the query result. Hence, QEP 1 (table

scan) is most likely the least cost plan.

Selectivity estimation is usually done using pre-computed statistics that reside

in a small amount of pre-allocated memory. The statistics need to fit into a small

amount of memory primarily because the selectivity estimates need to be computed

very efficiently. The query optimizer needs to evaluate the cost of many QEPs

and for each QEP, the optimizer needs to compute potentially as many selectivity

estimates as there are operators in the QEP. If the selectivity estimator needs to

scan through a large amount of memory in order to compute a single estimate, the

processing time for query optimization will be unacceptable. Hence, statistics for

selectivity estimation need to fit into a small amount of memory.

The selectivity estimation problem is: Given a fixed amount of memory to store

statistics, estimate the selectivity of a given set of queries using the stored statistics

only. Selectivity estimation methods differ in

1. what kind of queries are supported,

2. what kind of statistics are used,

3. how the statistics are stored,

4. how the selectivity estimates are computed from the statistics,
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5. how the statistics are collected (and updated).

The type of queries supported is closely related to the characteristics of the

data stored in the database. For example, if a column of a table stores string

data (varchar type), then the database may need to support substring queries and

selectivity estimates of substring queries may be needed. In relational databases,

the more conventional query types are point queries, range queries and join queries.

These queries may involve more than one attribute, in which case, the correlation

between different attributes may need to be captured in the statistics.

Closely related to the type of queries supported is the type of statistics collected.

The two most popular types of statistics are random samples and frequency statistics

in the form of histograms. Histogram-based statistics can be further subdivided into

various categories [39]. The type of queries often determine the type of statistics.

For example, substring queries will require substring statistics and join queries will

require correlation across relations to be captured in the statistics.

For the required statistics to fit into the given amount of memory, further ag-

gregation, pruning or compression may be needed. For example, a random sample

may have irrelevant columns removed, duplicated counted, and stored as tuple-count

pairs. Histograms can sometimes be compressed in a lossy fashion using transforms

like the discrete wavelet transform [59].

Whatever statistics are collected, compressed and stored, the selectivity estima-

tor needs to be able to compute a selectivity estimate from the stored statistics.

The exact algorithm for computing these selectivity estimates depends on the type

of statistics and how they are stored. If a wavelet transform has been applied on

some histogram-based statistics, the inverse transform needs to be performed before

the statistics can be recovered. If some portion of the statistics has been discarded
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or pruned, error correction strategies need to be used.

How are statistics collected? Traditionally, statistics are collected in an off-line

process (eg. runstats in IBM DB2) often initiated by the database administrator.

A scan is made through the database to collect the relevant statistics. An off-line

database scan can be very time-consuming if the database is large. In federated

databases, database scans on some remote databases may even be impossible. On-

line statistics collection is an alternative statistics collection approach that learns

relevant statistics by looking at past query answers, also known as query feedback.

After the query execution engine computes the answer to a query, the size of the

answer is fed back to the selectivity estimation system, so that the stored statistics

can be updated. A small overhead is incurred per query feedback in this update, but

the benefit of on-line statistics collection is that the statistics adapt to updates in

the underlying data and to query workload characteristics. The on-line selectivity

estimation methods that we propose in this dissertation all rely on on-line statistics

collection to avoid costly database scans.

Three particular selectivity estimation problems are addressed in this disserta-

tion. Chapter 3 addresses the problem of building and tuning a set of multidimen-

sional histograms in relational databases using only query feedback information.

Building a set of histograms entails two additional challenges: how to decide which

sets of attributes to build the multidimensional histograms on, and how to distribute

a fixed amount of memory among the histograms. We present a Self-Adapting Set

of Histograms (SASH) that addresses these challenges in an on-line manner.

Chapter 4 addresses the problem of estimating the selectivity of XML path

expressions in XML databases. Path expressions are similar to path names in the

directory structure of a file system and are used for locating sets of nodes in an



1.2. THE SELECTIVITY ESTIMATION PROBLEM 11

XML data tree. We propose XPathLearner [55], an on-line method for estimating

the selectivity of XPath query expressions. All previous work require an off-line

scan of the underlying XML data tree in order to obtain statistics.

Chapter 5 addresses the problem of building an on-line histogram for diverse

types of data and queries. Previous histogram techniques have been restricted to

single data model and query type. We present CXHist, a unifying histogram frame-

work that builds histograms for diverse data and query types using query feedback

information only. In particular we apply CXHist to the selectivity estimation of

exact match and substring queries on the leaf nodes reachable by a given path in

XML data.



Chapter 2

The Landmark-diff Method for
Updating Inverted Indexes

2.1 Introduction

Textual data form a large fraction of the information on the World Wide Web. Web

pages or documents are often textual information marked-up with HTML or XML.

Information retrieval over these unstructured (or semi-structured) data is achieved

mainly by using keyword indexes maintained by search engines. Search engines

typically download web documents in a process called web crawling, and constructs

a keyword index for the downloaded documents (see Figure 1.1).

The inverted index is the indexing technique of choice for such unstructured

documents and is sometimes used for semi-structured documents as well. Search

engines use inverted indexes to provide keyword search over web documents [64],

and DBMSs use it to support containment queries in XML documents [54, 88].

Inverted indexes have been traditionally used for keyword search over a collec-

tion of static documents, i.e., documents whose contents do not change over time.

Web documents, however, differ from static documents in that their contents may

change over time. How do we ensure that newly updated documents are searchable?

Specifically, how do we keep inverted indexes up-to-date? This is the question we

12
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investigate in this chapter.

An inverted index is a collection of inverted lists, where each list is associated

with a particular word. An inverted list for a given word is a collection of document

IDs of those documents that contain the word. If the position of a word occurrence

in a document is needed, each document ID entry in the inverted list also contains a

list of location IDs. Positional information of words is needed for proximity queries

and query result ranking [64]. Omitting positional information in the inverted index

is therefore a serious limitation. Positional information is usually stored in the form

of location IDs. The location ID of a word is the position in the document where

the word occurs. An entry in an inverted file is also called a posting ; it encodes the

information 〈word id , doc id , loc id〉.
A crawler is a program that collects web documents to be indexed. Cho and

Garcia-Molina [19] have shown that an in-place, incremental crawler can improve

the freshness of the document collection. However, the index rebuild method com-

monly used for updating the inverted index cannot take advantage of an incremen-

tal crawler, because the updated documents crawled in between rebuilds are not

searchable until the next index rebuild. Moreover, complete index rebuild at high

frequency is prohibitively expensive. An efficient and, ideally, incremental tech-

nique for keeping inverted indexes up-to-date is crucial in making the most recently

crawled web documents searchable. Previous work on incremental inverted index

updates have been restricted to adding and removing documents. Updating the

inverted index for previously indexed documents that have changed has not been

addressed.

In this chapter, we propose the landmark-diff update method, an efficient method

to incrementally update the inverted index for previously indexed documents whose
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contents have changed. We show that solving this particular problem results in very

efficient solutions to the more general index update problem. Our method uses the

idea of landmarks together with the diff algorithm to significantly reduce the num-

ber of postings in the inverted index that need to be updated. Our experiments

validate the effectiveness of our landmark-diff method.

The rest of this chapter is organized as follows. We describe common approaches

to the index update problem and their relationships to each other in Section 2.2.

Related work is then discussed in Section 2.3. As motivation for the landmark-diff

method, we present an empirical analysis of web document change in Section 2.4.

Section 2.5 presents the landmark-diff method followed by an analytical evaluation

in Section 2.6, and an empirical evaluation in Section 2.7. Section 2.8 summarizes

and concludes this chapter.

2.2 A Taxonomy of Index Update Approaches

We describe a concise taxonomy of index update approaches that will be helpful in

classifying and understanding the different update methods (see Figure 2.1). Our

taxonomy has three general approaches for keeping an index up-to-date: index re-

build, lazy update, and incremental update. For incremental update methods, we

analyze the update methods by how they handle three essential update tasks: delet-

ing old documents, inserting new documents and updating common documents. We

show that our landmark-diff method is a method for updating common documents,

and also describe existing methods that can be used to update the index for common

documents that have changed.
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Figure 2.1: Taxonomy of index update approaches.

2.2.1 Index Rebuild.

The most straightforward way of updating an index is to discard the old index and

build a new one using the updated document collection (consult the book Managing

Gigabytes [83] for details). The disadvantages are: (1) the entire updated document

collection has to be available to the index construction algorithm at the time of

index rebuild, and (2) every word in the collection has to be scanned to construct

the inverted index. Distributed rebuilding techniques, such as the one by Melnik et

al. [62], parallelizes (and pipelines) the process, but does not eliminate the need of

scanning every word in every document.

Index rebuild is recommended only if (1) there are very few common documents

or (2) the set of common word occurrences is small, i.e., a large portion of each

updated document has changed. If the magnitude of change is small, scanning and

re-indexing the words in documents that did not change is wasteful and unneces-

sary. Naturally, if document contents change more frequently, the index will need

to be rebuilt more frequently. As the interval between rebuilds gets smaller, the

magnitude of change between the two snapshots of the indexed collection also be-

comes smaller [19]. A large portion of the inverted index will remain unchanged,

and a large portion of the work done by the rebuild is redundant.
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2.2.2 Lazy Update.

The second approach is to be ‘lazy’ in updating the index. Instead of updating the

index whenever some subset of documents has been updated, the updates or changes

are stored in a searchable update log. Real index updates (or rebuild) is performed

only after a certain period of time or when the update log reaches a certain size.

This approach is similar to the ‘stop-press’ technique [83] used to store the postings

of documents that need to be inserted into the indexed collection. Each entry in

this update log is a delete or insert posting operation.

The advantages of lazy updates are that (batches of) newly-crawled updated

documents can be made searchable and that real index updates are deferred and

can be batched. The implicit assumption is that the update log can be main-

tained very efficiently. The disadvantages of lazy updates are its negative impact

on query processing and the potentially large size of the update log. Query process-

ing time will increase, because both the inverted index and the update log need to

be searched, and the results of both merged. The size of the update log can become

prohibitively large especially if positional information is stored in each posting. The

landmark-diff method that we propose can be applied to potentially reduce the size

of the update log.

2.2.3 Incremental Update.

Frequent rebuild is inefficient because it rebuilds portions of the index that did not

change. The update log is unsatisfactory because it may become too large and

affect query response time. Incremental updates is another way of updating the

index that neither rebuilds the index from scratch nor does it use an update log.

An incremental update method has to handle three types of changes:
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1. documents that no longer exist (henceforth “deleted documents”);

2. new documents (henceforth “inserted documents”);

3. common documents that have changed.

Compared to index rebuild, an incremental update method has to deal with deleted

documents, but does not need to re-index common documents that did not change.

Compared to lazy update, it does not have the query processing overhead of an

update log.

Incremental updates are especially important if incremental crawling is used

in the search engine system. Incremental crawling [9, 19, 20, 52] crawls different

documents at different frequency depending on the documents’ frequency of change.

(Optimal crawling frequency has also been addressed in [9, 20, 52]). Ideally an

incremental update method would be used to update the index, so that updated

documents could be made searchable as soon as they are crawled.

Previous work on incremental inverted index updates has addressed changes

due to inserted documents [11, 34, 77] and deleted documents [23, 24, 77]. Index

updates due to common documents that have changed have not been addressed.

The landmark-diff method that we propose in this chapter is an efficient update

method that deals with the common documents. We will preview the landmark-diff

method after briefly describing two naive update methods (the document delete and

insert method, and the forward index method) for the common documents that have

changed. The forward index method is used as a benchmark in our experiments

because it is the most efficient of the two naive methods.
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Document Delete and Insert

A simple way of dealing with changes in the set of common documents is to delete

all the postings for the old version of the documents in the inverted index and

insert the postings of the updated documents. With respect to the set of common

documents, the document delete and insert method differs from index rebuild in that

only documents that have changed are processed, whereas index rebuild re-indexes

all documents whether they have changed or not.

For each document that has changed, the worst case number of postings deleted

and inserted is O(m + n), where m and n are the number of words in the old

and new version of the document, respectively. The advantage of this method is

that (1) query processing is not affected, and (2) web documents can be crawled at

different sampling intervals depending on their rate of change. The document delete

and insert method is recommended if the magnitude of change within an updated

document is large.

Forward Index Update

A forward index is a list of postings associated with a single document (see Fig-

ure 2.2) and differs from the inverted index in that the list of postings of the form

〈word id , doc id , loc id〉 is sorted first by doc id , then by word id and loc id . The

forward index data structure was introduced in Page and Brin’s Google paper [64]

as an auxiliary data structure to speedup inverted index construction. We deduce

that it can be used for updating the index for common documents as described

next. Given the forward indexes of the old and new document, we generate a list

of postings operations (insert posting and delete posting) that will transform the

forward index of the old document to that of the new document. Since the postings
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Figure 2.3: Updating an inverted index using forward indexes.

stored in a forward index are the same postings that are stored in the inverted

index, we can use these posting operations to update the inverted index. The data

flow diagram in Figure 2.3 illustrates the update procedure for a single document.

To update the inverted index, we apply the procedure for every common document

that has changed.

The advantages of using the forward index method are: (1) as with the document

delete and insert method, incremental crawling can be used, (2) when the content

change occurs near the end of the document, the postings corresponding to the words

before the position of that change need not be deleted and re-inserted, (3) query

processing is not affected. However, the disadvantages are: (1) an additional forward
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index needs to be stored for each document, (2) each forward index requires as much

space as the document itself, and (3) the number of postings deleted and inserted

for a document that has changed is still Θ(m + n) in the worst case, even if the

difference between the two documents is small. For a pathological example, consider

an insertion of one word to the beginning of the old document. All subsequent

loc ids will shift by one and hence all corresponding postings in the index will need

to be updated.

The Landmark-diff Method

The landmark-diff update method that we propose uses an encoding of positional

information relative to landmarks in a document that specifically tackles the prob-

lem of loc ids shifting due to small updates. Positional information is stored as a

landmark-offset pair and the position of a landmark in a document is stored in a

separate landmark directory for each document. Combining the use of landmark en-

coding and the diff of the old and updated documents, the landmark-diff method is

able to reduce the number of inverted index update operations by leveraging on the

“shift-invariant” property of the postings encoded using landmarks. For example,

without landmarks, the insertion of just one word at the beginning of a document

will shift the location IDs of all subsequent words by one. With landmarks, only

the postings corresponding the text between the two landmarks straddling the edit

need to change.

The advantages of the landmark-diff method are: (1) incremental crawling can

be used, and (2) it is especially efficient for small and clustered changes in docu-

ments. The disadvantage is that processing of queries requiring positional informa-

tion may require landmark directory lookups; however, the additional processing
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time is likely to be minimal compared to lazy updates, because the size of a land-

mark directory is significantly smaller than an update log.

2.3 Relation with Prior Work

Information retrieval using inverted indexes is a well studied field [4,83]. Although

most of the update techniques generalize to keyword searches in web documents

(HTML and XML files), several assumptions made by those techniques need to

be re-examined. First, web documents are more dynamic than the text document

collections assumed by those techniques. Past work on incremental updates of

inverted indexes [4, 11, 25, 77, 83] deals mostly with additions of new documents to

a collection of static documents. Static documents are existing documents in the

collection whose contents do not change over time. The problem addressed in this

chapter deals with existing documents whose contents do change over time.

Second, previous work assumes that the inverted index resides on disk or in

some persistent storage and try to optimize the propagation of in-memory update

posting operations to the inverted file in persistent storage [11, 23, 24, 77]. Current

search engines keep a large portion of the inverted index in memory1, especially the

most frequently queried portions of the inverted index. Even though the indexed

collection is growing, we have three reasons to believe that a large portion of the

inverted index will still be kept in memory:

1. query volume is increasing and there is a demand for increasing query pro-

cessing speed;

2. the cost of memory chips is relatively low and still decreasing;

1For example, Google has thousands of machines with at least 8 GB of memory each.
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3. the ease of scaling with parallel architecture.

Not only does the inverted index in persistent storage need to be updated, but the

portion of the inverted index in memory needs to be updated as well. The update

method we propose in this chapter addresses the problem of updating the inverted

index as a data structure independent of whether it resides in memory or on disk.

In many cases, our method could be used in conjunction with existing techniques

to speedup the propagation of updates to the off-memory inverted index. Several

of these existing techniques will be described in greater detail next.

For append-only inverted index updates, Tomasic et al. [77] proposed a dual

inverted list data structure: the in-memory short list and the disk-based long list.

New postings are appended to their corresponding short lists and the longest short

list is migrated into a long list when the storage area for the short lists is full. Brown

et al. [11] proposed another incremental append strategy that uses overflow ‘buckets’

to handle the new postings in the relevant inverted lists. These overflow buckets are

chained together and have sizes that are powers of 2. Both [77] and [11] deal with

append-only incremental updates and assume that a document never changes once

indexed. Our method tackles the complementary problem of updating previously

indexed documents that have changed.

Clarke et al. [23, 24] addressed the deficiency of these append-only inverted in-

dex techniques and proposed a block-based processing of the inverted index that

supports deletion of documents as well. The entire document collection is concate-

nated into a long sequence of words. Positional information of a posting is reckoned

from the beginning of the document collection (as opposed to the beginning of each

document). Hence, even though Clarke’s inverted index supports updates at the

postings level, it does not solve the problem of small changes in documents causing
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a shift in the positional information of many postings unrelated to the change. In

fact, the positional shift problem is exacerbated by the use of absolute positional

information reckoned from the beginning of the collection.

Our landmark encoding scheme is based on the idea of blocking. The idea of

partitioning a document or document collection into blocks has been used for various

purposes in [5, 46, 58, 71, 91]. The Glimpse [58] system uses a block addressing

inverted index in order to keep the index size small. A block addressing inverted

index stores, for each keyword, pointers to the blocks of text containing the keyword.

The actual occurrence of the keyword in each block is not stored and is found by

scanning the actual text itself using a fast sequential scan algorithm, such as Knuth-

Morris-Pratt [48] or Boyer-Moore [7]. In [46, 71, 91], the idea of block addressing

is used to improve the quality or the relevance of the information retrieved for

a given query. In our work, landmarks are used to provide relative addressing for

efficient index update using diff. The inverted indexes we consider are full inverted

indexes that differ from block addressing inverted indexes in that the position of

the occurrences of each word in the text is stored.

2.4 An Analysis of Web Document Change

We analyzed a small set of web documents in order to understand the update

characteristics of web documents. The results are summarized in this section as

motivation for our landmark-diff index update method. Other than scale, our anal-

ysis differs from the study done by Fetterly et al. [32] in that our distance measure

for two documents is based on exact edit distance whereas Fetterly et al. have used

a shingle-based [10] approximate similarity measure. Because our landmark-diff in-

dex update method is based on edit transcripts, edit distance is a more appropriate
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distance measure in the context of this work; however, the edit distance is compu-

tationally more intensive and is not practical for large samples of the web such as

those used in the study by Fetterly et al. We have chosen to restricted our study

to a small sample of the web (relative to that used by Fetterly et al. and adopt the

more relevant edit distance. Despite the difference in distance measure and scale,

our results agree with those from the study by Fetterly et al.

We call the set of web documents associated with a snapshot of the web at a

particular time a sample. The time between two consecutive samples is the sampling

interval. A web document is defined to be the sequence of words contained in the

HTML file that has been stripped of scripting code and HTML syntax. Each HTML

file or each document is associated with an URL and is assigned a unique document

ID (doc id). Each word occurrence within a document encodes the information

〈word id , doc id , loc id〉, which is also known as a posting, where word id denotes

the unique ID identifying each word in the (English) vocabulary and loc id denotes

the position of that word occurrence in the document. Since each posting encodes

all the information in a word occurrence on the web, the entire web can be encoded

as a set of postings and a web information system can be viewed as a system

maintaining the set of all postings (or a subset of it). For example, a web index is

a web information system that stores this set of postings (〈word id , doc id , loc id〉)
sorted by word id .

Consider two consecutive samples Sn and Sn+1. Any document can only belong

to one of the three partitions (see Figure 2.4 top diagram):

1. common documents Sn ∩ Sn+1,

2. deleted documents Sn − Sn+1, and

3. inserted documents Sn+1 − Sn.
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Figure 2.4: Types of changes at the document collection level and the word oc-
currence collection level.

In the Venn diagram at the top of Figure 2.4, a point represents a document and each

circle represents a set of documents. Deleted documents are old documents that

do not exist in the new sample anymore. Inserted documents are new documents

that appear in the new sample only. Common documents are the documents that

are common between the two consecutive crawlings of the web. Some of these

common documents might be unchanged and some of it might contain changes.

Corresponding these three partitions of documents, three operations are needed to

update the index of Sn so that it reflects Sn+1.

1. Postings corresponding to the deleted documents need to be removed from

the current index;

2. Postings corresponding to the inserted documents need to be inserted to into

the index,

3. Postings corresponding to the common documents that have changed need to
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be updated in the index.

For our data analysis, we are primarily concerned with the changes in the com-

mon documents, because (1) techniques for inserting documents into information

systems have already been well studied by the text retrieval community, (2) the

common documents represents at least 50% of the documents currently maintained

by the web information system at each update, (3) of these common documents,

most of the changes at each update are small as we will see in Section 2.4.1. If we

consider the set of common documents as a collection of word occurrences (defined

next), then between two consecutive samples, the overlap is significantly large.

We can further examine the set of common documents at the granularity of a

word occurrence. A word occurrence corresponds loosely to a posting (a 〈word id ,

doc id , loc id〉 tuple) without the limitation of a numeric location ID; that is, it is

shift invariant in some sense. In the Venn diagram at the bottom of Figure 2.4,

each point represents a word occurrence. Each circle represents the set of word

occurrences corresponding to the set of common documents of a particular sample.

If we consider each circle as a sequence of word occurrences, the set of common

word occurrences loosely corresponds to the longest common subsequence of the

two sequences. Since most web information systems keep track of word occurrences,

the number of common word occurrences gives an upper bound on the number of

postings in the system that can remain unchanged upon an update.

We analyze the changes occurring in the set of common documents in terms

of the magnitude of change and the clusteredness of change. For our analysis, we

used several samples of the web recursively crawled from several seed URLs at 12

hour intervals. The list of seed URLs consists of www.cnn.com, www.ebay.com,

www.yahoo.com, espn.go.com, and www.duke.edu. We present our analysis using
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No. of docs at time n 6042
No. of docs at time n + 1 6248
No. of deleted docs 2788
No. of inserted docs 2994
No. of common docs 3254
No. of common docs unchanged 1940

Table 2.1: Summary of the characteristics of the representative data set used in
the data analysis.

2 samples that are representative of the general update behavior. Other character-

istics of our data are summarized in Table 2.1.

2.4.1 Magnitude of Document Change

For common documents whose contents have changed, we are interested in how large

the changes are. The magnitude of change between two versions of a document

can be quantified by the edit distance. The edit distance of two documents is

the minimum number of edit operations (word insertions or deletions) required to

transform one document to the other. Let δ be the minimal number of words deleted

or inserted to transform one document to another. We define the distance between

two documents A and B as

d(A, B) =
δ

m + n
, (2.4.1)

where m and n are the size (in words) of document A and document B respectively.

Two identical documents will have zero distance and two completely different doc-

uments will have a distance of one.

For our empirical analysis, we measure the distance of each pair of old and

updated documents (same document ID) in the set of common documents and put

them into bins according to the distance. Each bin has a width of 0.5 %. The

number of documents in each bin is normalized to a percentage and plotted in
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Figure 2.5. We observe that most documents fall into the bins between distance
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Figure 2.5: Distribution of documents with respect to our distance measure.

0 % and 20 % (Figure 2.5). In fact, the corresponding cumulative distribution plot

shows that more than 90 % of the documents have changes smaller than a distance

of 20 %. Moreover this behavior is consistent across the consecutive samples we

crawled and we conjecture that the set of common word occurrences is very big in

general. The implication is that a large portion of the information maintained by a

web index can remain unchanged at an update.

2.4.2 Clusteredness of Change

Another important characteristic of change is how clustered the changes are. For

example, from an update processing point of view, the insertion of a paragraph of

10 words to the beginning of a document is quite different from inserting the same

10 words at 10 different random and non-contiguous locations in the document.

The former has locality that could be exploited in update processing.

We measure how clustered the document changes are as follows. Choose a block

size and partition the document into blocks according to the chosen block size. The
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fraction of the blocks affected by the changes is then used as a measure of how

clustered the changes are. The clusteredness of the changes required to transform

document A to document B is

c(A, B, b) = 1− ∆

dm/be , (2.4.2)

where ∆ is the number of blocks affected by the change, m is the size of the old

documents in words and b is the block size in words. If there are no changes, ∆ will

be zero and the clusteredness will measure one. If all the changes are clustered into

one block and assuming that the block size b is sufficiently small, the clusteredness

will be close to one. If the changes are distributed over all the blocks, ∆ will be

equal to dm/be and clusteredness will be zero.

The block size b must be chosen such that it is much smaller than the document

size m for this measure to be meaningful. Another possibility is to partition the

document using HTML tags. One such tag is the paragraph tag <p>.

We study the empirical distribution of the common documents that have changed

using this clusteredness measure. Figure 2.6 shows the clusteredness distribution for

fixed size blocks. Figure 2.7 shows the clusteredness distribution for <p>-tag blocks.

From the probability distribution plot with respect to our clusteredness measure

c(A, B, 32) (Figure 2.6), we observe that most document have changes that are

more than 50 % clustered, that is, the changes affect less than half of the blocks.

The corresponding cumulative distribution plot shows that only about 20 % of the

documents have changes that are less than 70 % clustered. Using HTML paragraph

tags, we observe in the probability distribution plot with respect to the clusteredness

measure c(A, B, <p>-tag) (Figure 2.7) that many document have changes that are

more than 50 % clustered; however significant spikes occur consistently at the 0-0.5
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Figure 2.6: Distribution of documents with respect to clusteredness c(A, B, 32).

% clusteredness bin. This is because some documents do not use the <p>-tag at

all. For such documents there is only one block in total and any changes must

occur in that block and hence c(A, B, <p>-tag) is zero. This is consistent with the

previous c(A, B, 32)-distribution plot (Figure 2.6) where no documents have changes

distributed to every block. Other observable artifacts are the spikes at the 50% and

66% clusteredness marks. These are mostly due to the documents with only two to

three paragraphs in total.

We draw three conclusions from our empirical analysis that are true for the web

samples we collected and we conjecture that they are true in general if the sampling

interval is sufficiently small:

1. common documents represents at least 50 % of the currently indexed collec-

tion,

2. most of the changes in the common documents, are small, and

3. most of the changes are spatially localized within the document.

The landmark-diff update method that we propose in the next section is a scheme
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Figure 2.7: Distribution of documents with respect to clusteredness
c(A, B, <p>-tag).

that exploits these properties.

2.5 The Landmark-diff Update Method

In this section, we present our landmark-diff index update method. Our method

has the following desirable properties: (1) it is document based and incremental

crawling can be used; (2) the number of update operations on the inverted index

(the number of postings deleted and inserted) is independent of the document size,

and depends on the size of the content change only; (3) the landmark-diff method

is especially efficient when the set of common documents is large, and changes are

small and clustered.

We first give an overview of our method and then discuss three specific issues:

choosing landmarks, application scenarios and query processing with landmarks.
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2.5.1 Overview

Our landmark-diff method combines two important ideas: encoding the position

of words using landmarks in a document, and using the edit transcript or diff

output of the old and new document to obtain the index update operations. An

edit transcript is a list of operations that transform an old version of a document

to the new version of the document. The landmark encoding scheme allows us to

translate the edit transcript for the document into a very compact list of update

operations on the inverted index.

We first introduce the landmark encoding scheme and then describe the landmark-

diff update procedure. For the rest of this chapter, we reserve the term edit tran-

script for the diff output of a document and its updated version, and we use the

term update operation list to refer to the list of inverted index update operations

(delete or insert posting) that will update an inverted index.

Landmarks

The purpose of relative addressing using landmarks is to minimize the changes to

the location IDs stored in the inverted index when documents change. Given a

document, a number of positions in the document are chosen as landmarks. The

position of each landmark in the document is recorded in a landmark directory

structure for the document. The location ID for each word in the document is then

encoded as a 〈landmark ID, offset〉 pair. Given a 〈landmark ID, offset〉 pair, the

original location ID of the word occurrence is recovered by retrieving the position

of the landmark from the associated landmark directory and adding the offset to

that position. Each landmark acts as a reference point for the words between itself

and the next landmark.
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Figure 2.8: An inverted index with fixed sized landmarks. Note that this pointer-
based representation is purely conceptual.

Putting landmarks in a document can also be thought of as partitioning a doc-

ument into blocks. The starting position of a block corresponds to a landmark and

the location of every word in a block is encoded as an offset from the start of that

block. We use the term block to denote the words between consecutive landmarks.

Each landmark corresponds to a block and vice versa. For the following discussion,

we assume that a document is partitioned into fixed sized blocks. Other ways of

choosing landmarks are discussed in Section 2.5.2. Figure 2.8 shows an inverted

index with landmarks.

The landmark encoding does not increase the space requirement of the inverted

index itself; however, auxiliary landmark directories need to be stored for each

document. Suppose k bits are allocated for each loc id in an inverted index without

landmark encoding. In an equivalent index using landmark encoding, the same

k bits in each posting can be used to encode a 〈landmark ID, offset〉 pair with the

most significant b < k bits used for storing the landmark ID and the least significant

k − b bits for the offset.

The landmark directory for a document is usually small. For a fixed block size of
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l words, the number of entries in a landmark directory for a document of m words is

dm/le. For other ways of choosing landmarks, such as using HTML paragraph tags,

the number of entries in a landmark directory is less dependent on the document

size. Note also that a landmark directory lookup is not always required during

query processing. Further analytical evaluation and implementation issues for the

landmark directories are presented in Section 2.6.

Update Procedure Using Landmarks

We show how to update an inverted index using our landmark-diff method in re-

sponse to a content change in a document. The goal is to obtain an update operation

list (an “edit transcript” for the inverted index) that can be applied to the inverted

index to bring it up-to-date. The key idea is to obtain this update operation list

from the edit transcript for the old and updated document. The landmark encoding

scheme allows us to construct this update operation list using the edit transcript of

the updated document, without increasing the number of delete or insert posting

operations per document to Ω(m+n), where m and n are the number of words in the

old and new version of a document. The details of the procedure for transforming a

document edit transcript to an update operation list is lengthy but trivial, and we

illustrate it by way of the example in Figure 2.9. The entire landmark-diff update

procedure is also outlined in Figure 2.9. For each document that has changed, we

obtain the edit transcript for updating that document using a diff procedure. The

diff output is then transformed into corresponding entries in the update operation

list for the inverted index using landmark information. The update operation list is

then used to update the inverted index. All the procedures before the apply step re-

quire as input the old document, its landmark directory, and the new version of the
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document only; therefore these procedures lend themselves to parallel processing.
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Figure 2.9: The inverted index update method using landmarks. The top diagram
shows the data flow; the middle diagram shows what the edit transcripts look like
with an example; the bottom diagram show how the landmark directory is updated.
The landmark directory is represented here conceptually as a table.

In addition to updating the index, the landmark directory for each changed doc-

ument needs to be updated as well, because insertion and/or deletion of words from

the blocks within a document change the absolute position of landmarks within

that document. Updating a landmark directory can be done very efficiently in a

single sequential scan through the landmark directory data structure. This process

is linear in the size of the landmark directory and the number of landmarks deleted

and inserted. The overhead incurred for storing and maintaining landmark direc-

tories is not significant compared to the savings gained in the number of inverted
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update operations and in the update time as shown by our analytical and empirical

evaluations in Section 2.6 and Section 2.7. Further analysis of landmark directories

is given in Section 2.6.

2.5.2 Choosing Landmarks

A landmarking policy describes how landmarks are chosen in a document and also

how these landmarks are to be processed during updates. Examples of landmark-

ing policies are fixed size partitioning, HTML/XML tags, metadata, and semantic

structure of document.

Fixed size partitioning. The fixed size partitioning policy partitions each docu-

ment into blocks of a fixed size during index construction. During update processing,

two ways of dealing with how an edit operation affects a block are possible and the

landmarking policy needs to specify which one to use. Consider an edit operation

that inserts a piece of text at some position within a block, the landmarking policy

has to specify whether to make the block bigger or to split the block (Figure 2.9

shows the case when an insert always splits a block). Similarly, when a piece of text

in the middle of a block is deleted, the landmark policy has to specify whether the

remaining text forms one block or two blocks. A split-block policy is a policy where

an edit operation always splits a block. A grow-block policy is a policy where an

edit operation always makes a block larger. The split-block policy has the property

that each block never exceeds the chosen size, while the grow-block policy has the

property that the landmark directory never exceeds a certain size. In both cases,

the variance in block size increases with the number of updates – a condition we

term loosely as fragmentation. For the split-block policy fragmentation results in
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large landmark directories and hence increases the overhead in query and update

processing that require accesses to the landmark directories. For the grow-block

policy, fragmentation results in large blocks of text and increases the number of

index update operations required. Defragmentation or index rebuild should be per-

formed when update performance degrades. Since content changes in the updated

documents are likely to be small, fragmentation would not occur frequently.

In fixed size landmarking, the landmarks are not inherent in the structure of the

document. A brute-force diff on the old and updated documents is required to

generate the edit transcript. Using the landmark information of the old document

and the edit transcript, inverted index and landmark directory update operations

are generated (see Figure 2.9 for an example). Each edit operation in the edit

transcript is mapped to landmark directory update operations and index update

operations in terms of landmark-offset pairs.

HTML/XML tags. HTML tags such as the paragraph tag (<p>) can also be

used as landmarks. In contrast to the fixed size policy, the landmarks in this case

are inherent in the document and the problem of whether an edit operation should

split or grow a block is irrelevant. A more efficient, block-based, approximate diff

procedure could be used instead of the brute force diff. For example, we could hash

each block of the original and new versions and do the diff on the substantially

smaller sequence of hashed values.

Which tags should be used as landmarks? Linear-time heuristics can be used to

check which tags (or combinations of tags) that are suitable as landmarks. A brief

description of the landmarking tags being used will then be stored together with

the landmark directory. XML tags can be used in a similar way.



2.5. THE LANDMARK-DIFF UPDATE METHOD 38

2.5.3 Some Application Scenarios

We have described the landmark-diff method for updating the index for common

documents that have changed. We now give three example scenarios to illustrate

how our landmark-diff method can be used to solve the general index update prob-

lem.

Update Log. If the inverted index is maintained using an update log (similar

to “stop-press”) in between complete index rebuilds, our landmark-diff method can

be used to reduce the size of the update log. The naive update log corresponds

to the list of inverted index update operations generated by the forward index

update method (Section 2.2.3). Our landmark-diff update method can be used to

significantly reduce the size of this update log and thus the query processing time.

Partial Rebuild. In contrast to a complete rebuild, a partial rebuild avoids re-

indexing the common documents that did not change. Suppose that the inverted

index is stored as a sorted array Aindex of postings, the doc ids of the deleted doc-

uments are stored in a bitmap Bdeleted , and the postings of the inserted documents

are stored in a sorted array Ainserted (stop-press). The landmark-diff method can

be used to maintain a reduced-size sorted update log Aupdate for the common doc-

uments. The inverted index can then be updated in a single merging pass of the

three sorted arrays Aindex , Aupdate and Ainserted (checking Bdeleted for deletes). Our

experiments described in Section 2.7.3 show that partial rebuild can be twice as fast

as complete rebuild.

Distributed Index Update. Suppose the document collection is partitioned

among M machines and indexed independently. At each update, each machine
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updates its index using a bitmap for the deleted documents and the landmark-diff

method for the common documents. Inserted documents are always processed at a

free machine that builds an index for them. When no free machines are available,

the two machines with the smallest indexes are found and the two indexes are

merged to free one machine.

2.5.4 Query Processing with Landmarks

Query processing using an inverted index with landmarks does not differ signifi-

cantly from using a traditional inverted index. The main difference is that when

positional information is required (either to check positional query constraints or to

compute relevance rank), the landmark directories of all documents involved need

to be retrieved to compute the location ID’s of the postings. To minimize the num-

ber of landmark directories retrieved, the retrieval of landmark directories should

be done after all document ID based filtering.

For phrase queries, the landmark directory retrieval and lookup can be avoided

completely if positional information is not required. An additional field is asso-

ciated with the last word occurrence of every block to store the ID of the next

landmark. Given a phrase query (key1 key2), the postings for each keyword is

retrieved from the index independently. Postings with the same document ID

are grouped together and two postings, 〈key1, doc id , landmark id1, offset1〉 and

〈key2, doc id , landmark id2, offset2〉 form a phrase only if (1) landmark id 1 is equal

to landmark id2 and the difference between offset1 and offset2 is 1, or (2) landmark id1

is not equal to landmark id2, but offset2 is zero and the posting for key1 has the

additional next landmark field that is equal to landmark id 2.

The cost of retrieving a landmark directory depends on the size of the landmark
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directory which depends on the landmarking policy. The cost of looking up the

location ID of a landmark, depends on the implementation of the directory and we

discuss the details in Section 2.6.3 and Section 2.6.7.

2.6 Analytical Evaluation

In this section we evaluate the performance of our landmark-diff update method

analytically using the number of update operations as well as the more traditional

running time complexity. We also show that the complexity of the diff operation

is not a bottleneck, and that landmarking has minimal impact on query processing.

2.6.1 Update Performance in Number of Operations

Consider the number of updates (insert and delete postings) to an inverted index

generated by our update method for a single edit operation on a single document.

The following theorem states a key property of the landmark-diff method that all

existing update methods lack: the number of updates generated by our method is

independent of document size and dependent only on the size of the edit operation

in the document and the maximum block size. The number of updates generated

by existing update methods, on the other hand, is dependent on the size of both

the original and the updated document.

Theorem 1 The number U of updates to an inverted index caused by a single edit

operation that deletes or inserts ∆ words is at most

U ≤ ∆ + ε,

where ε is the number of words that are not affected by the edit operation in the last
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Figure 2.10: Consider a document with 12 words (‘a’ to ‘l’). The block size is set at
two words. Deletion of ∆ = 4 words generates ∆ + ε update posting operations on the
inverted index. The set B contains all the segments affected by the change. Landmark
ID L3 has to be deleted, the position of landmark L4 has to be changed to 3, the offset
of the word ‘h’ has to be changed to 0, and the position of landmarks L5 and L6 has to
be shifted by −4.

modified block.

Proof : Let B be the set of landmarks or blocks affected by this deletion or insertion

of ∆ words in the document. For the example in Figure 2.10, B = {L2, L3, L4}.
All postings in the inverted index corresponding to the words in B will have to be

updated except postings for the words occurring prior to the start of the deletion or

insertion point. The number of updates is thus bounded by ∆+ ε words, where ε is

the number of words following the change in the last block in B. In Figure 2.10, the

posting for the word ‘c’ does not change, but the posting for the word ‘h’ changes,

because its offset becomes zero after the deletion of four words. 2

The following lemma follows from the analysis of the gap distribution given

in [79]. The positions of the L landmarks of a document are modeled as random,

because the initially uniform landmark positions are no longer uniform after several

random edit operations.

Lemma 1 If the L landmarks of a particular document are randomly located, the

number U of updates to an inverted index caused by a single edit operation of size ∆
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on a document of size m words satisfies

U ≤ ∆ + (m− L)/(L + 1).

2.6.2 The Complexity of the diff Operation

The use of edit transcripts (diff output) is a key idea in our method. The problem

of computing an edit transcript given two documents is known formally as the

longest common subsequence (LCS) problem. The worst case running time for a

dynamic programming solution to the LCS problem is Θ(mn), where m and n are

the number of words in the old and the new documents, respectively. A heuristic-

based algorithm due to Ukkonen [78] achieves a running time of O(D min{n, m})
using O(D min{n, m}) space, where D is the minimum edit distance. The Unix

diff program uses an output-sensitive heuristic algorithm similar to that of [78],

so that the running time is near-linear when D is small and quadratic if D is linear.

Since diff is near-linear for small updates and the updates are usually small

between two consecutive samples [56], diff is not a bottleneck in the processing in

most cases. If the diff operation did form a bottleneck, we could represent each

block in a document by its hashed value and perform the diff operation on the

sequence of hash values rather than on the raw blocks directly.

Theorem 2 Let L and L′ be the number of landmarks in the old and new docu-

ments, respectively. The block-based diff variant takes O(D′ min{L, L′} + m + n)

time to generate the edit transcript, where L ≤ m, L′ ≤ n, and D′ is the block-wise

minimum edit distance.

False negatives (i.e., two identical blocks that are reported to be different) do

not affect the correctness of the update method, but increases the size of the edit
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transcript and hence the number of update operations. False positives (i.e., two

different blocks that are reported to match) could affect the correctness of our

update method and need to be eliminated by doing a linear scan of the blocks that

are reported to be identical to verify identity. All the blocks that are found different

(both from the diff step and the linear scan step) will be the ones that need to be

deleted and inserted into the system. The edit transcript would then consist of a

list of delete landmark operations for blocks deleted from the old document and a

list of insert landmark and insert postings operations for the blocks of text inserted

into the new document.

2.6.3 Implementing the Landmark Directory

The running time complexity of the landmark-diff method is dependent on how

the landmark directory is implemented. We briefly describe the operations that an

implementation of the landmark directory must support.

Insert(pos) inserts a new landmark at position pos.

Delete(landmark id) deletes the landmark landmark id .

DeleteRange(landmark id1, landmark id2) deletes all landmarks occurring be-

tween landmark id1 and landmark id2.

Shift(landmark id , value) adds value to the position of all the landmarks that

occur after landmark id .

Find Pos(landmark id) returns the position of the landmark landmark id .

Find Ldmk(pos) returns the landmark corresponding to the position pos.

Find All Ldmk(pos range) returns all the landmarks corresponding to the posi-

tions in the range pos range.
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Operation Offset Tree Simple Array
Insert O(log L) O(1)
Delete O(log L) O(1)
DeleteRange O(log L) O(B)
Shift O(log L) O(L)
Find Pos O(log L) O(1)
Find Ldmk O(log L) O(L)
Find All Ldmk O(log L + B) O(L)
Update Ops Generation O(log L + B + ∆) O(L + ∆)
Query Overhead O(

(∑
i skeyi

)× log Lmax) O(
∑

i skeyi
)

Space Overhead 40L 16L

Table 2.2: Summary of the performance of the offset tree data structure versus
that of the array data structure for landmark directories. The term L is the number
of landmarks in the document, B is the number of landmarks affected by change or
within a range, and ∆ is the number of words deleted or inserted.

An offset tree [80] is the theoretically efficient data structure for a landmark di-

rectory. In practice, an array is used because of its compactness and good locality

of memory reference. We analyze the offset tree data structure for landmark di-

rectories in Section 2.6.4, and the array data structure for landmark directories in

Section 2.6.5. A summary of the analysis is given in Table 2.2. For the rest of the

analysis we will assume that the landmark directories are implemented as arrays.

2.6.4 Offset Trees for Landmark Directories

Offset trees are binary trees that store an offset value in each node. They resemble

the document representation data structures proposed in [30,33,80]. In the context

of landmark-diff, we are not concerned with document representation, but with

index representation together with novel index update techniques. Offset trees are

frequently used in similar problems (such as in [80]) and they are theoretically very

efficient. However, they require too much space as compared with arrays and exhibit

poor locality of memory reference in practice.
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Figure 2.11: The offset tree data structure.

In our context, each node in the offset tree stores an additional parent pointer

and each leaf node corresponds to a landmark of the document. The leaf nodes

also store the following extra fields: the size field, the byte position field, the left

and right pointers. The size field stores the extent (in number of words) of that

landmark. The byte position field stores the byte position of the landmark in the

document. The left and right pointers point to the adjacent leaf nodes and make

the leaf nodes a doubly linked list.

The actual word position of a landmark is the sum of the offsets of the nodes in

the path from the root to the leaf node corresponding to that landmark. Concep-

tually we can think of a landmark as a pointer to a leaf node without affecting the

bounds we describe.

Offset trees can be height-balanced by using splay trees (amortized) or red-

black trees (worst-case) [80]. Using offset trees, all the landmark directory op-

erations (described in Section 2.6.3) take O(log L) time except for the operation

Find All Ldmk(pos range) which runs in O(log L+B) time, where L is the number

of landmarks and B is the number of landmarks in the given range.

Space Requirement. For L landmarks, how much space does this offset tree

structure require? Each tree has L leaf nodes and L− 1 internal nodes. Each node
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stores an offset value and three pointers (parent, left and right). Each leaf node

stores an additional two integers for the size and byte position fields. Assuming 4-

byte pointers and integers, this structure requires (L− 1)× 4× 4+L× 6× 4 ≈ 40L

bytes.

Update Performance. Suppose ∆ contiguous words are deleted or inserted in

an existing document. Using an offset tree, O(logL + B + ∆) time is required to

generate the inverted index update operations and to update the offset tree given

the position(s) and the word IDs of the ∆ words that are deleted or inserted.

Query Performance. The additional time required to process a conjunctive

query of k keywords key0 ∧ key1 ∧ . . .∧ keyk−1 is O((
∑k−1

i=0 skeyi
)× log Lmax), where

skeyi
is the selectivity of keyword key i and Lmax is the maximum number of land-

marks per document among all the inverted index entries involved in this query.

The selectivity of a keyword is the number of inverted index entries with word id

equal to the given keyword.

2.6.5 Arrays for Landmark Directories

Although offset trees are theoretically efficient, they are not space-efficient for our

application in practice. Arrays offer a more practical solution. Several array im-

plementations of a landmark directory are possible depending on the space-time

trade-off. We describe one simple implementation here as an illustration and ana-

lyze its update and query performance.

For a particular document, suppose there are at most L landmarks and we allo-

cate landmark IDs as integers in [0, L− 1]. The landmark directory can be imple-

mented as an array of size L indexed by the landmark IDs. Each array entry stores
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the actual word position of that landmark, a previous landmark pointer, a next

landmark pointer, and the actual byte position of the landmark in the document.

Space Requirement. Again assuming 4-byte integer/pointer for each of the four

fields (word position, previous landmark, next landmark, and byte position), the

space required by the array is 4× 4× L = 16L bytes. Some additional space could

be used to accommodate future insertions, or else new space for the array can be

allocated when L changes. Thus, arrays provide significant saving in space over the

use of offset trees.

Update Performance. The time complexity of the various update operations

appears in Table 2.2. All lookups using a landmark ID takes constant time; hence

Find Pos(landmark id) takes constant time. However, the Find Ldmk(pos) oper-

ation requires O(L) time, because the array is not indexed by word position and

we have to scan through the array in order to find the corresponding landmark

given its position. The Find All Ldmk(pos range) operation also takes O(L) time

because we need one scan to locate the landmark ID corresponding to the starting

position and then we can follow the next landmark pointers and check if the ending

position has been reached. Since at most two passes through the array is required,

it requires O(L) time.

The insert, delete, shift, DeleteRange operations are not needed if a new updated

landmark directory is generated together with the inverted index update operations.

This is the update method of choice since only one linear scan is required per

document to generate the update landmark directory. Nevertheless, for the sake of

completeness, we give brief analysis of these operations.

If we maintain a free list of unused landmark IDs, the insert operation requires
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only O(1) time. The delete operation requires a constant time lookup, a constant

time nullify operation, and a constant time update previous landmark operation.

The shift operation requires changing the word position of all subsequent land-

marks. The next landmark pointer is used to traverse through the subsequent

landmarks and there are at most L− 1 subsequent landmarks.

For the DeleteRange operation, we lookup the starting landmark ID and traverse

the range of landmark IDs using the next landmark field and nullify each entry;

hence if B is the number of landmarks in the given range, DeleteRange takes O(B)

time.

Note that the Delete and Shift operations are not required if the landmarking

policy relies on the structure of the document (e.g., HTML tags), since we can

rebuild the entire landmark directory from the new version of the document.

Compared with the logarithmic time lookup using offset trees, this simple array

implementation offers constant time lookup of the word position given the landmark

ID, an operation required during query processing. Query performance of arrays

is therefore superior to offset trees; update performance requires the linear time

reverse lookup operation (given position find the landmark ID) and hence is more

expensive compared with offset trees.

2.6.6 Update Performance Using Arrays

Theorem 3 Let ∆ be the number of contiguous words that were deleted or inserted

and L be the number of landmarks in the existing document. Using an array, O(L+

∆) time is required to generate the inverted index update operations and update the

landmark directory given the position(s) and the word IDs of the ∆ words that are

deleted or inserted.
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Proof : In the case where Unix diff is used, the edit transcripts consist of the

positions of the words deleted or inserted and the words themselves. For delete,

a position range of the words deleted is usually given. To generate the update

entries for the deleted words, the operation Find All Ldmk(pos range) is called.

The operation Find All Ldmk(pos range) outputs the landmark ID and offset of the

starting word, the landmark ID and offset of the ending word and a list landmark IDs

with their corresponding extents. Using this list and the information inside the edit

transcript, we can generate the delete entries for the inverted file. The operation

Find All Ldmk takes O(L) time, where L is the total number of landmarks for

that document. Generating the delete landmark entries and applying them on

the landmark directory take another O(L), because at most O(L) landmarks can

lie in the given range and each delete landmark operation requires constant time.

Generating the delete and insert posting entries for the words in the first and last

block requires constant time assuming a constant block size. Hence to delete ∆

contiguous words, O(L + ∆) time is required to generate the update entries for the

inverted file and update the landmark directory given the edit transcript. A similar

argument can be made for inserts. From our data analysis, we can deduce that ∆

is typically very small.

In the case where a block-based variant of diff such as that described in Sec-

tion 2.6.2 is used, an extra access to the old file or new file is required to obtain the

words that are deleted or inserted. We show that this additional file access does

not degrade the bound obtained in the previous paragraph.

Suppose that the variant diff returns an edit transcript in the following format.

For delete, it returns the landmark ID of the block to be deleted. For insert it

returns to the word position of the insertion point and the byte positions in the
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new document where the words to be inserted are located.

For deletion of a block of ∆ words, we can obtain the word position, the byte

position and the extent of the landmark in constant time. Using the byte position,

we can access the starting point of the block of text to be deleted in the old document

in O(1) time. Reading the ∆ words requires another O(∆) time assuming a constant

word length. We can now generate the delete entries for the inverted file and update

the landmark directory as before. Since the file access requires only O(∆) time the

overall bound is still O(L + ∆) time. The argument for insert is analogous. 2

2.6.7 Query Performance Using Arrays

Theorem 4 The additional time required to process a conjunctive query of k key-

words key0 ∧ key1 ∧ . . . ∧ keyk−1 is O(
∑k−1

i=0 skeyi
), where skeyi

is the selectivity of

keyword key i.

Proof : Recall how conjunctive queries are processed. For each keyword key i, we

obtain from the inverted index a list li of inverted index entries of the form

〈word id , doc id , loc id〉. The selectivity of keyword key i is skeyi
= |li|, the number

of inverted index entries with word id equal to key i. Entries from documents that

do not contain all the keywords are filtered out of each li.

If the query post processing does not require the position of each occurrence of

the word in a document, then we do not need to access the landmark directories and

no additional cost is incurred. If positional information is needed (for example, to

compute some relevant metric), then there is an additional skeyi
×O(1) time overhead

to look up the actual position of each of the skeyi
landmark IDs for a keyword key i,

assuming in the worst case that the the landmark IDs are all distinct. Hence, for

a query consisting of a list of k keywords {key i | 0 ≤ i < k} joined by the boolean
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operator AND, the additional overhead is O(
∑

i skeyi
) time. Note that an offset tree

implementation of the landmark directory is an order of magnitude slower, because

each lookup requires O(logL) time (see Table 2.2). 2

2.7 Experimental Evaluation

In this section we describe the experiments used to evaluate our landmark-diff

method. We compare the performance of the landmark-diff method with the forward

index method, because both methods are designed for updating common documents

whose contents have changed. For the performance on general index update, we

compare the partial rebuild method using landmark-diff with the complete rebuild

method, because the complete rebuild method is the industry workhorse.

Through our experiments, we answer five important questions about the perfor-

mance of our landmark-diff method:

1. How does landmark or block size affect performance?

2. Does the landmark-diff method significantly reduce the number of edit oper-

ations on the inverted index compared to other methods (e.g., forward index

method)?

3. Does the reduction in the number of inverted index update operations actually

translate to savings in real execution time when applying these operations?

4. Does generating update operations using the landmark-diff method require

more time than other methods?

5. Does the landmark-diff method provide a more efficient solution for the general

inverted index maintenance problem than complete rebuild method, especially

when the change between two consecutive samples is large?
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Our Implementation. Our text indexing system is implemented in C. Two im-

plementations of the inverted index have been used. The binary tree (of postings)

implementation is used for measuring the time required to apply update operations

on the index, because the binary tree represents the worst case tree-based data

structure. We discuss a B-tree representation in Section 2.7.4 which will take better

advantage of our landmark-diff method when updates are very frequent and there-

fore very small in magnitude. A b-way search structure implicitly represented by

a linear array of postings is used for the comparison between the partial rebuild

method and the complete rebuild method, because both methods rely on an exter-

nal k-way merge sort and linear arrays give the complete rebuild method the most

advantage. Landmark directories and forward indexes are implemented using linear

arrays, because these are small data structures.

Landmarking Policy and Block Size. Fixed size partitioning is used to choose

landmarks. Intuitively, the square root of the average document size is a good block

size2. For the experiments we present, a default block size of 32 words is chosen

since the average document size is roughly 1000 words. Insertion of words always

split a block.

Performance Measures. We evaluate the performance of our landmark method

using four measures:

1. the number of index update/edit operations (Table 2.3),

2. the time to perform those operations (Table 2.4),

3. the time to generate those operations (Table 2.5),

2The reasoning is similar to a 2-level B-tree where the number of blocks and the block size is
‘balanced’.
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4. the time to bring the inverted index up-to-date using the partial rebuild

method (Table 2.6).

An edit operation is defined to be a delete posting or insert posting opera-

tion. The number of edit operations on the inverted index is a natural performance

measure, since the goal of a good update method is to reduce the number of edit

operations on the inverted index. Moreover, unlike the execution time, the number

of edit operations depends neither on the implementation of the system nor on the

hardware architecture. The number of edit operations is therefore a good measure

of update performance across different search engine architectures and implemen-

tations.

Data Set. Two sets of data are crawled from the web. Data Set I consists of

two samples of the web crawled from 100 seed web sites. The time between the

start of the two web crawls is 71 hours and the recursion depth is limited to 5

levels. The first sample has 63,336 documents and the second has 64,639 documents

with 37,641 documents common to both. Each sample contains about 1.5 GB

worth of HTML files. Data Set II consists of 6 samples of the web crawled from 5

seed web sites (www.cnn.com, www.ebay.com, www.yahoo.com, espn.go.com, and

www.duke.edu). The sampling interval is 12 hours and the recursion depth is 5

levels. Note that 4 out of the 5 listed web sites have fast changing contents.

Document Preprocessing. Every HTML file is preprocessed into a canonical

form by stripping off HTML tags, scripting code, JAVA code, and extra white space.

Every letter is capitalized so that different capitalizations do not result in different

word IDs. If the canonical form of a file has less than 10 words, it is discarded.
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Figure 2.12: Cumulative distribution of documents with respect to the number of
inverted index update operations for different block sizes.

2.7.1 Block Size and Performance

In this section, we address two questions: how does block size affect the number

of inverted index update operations, and how does block size affect the time to

generate these operations.

We measured the minimum number of index update operations required for

different block sizes (using data set I described previously) and verified that as

the block size gets smaller the number of index update operations decreases at the

expense of increasing landmark directory size. Figure 2.12 shows the distribution of

the documents with respect to the number of index update operations normalized

by the sum of the sizes of the old and new documents. While small block sizes result

in less update operations on the index, it also results in larger landmark directories,

which translates to an increase in the cost of manipulating the landmark directory.

The increasing cost of manipulating the landmark directories as block sizes de-

creases can be seen in our experiment for investigating how the landmark size affects

the time required to generate the update operations for the common documents



2.7. EXPERIMENTAL EVALUATION 55

7.05

7.1

7.15

7.2

7.25

7.3

7.35

0 10 20 30 40 50 60 70

T
im

e 
(s

ec
on

ds
)

Landmark Size (# words)

Processing time vs Landmark Size

Data I

Figure 2.13: Landmark size versus time to generate update operations for common
documents that have changed. Note that the time axis starts at 7.05 seconds.

(data set I) that have changed. Figure 2.13 shows that smaller landmark size re-

sults in less processing time to generate update operations for block sizes greater

than eight words. For block sizes less than eight words, the cost of manipulating

large landmark directories dominate and the processing time increases. Note that

the block size that minimizes the time to generate update operations is dependent

on the magnitude and clusteredness of change of the data as well as the implemen-

tation of the system.

In principle it is possible to determine the block size that minimizes the time for

the entire update process for common documents given a data set and a particular

system implementation. However, this is computationally intensive, and the com-

puted optimal block size is not very useful, because it is dependent on the data,

which change over time. One approach to reduce the computational overhead is to

compute the optimal block size using a small subset (a statistical sample) of the

data. A simple strategy to deal with changes in data characteristics is to recompute

the block size during periodic index re-organization (defragmentation).
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Data C(docs) ∆C(docs) Fwd. Index Landmark
I 37,641 10,743 10,501,047 3,360,292

IIa 2,026 1,209 1,109,745 330,695
IIb 5,456 1,226 1,566,239 350,802
IIc 5,335 3,096 1,855,618 534,088
IId 5,394 1,278 1,426,163 378,661
IIe 5,783 1,605 1,762,018 539,594

Table 2.3: The number of update operations generated by the update methods
in our experiments. The symbol C denotes the number of common documents
(|Sn ∩ Sn+1|) and the symbol ∆C denotes the portion of C that has changed.

2.7.2 Performance on Common Documents

We compare the update performance of the landmark-diff method on common doc-

uments with the forward index method.

Number of Update Operations

We count the number of inverted index update operations generated by the for-

ward index method and our landmark-diff method on two data sets. Fixed size

landmarking policy is used with a block size of 32 words. Table 2.3 shows that

the landmark-diff method generates significantly less update operations on the in-

verted index than the forward index method (which represents the best of the naive

methods). The performance of the landmark-diff update method is consistent over

a broad range of web sites including web sites with fast changing content. We in-

dicate in Section 2.7.4 that this measure will mirror real-world performance when

updates are frequent.

Update Time

Do the reductions in the number of inverted index update operations actually trans-

late to savings in the time to apply these operations? We measure the execution
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Method |Sn| No. Update Ops. Time (s)
Fwd. Index 63,336 10,501,047 28.3
Landmark 63,336 3,360,292 9.2

Table 2.4: Time required to apply the update operations on a binary tree imple-
mentation of the inverted index. The symbol |Sn| denote the number of documents
in the index and corresponds to the index size.

time for applying the update operations generated by the forward index method and

the landmark-diff method to a binary tree implementation of the inverted index for

data set I. The experiment is performed on a Sun Blade-1000 computer running

SunOS 5.8 with 4 GB of RAM. Our results as summarized in Table 2.4 show that

a reduction in the number of update operations does translate to a proportional re-

duction in the time required to update the inverted index. Note that the measured

time does not include the time for updating the landmark directories. Updating a

landmark directory requires only one linear pass and is done at the same time as

generating the update operations (see Section 2.7.2).

Time for Generating Update Operations

Does generating update operations using the landmark-diff method require pro-

hibitively more time than the forward index method? We measured the time used

to generate the update operations for data set I using the same configuration as in

Section 2.7.2. For the forward index method, the measured time includes the time

to read each pair of old and new document from disk, the time to create forward

indexes for them, and the time to compare the forward indexes and generate update

operations. For the landmark-diff method, the measured time includes the time to

read each pair of old and new document from disk, the time to performing a diff on

them, the time to translate the diff output to update operations, and the time to

generate the updated landmark directory. Table 2.5 shows that for common docu-
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Generation Time (s)
Method No. Update Ops C ∆C
Fwd. Index 10,501,047 148.9 18.9
Landmark 3,360,292 17.5 7.5

Table 2.5: The time (in seconds) required to generate the inverted index update
operations for the landmark-diff method and the forward index method. The C
column gives the required time if all the common files (37,641) have to be checked
and processed. The ∆C column gives the required time, if incremental crawling is
used and the system know a priori whether a common file has been modified since
the last crawl.

ments that have changed the landmark-diff method is roughly three times as fast as

the forward index method in generating update operations. This speedup is roughly

the ratio of the output size (the number of update operations). Observe that diff

is a more efficient method for detecting identical, i.e., unchanged, documents than

the forward index method. In our experiments, the landmark directories are stored

in memory, but even if the landmark directories are stored on disk, the additional

time required to read a landmark directory into memory is still small compared

with reading a document, since it is much smaller in size.

For common documents, our experiments have shown that the landmark-diff

method does indeed reduce the number of update operations as compared to the

forward index method. Moreover, the reduced number of update operations does

translate to speedups of roughly the same ratio in update generation and application

time. We next show how the landmark-diff method can be used for efficient general

index update (not restricted to common documents).

2.7.3 Performance on General Index Update

We investigate the efficiency of using the landmark-diff method for solving the

general index update problem. We compare the performance of the partial rebuild
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Figure 2.14: The schematic diagram for the partial rebuild method. Our
landmark-diff method produces a list of update operations ∆ which is then sorted.
The new documents are processed into a sorted list of postings D to be inserted.
The doc ids of the deleted documents are stored in a bitmap. These three data
structures are merged with the old inverted index in a linear pass.

method using landmark-diff (see Section 2.5.3) with that of the complete rebuild

method.

In both methods, the inverted index is implemented as a sorted array of postings

residing on disk (searching can be accomplished using an implicit complete b-way

tree similar to a binary heap implemented as an array). For the complete rebuild

method, the entire updated document collection is scanned into a list of postings

and sorted using external k-way merge sort and written out to disk. For the par-

tial rebuild method, the original and updated document collection is scanned to

obtained (1) a list of document IDs of the deleted documents stored as a bit map

in memory, (2) a sorted list of postings of the inserted documents stored as an

array in memory, and (3) a sorted list of index update operations for the common

documents, generated using our landmark-diff method, and stored as an array on

disk. The old inverted index (on disk), the bit map, the array of new postings, and

the sorted update operations are merged (in a fashion similar to mergesort) into an

updated inverted index and written to disk (see Figure 2.14).

The two update methods are applied on data set I and the elapsed time mea-
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No. of docs No. of postings
D 25,695 -
C 37,641 58,575,596
∆C 10,743 -
∆ - 3,360,292
N 26,998 43,366,308
Partial Rebuild 513.8 s
Complete Rebuild 1113.7 s

Table 2.6: Running time performance of the partial rebuild method using
landmark-diff and the complete rebuild method. The symbols D, C, ∆C, ∆ and
N denote the deleted documents, the common documents, the common documents
that have changed, the update operations for the common documents and the new
documents that have been inserted. We give the sizes of these sets in units of
documents as well as postings.

sured. Table 2.6 shows that the partial rebuild using landmark-diff method is twice

as fast as the complete rebuild method even for two web samples that are crawled

71 hours apart and thus have a large number of changed common documents and

inserted documents. The partial rebuild method illustrates that the efficient update

processing of the common documents can improve overall efficiency by avoiding the

expensive re-indexing of the portion of the common documents that did not change.

Hence, the partial rebuild method is more efficient because it only has to perform the

expensive indexing operation on the new documents, whereas the complete rebuild

method has to index both the updated common documents and the new documents.

Observe that the time required to process common documents (Table 2.4 and

2.5) is quite small compared to the overall update time of the partial rebuild method

using landmark-diff (Table 2.6). A large portion of the elapsed time for the par-

tial rebuild method is spent on the expensive indexing operation done on the new

documents. One could argue that optimizing updates of common documents is

meaningless because the bottleneck lies in indexing the new documents; however,

the goal of this work is incremental updates. In the incremental update scenario, the
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time between updates is small and the new documents that arrive between updates

are also fewer. Update processing of the common documents would account for the

bulk of the processing time in incremental updates. If the set of new documents

is significantly large, other ways of dealing with the new documents can be used.

For example, a separate index can be built for the new documents as suggested in

Section 2.5.3.

2.7.4 Discussion

Updating inverted indexes given a new sample of the web involves four sets of items:

1. the postings of deleted documents D,

2. the postings for inserted/new documents N ,

3. the postings for original common documents C, and

4. the update operations ∆ for C.

The existing inverted index (consisting of C and D) has to be ‘merged’ with the sets

D, N and ∆, so that D is deleted, N is inserted, and ∆ is applied to the inverted

index (the alternative is to rebuild from scratch). The set D can be processed very

efficiently by storing the doc ids using a bit map. Updating the index with ∆ can

be done very efficiently using our landmark-diff method (three times faster than the

forward index method). The efficiency of incorporating N to the inverted index

will depend on the size of N .

The partial rebuild method using landmark-diff exploits the following three facts

to achieve the factor of two speedup compared to the complete rebuild method: (1)

N can be processed in a sequential manner very efficiently; (2) our landmark-diff
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method produces a very small ∆ relative to C very efficiently; (3) the landmark-

diff method avoids re-indexing the portion of C that did not change. Our goal is

to investigate fast incremental update of inverted index. As the sampling interval

decreases, the sizes of N and ∆ also decrease relative to C [19]. In the limit, N
will be very small and random access updates to an inverted index implemented as

a B-tree will be faster than an array implementation. A similar trade-off between

random access data structures and stream-based processing has been observed in

the processing of spatial joins [3]. Therefore, the speedup in incremental update

time using a B-tree implementation approaches

|C|+ |N |+ |∆|
|N |+ |∆|+ |D| (2.7.3)

compared with a complete rebuild. We have shown in Table 2.6 that the array-

based partial rebuild using landmark-diff is twice as fast as complete rebuild for

a relatively large update interval of 71 hours. As the update interval decreases,

the speedup will be more significant and even more dramatic if we use a B-tree

implementation of the inverted index.

2.8 Conclusion

Keeping web indexes up-to-date is an important problem in research and in prac-

tice. Naive update methods such as index rebuild is inadequate in keeping the

inverted index up-to-date especially in the context of in-place, incremental crawl-

ing. Incremental update methods are required to make newly crawled documents

searchable.

Our analysis of change characteristics of web documents has shown that edits
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in web documents are generally small and clustered. These small and clustered

change characteristics motivate the use of incremental update algorithms based

on diff. However, positional information that is usually stored in the inverted

index presents a problem in using the diff approach, because any edit can shift

all subsequent word positions. We proposed the landmark-offset representation

for encoding positional information to address this problem. The landmark-offset

encoding has three advantages: it renders postings more “shift-invariant”, it does

not increase the index size, and it does not affect query processing (Section 2.5.4)

significantly. The mapping of a landmark to its position in a document is maintained

in a landmark directory. A landmark directory is very small compared with the size

of the document and hence does not significantly affect query response time.

We have proposed the landmark-diff index update method that exploits the

landmark-offset encoding with the diff approach to reduce the number of update

operations on the inverted index. The landmark-diff method specifically addresses

the problem of incremental index updates for previously indexed documents whose

contents have changed – this problem has not been addressed before in the literature.

We also showed how the landmark-diff method can be applied in a variety of ways

to obtain new and more efficient solutions to the general index update problem and

also to optimize many existing methods.

In our analysis, we showed that the number of inverted index update operations

generated by our landmark-diff method is independent of the size of the document

and is dependent only on the size of the document change and the maximum dis-

tance between two landmarks. In contrast, the number of inverted index update

operations generated by previous methods are all dependent on the size of the doc-

ument. Bounds on the update and query running time performance are also given.
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In our experiments, we showed that our landmark-diff method is three times

faster than the forward index method in updating the inverted index for common

documents that have changed. We also showed how our landmark-diff method can

be used in the partial rebuild method to solve the more general inverted index

update problem. The partial rebuild method is twice as fast as a complete rebuild.

One important insight is that not re-indexing the portion of the document col-

lection that did not change can result in more efficient update processing. The

implication for incremental updates is significant, because smaller time intervals

between updates mean that more of the document collection remains unchanged.

Hence as the update frequency increases, the speedup from using the landmark-diff

update method will be even more significant.



Chapter 3

Self-Adapting Set of Histograms.

3.1 Introduction

In this chapter, we study a particular selectivity estimation problem in the con-

text of relational database systems: How to build and maintain a set of histograms

in an on-line manner using query feedback information only. As explained in Sec-

tion 1.2, selectivity estimation is an important problem in query optimization. Most

relational database management systems (RDBMSs) maintain a set of histograms

using a small amount of memory for selectivity estimation. While the problem

of building an accurate histogram for a given attribute or attribute set has been

well-studied [2, 12, 59, 68, 69, 81], little attention has been given to the problem of

building and tuning a set of histograms collectively in a self-managed manner using

only query feedback information.

A set of histograms is completely specified by

1. the sets of attributes on which each histogram is built,

2. the histogram technique (eg. equi-width, equi-depth) used for each histogram,

3. the statistics or parameters stored in each histogram, and

4. the memory (or buckets) allocated to each histogram.

65
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For example, given a database with a single relation Product(PID, Price, Sales),

the singleton attribute sets {Price} and {Sales} to build histograms on, the equi-

width histogram technique, 20 buckets worth of memory to be distributed uniformly

among all the histograms, we can build a set of two 10-bucket histograms, one on

attribute Price and one on attribute Sales, by scanning the tuples of the Product

relation to obtain the width and the average frequency for each bucket.

In commercial database systems, the histogram technique is often fixed for a

particular data type. The parameters stored in a histogram are dependent on the

histogram type and in the off-line case, the parameters are usually obtained by

scanning the database. In the on-line case, given a fixed attribute set and memory

distribution, self-tuning histograms [2, 12] is a type of histogram that can learn its

parameters from query feedback information.

The memory allocated to each histogram in most commercial DBMSs is a con-

stant independent of the statistical properties of the data. Distributing memory

to a set of histograms according to the statistical properties of the data has been

addressed by [40] for one-dimensional histograms and [27] for multidimensional his-

tograms. In this chapter, we address how to distribute memory to a set of multi-

dimensional histograms according to the statistical properties of both the data and

the query workload.

Most commercial database systems today use only one-dimensional histograms;

therefore, the attribute sets are by default singleton sets. Selectivity estimates

on multi-attribute queries are obtained by assuming statistical independence be-

tween attributes – this assumption is known as the attribute value independence

(AVI). Using AVI, multi-attribute selectivity estimates are computed by multiply-

ing single attribute estimates from the one-dimensional histogram. However, AVI
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rarely holds and estimates obtained using AVI are often wildly inaccurate [68]. To

remove the AVI assumption, multidimensional histograms were proposed [68, 69].

Multi-dimensional histograms assumes a given attribute set on which to build the

histogram – what attributes to include in the set is not addressed. Finding which

attributes to group together for building multidimensional histograms is closely re-

lated to finding the correlation between attributes. Graphical models have been

used to address this problem for the off-line case [27, 36] where the models can be

computed with full access to the database relations. In this chapter, we address

the on-line case where the graphical models are computed using query feedback

information only.

In addition to building a set of histograms, we also want to tune the histograms

for a particular query workload. Building and tuning a set of histograms using only

query feedback information (without performing any off-line scan of the underlying

database relations) present several unique challenges:

1. How do we decide which sets of attributes to build histograms on just by

looking at query feedback?

2. How should the histograms be built and tuned using query feedback?

3. How should the fixed amount of memory be distributed among the histograms

to achieve best overall accuracy for estimating the selectivities of a given

workload?

We illustrate these issues with an example.

Example 3.2 Consider building a set of histograms for a database consisting of

just the Product(PID, Price, Sales) relation (see Figure 3.1). The set of histograms

would either consist of one 2-dimensional histogram on attribute set {Price, Sales}
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Figure 3.1: An example of the different sets of histograms that could be used for
the product table.

or two one-dimensional histograms, one on attribute Price and one on attribute

Sales. The attribute PID is the primary key and does not require a histogram to be

built for it. If two one-dimensional histograms are used, should the fixed amount

of memory be allocated evenly between the two histograms (Figure 3.1, Set i), or

should one histogram get more memory (Figure 3.1, Set ii) ? If there are many more

queries on Sales than on Price, then we might consider allocating more memory to

the histogram for attribute Sales, so that the histogram will be more accurate.

In this chapter, we present SASH, a Self-Adaptive Set of Histograms that ad-

dresses the problem of building, maintaining and tuning a set of histograms. SASH

uses a novel two-phase method to automatically build and tune itself using query

feedback information only. In the on-line tuning phase, the current set of histograms

is tuned in response to the estimation error of each query in an on-line manner. In

the restructuring phase, a new and more accurate set of histograms replaces the

current set of histograms. The new set of histograms (attribute sets and memory

distribution) is found using information from a batch of query feedback. Graphi-

cal statistical models are used to model the sets of attributes on which histograms



3.2. RELATED WORK. 69

are built and the best model along with the best memory distribution among the

histograms is computed using only query feedback information. The restructuring

phase can be activated periodically or when performance degrades.

The rest of this chapter is organized as follows. Section 3.2 discusses related

work. Section 3.3 introduces basic notations. In Section 3.4 we describe SASH in

detail: Section 3.4.2 describes the restructuring phase, Section 3.4.3 gives a brief in-

troduction to graphical models, and Section 3.4.8 describes the on-line tuning phase.

Section 3.5 presents an experimental evaluation of SASH. Section 3.6 summarizes

this chapter and draws conclusions.

3.2 Related Work.

Previous work [2, 12, 27, 36, 40] addressed the issues of finding the attribute sets

to build histograms on, allocating memory to the histograms, and tuning the his-

tograms, by dealing with these issues independently and/or assuming full access to

the underlying database relations.

The idea of using query feedback information to update the statistics kept by

the query optimizer first appeared in [16] where coefficients of a curve represent-

ing the underlying data distribution are adapted using query feedback. Self-tuning

histograms [2, 12] successfully used this idea to build and maintain individual his-

tograms; however, neither [2] nor [12] addresses the issue of finding which attributes

to build histograms on and the issue of distributing memory among the set of his-

tograms. Our work addresses these two important issues. Moreover, SASH ad-

dresses how to update low dimensional histograms using high dimensional query

feedback which has not been addressed in the literature before.

Graphical statistical models were first used for multidimensional query selec-
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tivity estimation in [27, 36]. Getoor et al. [36] use Probabilistic Relational Models

(PRMs) for estimating the selectivities of point queries. PRMs [36] are based on

directed graph models (Bayesian networks) and they are used in [36] to find which

attribute sets to build conditional histograms on. However, the technique pro-

posed in [36] is based on a complete off-line scan of the underlying data. It does

not address the issues of on-line construction of histograms, memory distribution

among multiple histograms, and workload-driven tuning of the existing histograms.

Dependency-based (DB) histograms, proposed by Deshpande et al. [27], are based

on undirected graph models (in particular, junction trees) and are used for esti-

mating the selectivity of range queries. The technique proposed in [27] addresses

the issue of which attribute sets to build histograms on and the issue of memory

distribution among multiple histograms. However, it treats these two issues in-

dependently. Moreover, similar to the PRM-based technique in [36], it is based

on a complete off-line scan of the underlying data and does not address on-line

construction and workload-driven tuning.

Jagadish et al. [40] present several greedy and heuristic algorithms for distribut-

ing memory (buckets) among a set of single attribute histograms, but does not

address the problem of finding the sets of attributes to build histograms on.

All three techniques [27, 36, 40] minimize some objective function that approxi-

mates the distance between the joint distribution associated with a set of histograms

(or statistics) and the true data distribution of the database. The histograms (or

statistics) that they maintain are obtained by scanning the database, and the objec-

tive functions that they minimize require accesses to the database to be computed.

Because of the off-line nature of these techniques, they build histograms without

considering how the histograms are being used (i.e., query workload) and assume
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that all queries are equally likely to be asked. This assumption is rarely true in

practice. Ideally, more storage resource should be spent on storing the statistics

that are relevant to the most frequently queried portions of the underlying rela-

tions. These techniques are oblivious to workload distribution and consequently

waste precious storage space in storing statistics of infrequently queried portions

of the base data. Another consequence of the off-line nature of these techniques

is that the histograms they built are static in the sense that, after histograms are

built, the histograms remain fixed regardless of any change in the data distribution.

To ensure accuracy of the statistics when the base data change significantly, the

histograms must be rebuilt by scanning the base data again. This rebuild approach

is neither effective nor efficient because of the scanning cost associated with the

size of the base data and the complexity associated with evaluating the objective

functions that they minimize. Our work overcomes these drawbacks by building

and maintaining histograms in a dynamic way based only on query workloads.

LEO by Stillger et al. [75] takes a different approach. It uses the actual selectivity

feedback from each operator in the query execution plan to maintain adjustments

that are used to correct the estimation errors from histograms. Note that LEO

does not change the histograms themselves, while our work aims on building and

maintaining better histograms using query feedback.

3.3 Preliminaries

A database consists of a set of relations. Each relation R is a set of attributes. For

the purpose of selectivity estimation, we can assume that relation R contains only

attributes of interest – attributes that are not relevant to selectivity estimation (e.g.

primary and secondary keys) have been stripped off. Since we are not dealing with
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joins between relations, we simplify our presentation by considering a single relation

R. Without loss of generality, let relation R = {A1, A2, . . . , Ak}. Each attribute Ai

takes real values from the value domain Di (a discrete set of real numbers). Let Di

be indexed by {1, 2, . . . , |Di|} and let D(R) denote the domain for a set of attributes

in relation R, i.e., D(R) = D1 × D2 × . . . × Dk, where each Di is the domain for

attribute Ai ∈ R. The normalized frequency distribution of relation R is denoted

by

P (R) =
f(R)

||R|| (3.3.1)

where f(R) is the frequency distribution for the attributes in R and ||R|| denotes the

total number of tuples in relation R. Equation (3.3.1) allows us to treat frequency

distributions as if they are probabilities. The frequency distribution f(R) is a

shorthand for

f(R=a) = f(A1=a1, . . . , Ak=ak)

= no. of 〈a1, a2, . . . , ak〉

tuples in relation R

where ai is the value for attribute Ai. Geometrically, the tuple or vector a is a point

in the k-dimensional domain space of R (i.e., D(R)). Let X = {A1, A2, . . . , Aj : j ≤
k} ⊂ R. The frequency distribution for subset X can be obtained via marginaliza-
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tion,

f(X=x) = no. of 〈x0, x1, . . . , xj , . . .〉 tuples

in relation R

=
∑

b∈D(R−X)

f(R=〈x,b〉). (3.3.2)

Let r be a set of real intervals constraining X. We adopt the shorthand of X∈r
to represent a range query on the attributes of X. For example, if X={Ai} and

r={[l, h]}, then X∈r denotes the range query l ≤ Ai ≤ h. Geometrically, the j

intervals in a query range r form a hyper-rectangle in the j-dimensional domain

space D(X). We denote the true selectivity of a query q by σ(q) and the estimated

selectivity by σ̂(q). For example, the notation σ̂(X∈r) denotes the estimated selec-

tivity of the range query X∈r. Using the geometric interpretation, the selectivity

of a range query X∈r on relation R can be computed as the sum of all the j-

dimensional points x ∈ D(X) that are enclosed by the hyper-rectangle defined by

r,

σ(X∈r) =
∑

x∈D(X)
x∈r

f(X = x). (3.3.3)

A query feedback is a tuple (X∈r, σ(X∈r)) consisting of a range query con-

straining the attributes in the set X to the ranges in r and the true selectivity (the

number of tuples that satisfy that query) corresponding to this query.

A histogram h is an approximation to a frequency distribution. In the following

description of SASH and in our experiments, we have use partition-based histograms

(and in particular MHIST [69]) in order to make comparisons with related work

more meaningful. However, SASH is a general framework and does not assume
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any specific histogram type. A partition-based histogram h is described by the

set of attributes attributes(h) and the set of buckets represented by the index set

B(h) = {1, 2, . . . , nbkts(h)}. Each bucket i ∈ B(h) is associated with a particular

partition box (i) of the domain space D(attributes(h)) and the frequency count of

tuples that occur in that partition freq(i).

3.4 SASH : Self-Adapting Set of Histograms

3.4.1 Overview

SASH is a general framework aimed at building, maintaining and tuning a set of

histograms that

1. covers all the attributes of interest,

2. optimizes some performance criteria,

3. fits in a given amount of memory, and

4. require only query feedback information for construction and maintenance.

SASH consists of two phases: the restructuring phase, and the on-line tuning phase.

A schematic of our approach is shown Figure 3.2.

The restructuring phase takes as input a batch of query feedback and performs a

search for the optimal set of histograms and the corresponding memory allocation for

each histogram. The restructuring phase is used to reorganize the set of histograms

either periodically or when performance degrades. The restructuring phase can also

be used to obtain an initial set of histograms when a batch of query feedback is

available1. The restructuring phase can be activated when sufficient query feedback

1If query feedback is not available, the set of histograms can be initialized to a set of single
attribute histograms constructed from the base relations.



3.4. SASH : SELF-ADAPTING SET OF HISTOGRAMS 75

.

.
Query Q

Query
Processing

QEP k

QEP 2

QEP 1

Query
Optimizer

Best
QEP

Engine
Execution

Query

Query

Log
Feedback

Query
Feedback

Set of

SASH

Query

Histograms

Selectivity

Result

On−line

Estimator

Restructure

.

Tuning

Figure 3.2: Schematic of SASH in relation to the query optimization and execution
process.

has been collected. It is not feasible to run the restructuring phase after each query,

because the restructuring phase involves the building of new histograms.

The on-line tuning phase tunes the frequencies of a set of histograms obtained

from restructuring phase using query feedback in an on-line manner without chang-

ing the structure of the histogram set and the memory allocation among histograms.

We describe the restructuring phase in Sections 3.4.2–3.4.7. The on-line tuning

phase will be described in Section 3.4.8.

3.4.2 The Restructuring Phase

The purpose of the restructuring phase is to find the best set of histograms with

respect to a given multidimensional query workload. To that end, the restructuring

phase takes a batch of recently seen query feedback (queries and their true selec-

tivities) and searches for a set of histograms that best approximates the batch of

queries.

Once the type of histograms (e.g., equi-depth, equi-width, MHIST, etc.) is cho-
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sen, a set of histograms is characterized by

1. the attribute sets on which the histograms are built,

2. the frequency or count stored in each bucket of each histogram, and

3. the amount of memory (or number of buckets) allocated to each histogram in

the set.

We describe how SASH configures these parameters automatically in the next few

sections.

There are two frequently used ways of choosing attribute sets: (a) each set

contains a single attribute (also called the attribute-value independence or AVI as-

sumption), and (b) each set contains all the attributes of interest from a single

relation (also known as the saturated model2). In the first case, one histogram is

built for each attribute of interest in the database, and in the latter, one multidi-

mensional histogram is built for each relation in the database. Under tight memory

constraints, both ways are error-prone and perform poorly for high-dimensional

data with complicated correlations [27, 31, 36, 68].

SASH’s restructuring phase models a set of histograms using a junction tree

graphical model with memory constraints. Given the query feedback information

of a workload, SASH searches for the best model that fits in the specified amount

of memory and that best approximates the given query workload.

We first introduce the junction tree graphical model before describing SASH’s

search algorithm for the best set of histograms.

2It is called the saturated model, because the histogram on this set of attributes captures all
possible statistical correlations among all the attributes in that relation.
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3.4.3 Graphical Models

Graphical models [45] are compact representations of high-dimensional joint data

distributions. A graphical model GM = (S, Θ) consists of a graph S = (V, E)

and a set of parameters Θ encoding the associated distributions. The graph S

encodes the statistical dependence relationships between attributes and is often

called the structure of the data. Each vertex represents an attribute and each edge

represents a statistical dependence between two attributes. Using the graph S and

the associated distributions Θ, we can reconstruct the joint distribution of all the

attributes losslessly. Examples of graphical models include Bayesian networks,

C

BA

P (A, B, C) = P (C|A, B)P (A)P (B)

Markov chains,

A B C

P (A, B, C) = P (C|B)P (B|A)P (A)

= P (A|B)P (B|C)P (C)

= P (A, B)P (B, C)/P (B)

Markov networks, and junction trees:

A

D

B

C
P (A, B, C, D) =

P (A, C)P (B, C)P (C, D)

P (C)P (C)
.

For the rest of this chapter, we will use the junction tree representation; however, the

techniques described in this chapter can be applied to other types of decomposable

graphical models.



3.4. SASH : SELF-ADAPTING SET OF HISTOGRAMS 78

D E

ABCD

BCDE

C

A B

ED

Not chordal

ABC

BCEACD

CDE

Junction treeChordal

P(ABCDE) = 
P(ABCD) * P(BCDE)

P(BCD)

P(ABCDE) = 1/Z

* P(CDE) * P(ACD)
* P(ABC) * P(BCE)

C

A B

Clique graph

Figure 3.3: An example of a non-chordal graph (top left) and a chordal graph
(bottom left) for five attributes {A, B, C, D, E}. The clique graph of the non-
chordal and chordal graphs are shown on the right. Each of the graphical models
on the left has five nodes corresponding to the five attributes. Each edge in the
graphical model represents a statistical dependency between two nodes. The non-
chordal graph differs from the chordal graph in the absence of the edge (B, D).

In the junction tree representation, the graph structure S is restricted to chordal

graphs. A chordal graph is an undirected graph where, for every simple cycle of more

than three vertices, there is some edge that is not involved in the cycle but joins

two vertices in the cycle (a chord). A clique graph CG(S) of any graph S is a graph

where where each node corresponds to a clique (maximal complete subgraph) in S

and each edge corresponds to a non-empty intersection between two cliques in S.

If S is chordal, its clique graph CG(S) is a tree [26]. A junction tree (or forest)

J(S) = (VJ , EJ) of a chordal graph S is the clique graph of chordal graph S. An

example of a chordal graph, a graph that is not chordal, and their corresponding

clique graphs is shown in Figure 3.3. Each node in a junction tree represents a set

of attributes in the chordal graph S. We will use the notation Cu to denote the set

of attributes associated with a node u ∈ VJ . An edge (u, v) ∈ EJ exists iff Cu and

Cv has non-empty intersection. The set of parameters Θ associated with a junction

tree consists of a set of distributions {P (Cv) : v ∈ VJ}, one for each node in the
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Figure 3.4: An example of a graphical model for five attributes {A1, A2, . . . , A5}.
The junction tree has three cliques: C1 = {A1, A2, A3}, C2 = {A2, A3, A4}, and
C3 = {A3, A4, A5}. The weight of each edge in the junction tree is the number of
shared attributes between the end nodes of that edge.

junction tree. Each P (Cv) is called a clique distribution.

Given a junction tree model M = (J(S), Θ) for a set of attributes R = {A1, . . . , Ak},
the joint distribution can be computed as

P (R=a) =

∏
u∈VJ

P (Cu)∏
(u,v)∈EJ

P (Cu ∩ Cv)
. (3.4.4)

Each numerator term P (Cu) is obtained directly from the clique distributions in

the model parameter set Θ. Each denominator term P (Cu ∩Cv) is computed from

the clique distribution for Cu by marginalizing out the attributes in Cu − Cv using

Equation (3.3.2). Note that the attributes in the both the numerator terms P (Cu)

and the denominator terms P (Cu∩Cv) need to be instantiated with the values from

the attribute value vector a.

Example 3.3 Consider the chordal graph and junction tree model in Figure 3.4

for five attributes {A1, A2, . . . , A5}. Since the junction tree has three cliques, C1 =

{A1, A2, A3}, C2 = {A2, A3, A4}, and C3 = {A3, A4, A5}, only three probability

distributions, P (A1, A2, A3), P (A2, A3, A4), and P (A3, A4, A5), need to be stored.

The joint probability distribution can be recovered using,

P (A1, A2, . . . , A5) =
P (A1, A2, A3)P (A2, A3, A4)P (A3, A4, A5)

P (A2, A3)P (A3, A4)
.
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In the case where the clique distributions have a common normalizing constant,

for example, if all the attributes come from the same database relation, Equation

(3.4.4) can be rewritten in terms of frequency counts using Equation (3.3.1),

f(R) =

∏
u∈VJ

f(Cu)∏
(u,v)∈EJ

f(Cu ∩ Cv)
. (3.4.5)

We have described the junction tree model in the context of a single set of

attributes. Recall that a database consists of many sets of attributes called relations.

Since we do not consider joins, a junction tree/forest model of an entire database

is simply a collection of junction trees for each relation. The parameter set Θ for

this junction forest model is the collection of frequency distribution for each clique

in this forest.

3.4.4 Estimating Selectivity with a Set of Histograms.

Graphical models can be used to describe the joint distribution of a set of attributes

concisely. A set of histograms that approximates the joint data distribution in a

database can likewise be modeled using graphical models with memory constraints.

In particular, we extend the junction tree representation to describe a set of his-

tograms (the sets of attributes to build histograms on, the parameters stored in the

histograms and the memory distribution among the histograms).

Definition 1 A histogram set model (HSM) for a set of attributes of interest A =

{A1, A2, . . . , An} is a triple 〈J(S),H, B〉, where J(S) is a junction tree or forest

representation for the underlying chordal graph S, H is the set of clique histograms

for the vertices in J(S), B is a set of bucket allocations that specify the number of

buckets allocated to each histogram in H, and the attributes in all the cliques cover
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all the attributes of interest (i.e., ∪u∈VJ
Cu = A).

A histogram set model differs from a junction forest model (J(S), Θ) in that the

parameters Θ of the junction forest, i.e., the clique distributions, are stored as fre-

quency counts and the count distributions are stored approximately. In the context

of selectivity estimation in database systems, a very limited amount of memory is

typically allocated for storing the statistics (e.g. in the form of histograms) used

in selectivity estimation; therefore it is impractical to store the count distribution

for each clique Cu exactly. These count distributions are approximated by the his-

tograms in H using the memory constraints specified in B. We call the histograms

that approximate the clique distributions clique histograms.

Example 3.4 Consider a database containing only the Product(PID, Price, Sales)

relation (the same relation as in Figure 3.1). Suppose the database system has

allocated 3 buckets worth of memory for storing statistics and builds a one-bucket

equi-width histogram for attribute Price, and a two-bucket equi-width histogram for

attribute Sales. Note that PID is a primary key and therefore not an attribute of

interest. The histogram set model for the set of histograms in this database is,

S = ({Price, Sales}) , ∅),

J(S) = ({p, s : Cp={Price}, Cs={Sales}}, ∅) ,

H = {hp={〈[10.5, 30.25], 4〉}, hs={〈[120, 1070), 3〉, 〈[1070, 2020], 1〉}} ,

B = 〈1, 2〉,

where hp and hs represents the histogram for Price and Sales respectively, and the

memory distribution 〈1, 2〉 specifies that histograms hp and hs are allocated 1 and 2

buckets respectively. Each histogram is denoted as a set of buckets. Each bucket is
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denoted as a pair consisting of an interval and a count, so hp consists of one bucket

that covers the interval [10.5, 30.25] in the domain space of attribute Price and there

are 4 tuples contained in this interval.

Given a set of histograms described by the HSM 〈J(S)=(VJ , EJ),H, B〉 and a

range query q = X∈r on a relation R, we estimate the selectivity σ(q) as follows.

1. If the query attributes form a subset of some clique, X ⊆ Cu, u ∈ VJ , then

compute the selectivity estimate directly using the clique histogram corre-

sponding Cu. Note that we can always compute the selectivity of a query on

attribute set X using a multidimensional histogram for attribute set Cu using

marginalization (Equation (3.3.2)), if X ⊆ Cu.

2. Otherwise use the junction tree J(S) and the clique histogramsH to construct

a histogram for a joint distribution f(R′) that contains the required estimate.

Let V ′ = {v ∈ VJ : Cv ∩ X 6= ∅} be the set of cliques that contain some

of the query attributes and E′ = {(u, v) ∈ E : v, u ∈ V ′} be the set of

edges that have the nodes in V ′ as endpoints. Define R′ = ∪v∈V ′Cv to be

the union of all the cliques that contain some of the query attributes. Since

the HSM cover all attributes of interest, the set R′ contains all the query

attributes, X ⊆ R′ ⊆ R. The histogram for f(R′) is then constructed using

a specialization of Equation (3.4.4),

f(R′) =

∏
u∈V ′ f(Cu)∏

(u,v)∈E′ f(Cu ∩ Cv)
, (3.4.6)

Each numerator term f(Cu) and denominator term f(Cu∩Cv) can be approx-

imated from the clique histogram for attribute set Cu.
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3. Compute σ̂(q) directly using the histogram for f(R′).

For MHIST histograms [68], efficient algorithms for computing f(R′) from the junc-

tion tree model and the clique histograms exist and are described in [27]. For the

rest of the chapter we will assume the MHIST histogram type, even though other

histogram techniques can be used with minor modification.

Example 3.5 Consider a relation with five attributes of interest {A1, A2, . . . , A5}
and a HSM that specifies a junction tree model with cliques

{{A1, A2}, {A2, A3}, {A3, A4}, {A4, A5}},

and clique histograms {hi : attributes(hi)={Ai, Ai+1}}. Compute the selectivity of

range query q = A1∈r1, A3∈r3.

Since only the cliques {{A1, A2}, {A2, A3}} intersect the query attributes, we

construct a histogram h′ for

f(A1, A2, A3) =
f(A1, A2)f(A2, A3)

f(A2)
,

using h1 and h2. The selectivity σ(q) is then computed directly from the histogram

h′.

Note that conceptually, attribute A1 is statistically dependent on A3 via A2.

Therefore the required selectivity needs to be computed from f(A1, A2, A3) by sum-

ming out the unwanted attribute A2,

f(A1, A3) =
∑

a∈D(A2)

f(A1, A2=a, A3).
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3.4.5 Finding the Best Set of Histograms

Having defined a histogram set model (HSM), we now tackle the main problem in

the restructuring phase: how to find the best set of histograms given a batch of

query feedback. Since a set of histograms can be formally described by a HSM, we

will use a HSM to refer to a set of histograms.

Suppose the quality or goodness of a HSM can be evaluated using some scoring

criterion (Section 3.4.6 discusses different scoring criteria), the problem of finding

the best set of histograms for a database can be cast as a search for the HSM that

maximizes or minimizes the scoring criterion.

Since a HSM is parameterized by a graphical structure, a set of histograms, and

a vector of memory allocation, the search space is the cross product of all possible

graphical structures, all possible distribution of the fixed amount of memory to the

histograms, and all possible histogram configurations. In general, for n attributes,

there are O(2n2
) different (undirected) graphs, and for m buckets to be allocated

to k histograms, there are
(

m−1
k−1

)
different distribution patterns. The number of

possible configurations of a histogram is dependent on the histogram technique.

In the case of SASH, the graphical structure is constrained to chordal graphs (or

equivalently junction trees) and the histogram configurations are constrained once

the graphical structure and memory distribution are fixed (see Section 3.4.7). Even

with these constraints, it is not feasible to perform an exhaustive search. Therefore,

we use a greedy search strategy.

Our search algorithm is outlined in Algorithm 3.1. We initialize the current

model m to the simplest model (lines 1–3) and iteratively improve it. The simplest

model assumes attribute value independence and builds a one-bucket histogram for

each attribute (see Figure 3.5 for an example). At each iteration of the while-loop
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Algorithm 3.1 RestructuringPhase(Qfb, C)

Input: memory constraint C, histogram set model m = 〈J(S),H, B〉
1: J(S) ←AVI
2: H←one bucket histograms
3: B ←vector of one’s
4: c← bytesize(m)
5: while c < C do
6: for all mstruct ∈ S Candidates(m) do
7: score(mstruct, Qfb)
8: end for
9: m∗

struct←mstructwith best score
10: for all mbucket ∈ B Candidates(m) do
11: score(mbucket, Qfb)
12: end for
13: m∗

bucket←mbucketwith best score
14: m ←best scoring model between (m∗

bucket, m∗
struct)

15: c← bytesize(m)
16: end while

in line 5, the algorithm explores two options:

1. making the best local change in structure, i.e., the junction tree (for-loop of

line 6), or

2. adding one or more buckets to a histogram (for-loop of line 10), but keeping

the current structure (no changes to the current structure).

The notation S Candidates(m) refers to the set of candidate models obtained by

making a local structural change on model m and B Candidates(m) refers to the set

of candidate models obtained by adding one bucket to some histogram in model m.

The option that gives the best scoring model is taken (line 14) and the algorithm

proceeds to the next iteration. A local change in structure is defined to be the

addition of an edge to the underlying chordal graph S that does not violate the

chordal graph property. Computing the set of candidate junction trees that differ

from J(S) by one edge in the chordal graph S has been described in [26]. Making
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Figure 3.5: An example of the AVI graphical model for five attributes
{A1, A2, . . . , A5}. The mutual independence of the attributes is represented by
the lack of edges in the chordal graph (left). The junction tree (right) reduces to
singleton cliques: Ci = {Ai} for i = 1, . . . , 5.

a structural change always results in some old clique histograms being discarded

and one new clique histogram of higher dimension being created. The buckets of

the discarded histograms are assigned to the new histogram and in addition, the

algorithm also explores giving more buckets to the new histogram, because it has

higher dimensionality than the discarded ones.

At each iteration of the search (line 5), we add buckets to either existing clique

histograms or the new one. When the (memory) size of the model reaches the

desired threshold, the search algorithm terminates and outputs the best model that

it finds.

A Few Optimizations

Caching histograms to avoid recomputation. Histograms that are constructed

for scoring a candidate model in the current (while-loop) iteration should be kept

in a cache in order to avoid recomputation when they are needed again to score

candidate models in future iterations. For example, suppose the current iteration

considered the candidate model that includes the clique {A1, A2}. In order to score

this candidate model, a histogram for {A1, A2} is constructed from the query work-

load. Suppose this candidate model is not the best scoring option and the search

algorithm selected another option (e.g. adding one more bucket to the histogram
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for {A3}). At the next iteration, the algorithm will consider a candidate model

that includes the clique {A1, A2} again. If the histogram constructed for {A1, A2}
is kept in a cache instead of being discarded, the algorithm can retrieve it from the

cache instead of constructing it from scratch again.

Persistent histograms for precomputing histograms of different sizes. In

combination with caching a histogram associated with a particular clique, his-

tograms for the same clique but with different bucket/memory allocations should be

precomputed (and cached). For example, suppose the current iteration is consider-

ing adding one or two buckets to the histogram for attribute {A3} which currently

has four buckets. In order to score these two options, a five-bucket histogram for

{A3} and a six-bucket histogram for {A3} needs to be constructed. Again, these

candidate histograms may be needed in the next iteration and should be cached. A

persistent histogram data structure that can store the history of a clique histogram

as it grows in number of buckets would enable more efficient caching. In the case of

MHIST, a single binary space partition tree can be used to efficiently store multiple

versions of the MHIST for the same clique, but with different number of buckets.

Pruning edges. When generating S Candidates(m), the set of candidate (chordal

graph) models that differ from the current model by one edge, not all edges (that do

not violate the chordal graph property) need to be considered. We say that an edge

(A1, A2) between attributes A1 and A2 occurs in a query workload if there exists

at least one query that specifies range constraints on both attributes A1 and A2.

Some edges may not occur in the query workload at all and hence will never affect

the score. For example, if the attribute Price and Sales never occur together in

the same query in the query workload, then correlation statistics between the two
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attributes will never be needed for that query workload. Generalizing this idea, we

can find all the edges that occur in the query workload and rank them according to

how frequent they occur in the workload. Low frequency edges can be ignored for

greater efficiency.

Bounding the histogram dimensionality. Resources for constructing and stor-

ing high-dimensional histograms are limited in most commercial databases. More-

over, most user generated queries are not likely to involve a high number of at-

tributes. Hence, we can place a bound on the dimensionality of each clique his-

togram that are considered in the search algorithm: candidate graphical models

that contains a clique that has size greater than a given size (typically three) need

not be considered [27].

3.4.6 Scoring Criteria

In this section we describe some of the scoring functions we have used with the

search algorithm outlined in Algorithm 3.1. Previous work on selectivity estima-

tion using graphical models [27,36] evaluated the candidate models against the true

distribution, i.e., the database itself. Since only feedback information for a query

workload is available in our case, scoring functions that are based on the Kullback-

Liebler divergence [50] from the true distribution cannot be used. Candidate models

will have to be evaluated based on the information from the batch of query feed-

back. We describe two scoring techniques that require only information from query

feedback: standard error measures and the minimum length description criterion.



3.4. SASH : SELF-ADAPTING SET OF HISTOGRAMS 89

Standard Error Measures

A candidate model m′ can be evaluated based on its selectivity estimation per-

formance on the queries in the batch of query feedback. Selectivity estimation

performance can be measured using a variety of error measures [81]. Two examples

are the 2-norm of the absolute error,

scoreabs2n(m′,Qfb) =

[
1

N

∑
(q,σ)∈Qfb

|σ̂m′(q)− σ|2
] 1

2

,

where N is the number of query feedback tuples in the query feedback batch Qfb,

and the 1-norm of the relative error,

scorerel1n(m
′,Qfb) =

1

N

∑
(q,σ)∈Qfb

|σ̂m′(q)− σ|
max(1, σ)

.

Minimum Description Length (MDL)

Using the MDL principle [6], we can evaluate a candidate model m′ by the number

of bits required to encode the selectivity information in the batch of query feedback

using m′. Given this encoding, the true selectivities in the batch of query feedback

can be losslessly reconstructed. Since m′ provides estimates to the true selectivities,

we only need to encode the estimation errors and the model m′ itself. The decoder

can use the model m′ to estimate the selectivity of each query in the batch and

use the estimation errors to recover the true selectivity. Let e1, e2, . . . , eN be the

estimation errors of model m′ for the batch of query feedback Qfb (where N is the

number of query feedback tuples in Qfb), and let p(e) be the empirical probability
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distribution of the estimation errors,

p(e) =
no. of ei with value e

N
.

A reasonable encoding of the estimation errors is to encode the empirical distribu-

tion p(e) of the errors and encode each error ei using log 1/p(ei) bits. Hence, our

MDL score is

scoremdl(m
′,Qfb) = k × bytesize(m′)

+
∑
e∈E

[1 + log(|e|+ 1) + log(p(e)×N + 1)]

+

N∑
i=1

log
1

p(ei)
,

where E is the set of distinct error values (distinct ei’s). The quantity bytesize(m′)

denotes the amount of memory used to store the histogram set model m′ without

any compression. The MDL encoding of the model m′ therefore requires less space

and we approximate the encoding length by k × bytesize(m′), where k is some

constant. We set k to 1/4 in our experiments3. The distribution p(e) is encoded as

a sequence of 〈e, p(e)〉 pairs. Each error value e requires one bit to encode the sign

and roughly log(|e| + 1) bits to encode the magnitude, since |e| can be zero. Each

probability value p(e) requires roughly log(p(e)×N + 1) bits.

3.4.7 Learning Clique Histograms from Query Feedback

We have described our search algorithm for the best histogram set model. In this

section we address the problem of building a set of histograms from a batch of

3This value of k is obtained via experimentation.
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query feedback given a fixed structure, i.e., the sets of attributes on which to build

histograms are fixed. This problem differs from that addressed in [2,12] in that we

consider multi-attribute queries whose query attributes are not covered by a single

histogram, whereas [2, 12] assumes that the attributes of each query is covered

by exactly one multidimensional histogram. For example, [2, 12] do not address

how to build two one-dimensional histograms for attributes A1 and A2 given two

dimensional queries on attributes A1 and A2. We show how to build low-dimensional

histograms from high-dimensional queries using the delta rule [70].

A histogram h that approximates the frequency distribution of a set of attributes

attributes(h) consists of a set of buckets with index set B(h) = {1, 2, . . . , nbkts(h)}.
Each bucket i corresponds to a particular partition box (i) of the domain space for

attributes(h) and is associated with freq(i), the frequency count of tuples that

occur in that partition. The shorthand ci for freq(i) will be used in mathematical

formulas.

The selectivity of a range query q = X∈r, such that X ⊆ attributes(h), is given

by the sum of the counts of all the buckets that overlap with the range constraints,

σ̂(X∈r) =

nbkts(h)∑
i=1

αi × ci,

where {1, . . . , |B(h)|} is the set of bucket indices for histogram h, and each αi is

the fraction of overlap between the bucket i and the query range,

αi =
box (i) ∩ r

box (i)

If the query attributes X is a proper subset of attributes(h), the attributes that are

not in the query are marginalized out in the same way as computing a marginal
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Figure 3.6: An example of a two dimensional histogram.

probability distribution (Equation (3.3.2)).

Example 3.6 Consider the one-dimensional query, Q1 = X1∈[0, 1.5], the two-

dimen-sional query, Q2 = X1∈[2, 4], X2∈[2, 3.5], and the two-dimensional histogram

for the attributes {X1, X2} in Figure 3.6. The shaded regions in the figure denote

the query regions for Q1 and Q2.

We compute the selectivity of the query Q1 as,

σ̂(X1∈[0, 1.5]) = c1 +
1

2
c2 +

1

2
c7 +

1

4
c6 +

1

6
c5.

The selectivity of Q2 is computed as,

σ̂(X1∈[2, 4], X2∈[2, 3.5]) = c8 +
1

2
c4 +

1

2
c3.

If the set of query attributes is not a subset of any histogram attributes, the query

selectivity needs to be computed using the graphical model. In our case, a junction

tree model J(S) = (VJ , EJ) is used. Let V ′ = {v ∈ VJ : v ∩X 6= ∅} be the set of

cliques that contain some of the query attributes and E ′ = {(u, v) ∈ E : v, u ∈ V ′}
be the set of edges that have the nodes in V ′ as endpoints. The selectivity of the
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range query X∈r can be computed as,

σ̂(X ∈ r) =

∏
u∈V ′ σ̂(Cu)∏

(u,v)∈E′ σ̂(Cu ∩ Cv)
. (3.4.7)

Each numerator term σ̂(Cu) is computed from the clique histogram for attribute set

Cu at the values specified in r, and each denominator term σ̂(Cu ∩Cv) is computed

from the clique histogram for Cu by marginalizing out the attributes in Cu − Cv

and setting the values of the attributes in Cu ∩ Cv with corresponding values in r.

Since each term is computed from a histogram, it is a sum of bucket frequencies.

The buckets that are included in the sums are those that overlap with the query

range r.

Suppose that the partitioning of the domain space by a clique histogram is fixed

and we want to update the frequency count cb of a particular bucket b of that

histogram in response to an estimation error in a query X∈r. Let σ be the true

selectivity of this query and σ̂ be the selectivity of this query estimated by the

model. The frequency for bucket b can appear at most once in the numerator and

possibly many times in the denominator (in the following formula l times); hence,

the estimated selectivity (Equation (3.4.7)) can be expressed in terms of cb as

σ̂ =
α0cb + k0∏l

i=1(αicb + ki)
× ρ (3.4.8)

=
p0∏l
i=1 pi

× ρ (3.4.9)

where ρ denotes the rest of the numerators and denominator terms that do not

involve the bucket b, each αj denotes the fraction of overlap of bucket b with the

query range, each kj denotes the rest of the bucket frequencies being summed, and

each pj is a shorthand for αjcb + kj . We use the delta rule [70] (gradient descent
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method) to update the frequency count cb of bucket b in response to an estimation

error σ̂−σ. The delta rule states that for an error function E(cb), the update to the

variable cb should be proportional to the negative gradient of E(cb) with respect to

cb. Using the delta rule to minimize the squared error,

E(cb) = (σ̂ − σ)2,

we update the bucket frequency cb in proportion to

∂E(cb)

∂cb
= 2(σ̂ − σ)

∂σ̂

∂cb
(3.4.10)

where

∂σ̂

∂cb
=

α0σ̂

p0
−

l∑
i=1

αiσ̂

pi
. (3.4.11)

Hence, given a query feedback with true selectivity σ and estimated selectivity

σ̂, we can update each bucket b that is involved in the selectivity estimation com-

putation. For each bucket b, we compute l, the number of times the frequency of b

is used in the denominator, and we update the frequency of b using

c
(n+1)
b = c

(n)
b − γ

∂E(cb)

∂cb

= c
(n)
b − 2γ(σ̂ − σ)

[
α0σ̂

p0
−

l∑
i=1

αiσ̂

pi

]
,

(3.4.12)

where γ is a tunable parameter called the learning rate, each p0 corresponds to a

σ̂(C) term (in Equation (3.4.7)) that uses bucket b and each pj, j > 0 corresponds

to a σ̂(Cu ∩ Cv) term that uses bucket b in (3.4.7). For a batch of query feedback,

we iterate through the batch a fixed number of times, applying the update rule in

(3.4.12) (see Algorithm 3.2).
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Algorithm 3.2 LearnBucketFreq(B, Qfb)

Input: set of buckets B, set of query feedback Qfb, number of update iterations
niter

1: for all i = 1 . . .niter do
2: for all q ∈ Qfb do
3: for all b ∈ B do
4: update freq(b) using Equation (3.4.12)
5: end for
6: end for
7: end for

The update rule in (3.4.12) learns the bucket frequencies of a clique histogram

assuming that the set of buckets (i.e., the partition) is fixed. To find a suitable

partition, we search in a restricted set of partition schemes for the partition that

minimizes the squared error (with respect to a batch of query feedback). In the

case of MHIST, we always split a bucket into two equal halves. The region covered

by a bucket is d-dimensional, and hence there are d possible splits. The algorithm

for learning a MHIST histogram (both partitioning and bucket frequencies) from a

batch of query feedback is outlined in Algorithm 3.3. Basically, in each iteration of

Algorithm 3.3 LearnMHIST(h, nB , Qfb)

Input: a one bucket clique histogram h, the target number of buckets nB, set of
query feedback Qfb

1: while nbkts(h) < nB do
2: for all bucket b ∈ h do
3: for all dimension d do
4: (b′, b′′)← split b at the mid point along d
5: LearnBucketFreq({b′, b′′},Qfb)
6: score(b, d) ←score this split
7: end for
8: end for
9: end while

10: (b∗, d∗)← arg max(b,d) score(b, d)
11: apply the split (b∗, d∗) on h
12: nbkts(h) ←nbkts(h) + 1
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the while-loop (line 1), we score each candidate split (line 4-6) and choose the best

candidate split to apply on the histogram. A candidate split is completely specified

by the bucket to split and the dimension to split. Line 4 does not actually perform

the split in the histogram, but simulates a split by returning the two buckets that

would have resulted from the split.

3.4.8 The Online Tuning Phase

Once the restructuring phase has established a set of histograms that is locally

optimal based on the previous batch of query workload, the on-line phase continually

tunes the bucket frequencies of this set of histograms to ensure adaptivity to changes

in the current query workload.

The on-line update algorithm is based on the update rule given in (3.4.12) and

is outlined in Algorithm 3.4. Given a query feedback 〈q, σ(q)〉, we update all the

histograms that are involved in the computation of the selectivity estimate σ̂(q).

The complexity of the on-line update algorithm is bounded by the size of the set

Algorithm 3.4 OnlineUpdate(〈J(S),H, B〉, 〈q, σ(q)〉)
Input: Query feedback 〈q, σ(q)〉, current histogram set model 〈J(S),H, B〉
1: for all h ∈ H involved in q do
2: for all bucket b ∈ h involved in q do
3: update freq(b) using Equation 3.4.12
4: end for
5: end for

of histograms, which reside in a small constant amount of memory space. The

overhead of the on-line update is therefore not a significant cost compared to the

potential improvement in estimation accuracy.
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3.5 Experimental Evaluation

In this section, we describe our experiments and present experimental results. We

present results for a real data set from the US census.

Real Data. We use data from the Current Population Survey (CPS) of the US

Census Bureau (www.census.gov) as in [26]. This data set consists of the following

attributes from the Person Data Files of the March (2001) Supplement: race, na-

tive country of sample person, native country of mother, native country of father,

citizenship and age. There are 128821 tuples, of which 13824 are distinct.

Query Generation. Our query workload generator takes as input a pair of nor-

mal distribution parameters (µ, σ) for each attribute Ai, where µ is the most fre-

quently queried value of Ai and σ is the standard deviation that controls how skewed

the query workload is going to be. For our experiments, each µ is randomly cho-

sen. A query is generated by randomly picking the relation R to be queried, the

number of attributes d to be queried, and the d attributes from relation R. For

each of the d attributes, the low endpoint is picked randomly according to the nor-

mal distribution specified for the attribute. The high endpoint is picked using the

uniform distribution from between the low endpoint and the maximum value for

that attribute. The true selectivity of the query is evaluated using the actual data

distribution. For our experiments, we generated workloads of 5000 queries each

using the skew parameters from Table 3.1. All the queries have positive selectivity.

Comparisons. We compare the performance of five algorithms. DBHist is the

method proposed in [27] that we extended to optimize the bucket allocation over all

the clique histograms in the database. SASH-avi assumes attribute value indepen-
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dence and builds one MHIST histogram for each attribute. SASH-sat (‘saturated’)

builds one MHIST histogram for each relation. Both SASH-avi and SASH-sat

use our method to learn the MHIST and optimize the bucket allocation using the

2-norm absolute error score except that they assume a fixed structure S. In the

case of SASH-avi, each clique contains one attribute, and in the case of SASH-

sat, each clique contains all the attributes in a relation. SASH-mdl uses our

search algorithm with the MDL scoring function. SASH-abs2 uses our search al-

gorithm with the 2-norm absolute error scoring criterion. In our implementation of

the restructuring phase of the SASH algorithms, we have used a grid histogram to

extract information from the query workload first. The LearnMHIST algorithm

(Figure 3.3) then uses the grid histograms to compute the bucket frequencies of the

split buckets.

Error Measures. We measure the performance of a set of histograms by their

estimation errors on a query workload. We use the 1-norm and 2-norm of the

absolute errors, where the p-norm absolute error is defined as,

||eabs||p =

(
1

N

N∑
i=1

|σ̂i − σi|p
)1/p

.

Absolute errors vary over different datasets. To make the results more meaningful

we normalize the {1,2}-norm absolute errors using the largest selectivity in the

query workload [81].

3.5.1 Restructuring Phase Performance

We evaluate how well the restructuring phase is able to learn the data distribution

from a batch of query feedback. For a given query workload, we run the restruc-
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Census Data Attribute domain size wkld 0 wkld 1 wkld 2 wkld 3
race 4 Uniform 0.5 0.25 0.125
native country of person 113 Uniform 10 5 2.5
mother’s native country 113 Uniform 10 5 2.5
father’s native country 113 Uniform 10 5 2.5
citizenship 5 Uniform 0.5 0.25 0.125
age 91 Uniform 9 4.5 2.25

Table 3.1: The skew parameters (standard deviation) used for generating the four
multidimensional query workloads for the restructuring phase.

turing phase and measure the estimation errors for that given workload when the

restructuring phase has completed.

Varying workload skew. We vary the skew levels (the standard deviation pa-

rameter in workload generation) of the workload to determine the performance of

the restructuring phase over workloads of different skew levels. Workload 0 has

query ranges drawn uniformly from the domain space. Workloads 1, 2, and 3 have

query ranges drawn using a Gaussian distribution with decreasing standard devia-

tion (hence increasing skew). Figure 3.7 shows the performance of SASH with 1500

bytes of memory over the four different workloads. SASH is consistently more ac-

curate than the off-line DBHist over the different workload skew levels. Moreover,

SASH-abs2 is always better than using the AVI assumption (SASH-avi).

Varying memory constraint. For workload 3, Figure 3.8 shows the performance

of SASH as the memory constraint is varied. SASH is consistently better than

DBHist regardless of memory constraints.
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(a) 1-norm (b) 2-norm

Figure 3.7: Normalized absolute error performance for four query workloads with
increasing workload skew. All methods are given 1500 bytes of memory. Workload
0 has queries drawn uniformly from the census data and workload 1, 2, and 3 have
queries that are increasingly skewed.

3.5.2 Online Tuning Phase Performance.

We evaluate the on-line tuning phase by the estimation errors of the set of his-

tograms over workloads that differ in varying degrees from the workload used in the

restructuring phase. The similarity of two workloads Q1 and Q2 are measured by

the volume of intersection of the minimum bounding (hyper-)rectangles (MBRs) of

the two workloads divided by the volume of the union of the two MBRs,

similarity(Q1, Q2) =
vol(MBR(Q1) ∩MBR(Q2))

vol(MBR(Q1) ∪MBR(Q2))
.

We can think of a multi-attribute range query as a hyper-rectangle in high dimen-

sional space. The MBR of a workload is therefore the smallest hyper-rectangle that

encloses all the query hyper-rectangles in the workload.

We run the on-line tuning phase using the histogram sets that were obtained
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Figure 3.8: Normalized absolute error performance on workload 3 for different
memory constraints. Note that the vertical ordering of labels in the legend is the
same as the vertical ordering of the curves for memory greater than 200 bytes. We
have truncated the DBHist curve and zoomed in on the SASH curves in the 2-norm
plot to show the relative performance of the SASH methods.
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by running the restructuring phase on workload 2 of our restructuring phase exper-

iments. All the histogram sets are roughly 2000 bytes in size. The learning rate

used is 0.0001. Three on-line workloads of 5000 queries each were generated with

the same skew parameters as the training workload. The similarity scores of the

on-line workloads with respect to the training workload are 66% for workload 1,

89% for workload 2, and 91% workload 3. We measure the 1-norm of the absolute

errors (average absolute errors) over the entire on-line workload as SASH performs

on-line tuning in response to the estimation error of each query in the on-line work-

load. Figure 3.9 shows the on-line performance of SASH for four time slices. Time

slice 0 gives the performance before any on-line tuning has been performed. Time

slices 2000, 4000, and 5000 give the performance after the on-line tuning phase

has seen 2000, 4000, and 5000 queries respectively. Note that since DBHist is

static, its on-line performance does not improve with time. SASH consistently out-

performs DBHist over the different on-line workloads. We have found that the

histogram sets obtained from SASH-mdl restructuring phase tend to perform bet-

ter than those from SASH-abs2 during on-line tuning. The on-line performance

of SASH-abs2 tends to fluctuate more (as evidenced in Figure 3.9) compared to

SASH-mdl. SASH-mdl seems to be better at capturing the correlations between

attributes. Once correlations are sufficiently captured in the multidimensional his-

tograms, on-line tuning is very effective in tuning the histograms to decrease the

overall estimation errors (see Figure 3.10).

3.6 Conclusion

In this chapter we have proposed SASH, a self-adaptive set of histograms, that

addresses the problem of which attribute sets to build histograms on, the problem
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Figure 3.9: Online performance of SASH for three on-line multidimensional query
workloads that differ in varying degrees from the workload used in the restructuring
phase.
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Figure 3.10: Online performance of SASH-mdl for the three on-line multidimen-
sional query workloads. Online tuning is very effective for decreasing the overall er-
rors, when correlations are adequately captured by the multidimensional histograms.

of allocating memory to a set of histograms, and the problem of tuning a set of

histograms to the query workload simultaneously.

SASH is a two-phase method for the on-line construction and maintenance of a

set of histograms for multidimensional queries. In the on-line tuning phase, SASH

uses the delta rule [70] to tune the current set of histograms in response to the

estimation error of each query. The estimation error is computed from the true

selectivity of a query obtained from the query execution engine, a query feedback.

In the restructuring phase, SASH searches for a new and more accurate set of his-

tograms to replace the current set of histograms. We have used graphical statistical

models to model a set of histograms with memory constraints and search for the

best model given a batch of query feedback. The best model found by SASH in-

cludes both the optimal set of histograms and the corresponding optimal memory

allocation for each histogram. In other words, SASH addresses both the problem of

finding the best attribute sets to build histograms on and the problem of finding the
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best memory distribution (of the given amount of memory) among the histograms.

In contrast to previous model search methods [27, 36], SASH does not require ac-

cess to the database relations to evaluate the candidate models (sets of histograms),

but evaluates each candidate using only query feedback information from a query

workload. The restructuring phase can be activated periodically or as needed when

performance degrades. In summary, our contributions are:

• We develop a new method to build and maintain an optimal set of histograms

using only query feedback information from a query workload, without access-

ing the base data. Because our method is dependent only on query feedback,

it is able to adapt to workload and data distribution changes.

• We propose a unified framework that addresses the problem of which attribute

sets to build histograms on, the problem of allocating memory to a set of his-

tograms, and the problem of tuning a set of histograms to the query workload.

• For a multidimensional query involving attributes spanning several histograms,

we show how to perform on-line updates of the relevant histograms in a prin-

cipled manner using the delta rule [70].



Chapter 4

XPathLearner for Selectivity
Estimation of XPath Queries.

4.1 Introduction

The extensible mark-up language (XML) [8] is becoming ubiquitous as a data ex-

change and storage format especially on the World Wide Web. Almost all com-

mercial RDBMSs include some support for XML data; other systems such as

Xyleme [86], Niagara [63] and Lore [37] are specially designed to store and query

XML data on the web. Similar to relational data, queries over XML data require

accurate selectivity estimation in order to optimize query execution plans. In this

chapter, we study a particular selectivity estimation problem for XML database

systems : How to estimate the selectivity of XML path expressions using statistics

collected from query feedback.

4.1.1 Query Optimization in XML Databases

XML data are conceptually trees where each internal node is labeled with a tag name

and leaf nodes are associated with data values. Nodes in an XML tree are often

located using paths. A path is a sequence of tag names that specify a navigational

trajectory to a set of nodes in the XML tree. A rooted path is one that begins at

106
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the root node of the XML tree. Paths are described using the XPath [22] language.

Using XPath, tags in a path are delimited using the symbol ‘/’ and the special

delimitor ‘//’ denotes a wildcard that can match any subpaths. The relationship

between a data value at a leaf node and the tag of the parent of the leaf node is

often denoted using the symbol ‘=’ in path expressions. In addition to the linear

path expressions we have described, XPath can also be used to describe branching

path expressions (also known as twigs).

year

author
title

book book

DBLP

article
title

author

year

title

author

author

year

publisher

publisher

Springer

1999

Tim

Art Cooking

Jim

Tim

1998

Morgan Kaufmann

2000

John

DBMS

(1)

(1)

(1)

(2) (3)

(1)

(4)

(3)

(5)

(4)

(3)

(2)

(2)

(3)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(2)

Figure 4.1: An example XML data tree. Node identifiers (unique among siblings)
are in parenthesis, tag names are in bold and data values are in italics.

Example 4.7 (XML tree and paths.) Consider the XML tree in Figure 4.1.

For our example XML tree, we adopt the Dewey scheme [76] for assigning identi-

fiers to each node: the dewey identifier (ID) of a node consists of the identifiers of

all its ancestors. Each node has an unique dewey identifier and is labeled with a tag

or associated with a data value. Node (1.1.1) is an internal node labeled with tag

publisher and node (1.1.1.1) is a leaf node associated with data value Springer.

The path expression /DBLP/book/author is a rooted path that resolves to the node

set {(1.1.3), (1.2.3), (1.2.4)}, while the path expression //author is not a rooted

path and resolves to the node set {(1.1.3), (1.2.3), (1.2.4), (1.3.2)}. The path expres-

sion //author=Tim resolves to the leaf nodes {(1.1.3.1), (1.2.3.1)}. The branching
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path expression /DBLP/book[author=Jim]/title resolves to {(1.2.5)} and speci-

fies a node reachable via /DBLP/book/title whose parent node with tag book has

a branch matching the path expression author=Jim.

XML databases store XML data using tree-like data structures (e.g., Lore [37]).

Queries are expressed using an XML query language such as XQuery [13] and are

usually composed of constraints on path expressions specified by XPath. For effi-

cient processing, complex path expressions in XML queries are often preprocessed

into a set of candidate 〈path, pred〉 query pairs, where path is a linear rooted path

and pred is a string predicate on the leaf value reachable via path. Consequently, an

XML query (such as XQuery) can be mapped to several retrieval operations using

〈path, pred〉 query pairs [44,76,87,89]. These retrieval operations using 〈path, pred〉
query pairs form the set of basic query processing operators. Accurate estimation

of the selectivity of such 〈path, pred〉 query pairs is therefore crucial for choosing

an optimal execution plan in cost-based query optimization [61]. In this chapter,

we will deal only with 〈path, pred〉 query pairs containing the exact match string

predicate and we will use the shorthand, path=string to denote the query pair.

Chapter 5 presents a method that will handle substring predicates as well.

Example 4.8 (XML query processing.) Consider the XML tree in Figure 4.1.

Suppose we want to find the titles of all books published by Morgan Kaufmann in the

year 1998. (The answer is the book title “Cooking”.) Our query can be expressed in

the XQuery language [13] as:

FOR $b IN document("*")//book

WHERE $b/publisher = "Morgan Kaufmann"

AND $b/year = "1998"

RETURN $b/title
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The XQuery function document("*") indicates that all XML documents in the

repository should be searched for the path expression //book. The XQuery spec-

ifies a particular set of nodes (represented by variable $b) be found and the data

value associated with the leaf node descending from each child labeled with title be

returned. Each node in the required set satisfies the following constraints:

1. it is reachable by the path expression //book

2. it has a child labeled publisher with leaf node having value Morgan Kaufmann.

3. it has a child labeled year with leaf node having value 1998.

We sketch two possible query execution plans (QEPs) for this query:

& filter
traverse

QEP 1

result

XML Tree

index
/DBLP/book/year

=1998

index
/DBLP/book/publisher
=Morgan Kaufmann

Path Index Path Index

title
retrieve

join
dewey IDs dewey IDs

dewey IDs

result

QEP 2

In both QEPs the path expressions have been resolved to rooted paths in a preproces-

sor. QEP 1 traverses to all nodes reachable by the rooted path /DBLP/book in the

XML tree and checks for the other constraints. QEP 2 assumes a path index that

returns a set of Dewey IDs of nodes reachable via a given 〈path, pred〉 query pair.

To evaluate the cost of these QEPs, estimates for the cardinality of the node sets

reachable by linear path expressions such as,

• /DBLP/book,

• /DBLP/book/publisher=Morgan Kaufmann, and



4.1. INTRODUCTION 110

• /DBLP/book/year=1998

will be required.

4.1.2 Selectivity Estimation in XML Databases

As in relational databases, cost-based query optimization in XML also requires

cost evaluation of QEPs and cost evaluation of QEPs in XML databases require

estimating the selectivity of path expressions. This chapter deals with the selectivity

estimation of three commonly used types of path expressions in XML queries.

1. Simple path expressions are linear path expressions consisting of tags only

(e.g., //book/title).

2. Single-value path expressions are Linear path expressions ending in a data

value (e.g., //book/year="1998").

3. multi-value path expressions are (semi-)linear path expressions with multiple

tag-value bindings (e.g., //chapter="2"/section="3").

Selectivity estimates of path expressions are usually computed using statistics

about the structure of the XML data. The main challenges in collecting and storing

these statistics are:

• How to obtain the structure of the XML data? All previous work scans the

entire XML repository in an off-line manner [1,61]. However, off-line scans are

often not possible or feasible in Internet-scale applications since Internet-scale

repositories are either inaccessible or too large to be scanned entirely.

• How to capture the statistics for the selectivities of different types of XML

path expressions using a small amount of memory? State-of-the-art tech-

niques proposed in [1, 17] are unsatisfactory either because they are limited
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to the selectivity of simple path expressions only [1] or they are not space

efficient [17].

• How to use the limited storage space in the most effective way? Ideally, more

storage resource should be spent on storing the statistics that are relevant to

the most frequently queried portions of the XML repository. All previous work

are oblivious to workload distribution and consequently waste precious storage

space in storing statistics of infrequently queried portions of the repository.

• How to incrementally update the statistics when the underlying XML data

change? The XML repositories in Internet scale applications are constantly

changing. To ensure accurate XML path selectivity estimation, the statistics

must keep up with the change. However, the off-line periodic scan used by

previous work to obtain new statistics is neither effective not efficient because

of the scanning cost associated with the size of the repositories.

We propose XPathLearner to address these challenges. XPathLearner is a novel

on-line learning method for estimating the selectivity of XML path expressions. Our

XPathLearner assumes a Markov model [1, 61] of path selectivities and learns this

model from query feedback using error reduction strategies. Two such strategies

are presented: the heavy-tail rule and the delta rule. XPathLearner overcomes the

limitations of previous work and has the following properties:

• Instead of scanning the XML data, XPathLearner collects the required statis-

tics in an on-line manner from query feedback information (see Figure 4.2).

• XPathLearner learns both tag distribution and value distribution from query

feedback. It is designed to estimate the selectivity of all three types of common

path expressions. It can also estimate the selectivity of a path expression
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Figure 4.2: Schematic of XPathLearner. The top path is for query processing and
feedback loop is for workload-driven selectivity estimation processing.

containing a simple wildcard.

• XPathLearner is workload-aware in collecting the required statistics. The

allocated storage space is used in the most effective way since more statistics

are collected for more frequently queried portions of the XML data.

• XPathLearner automatically adapts to changing XML data, because the statis-

tics are refined on-line according to the most current query feedback. XPath-

Learner incurs a small overhead in updating the statistics using query feed-

back, but this cost is offset by an increase in estimation accuracy.

Since query feedback provides only partial information about the path selectivity

distribution, we would expect that an on-line method using query feedback to be

less accurate than an off-line method. In our experiments we show that not only

does XPathLearner come close in accuracy to the off-line method in general, but

sometimes surpasses the off-line method because of its workload-driven nature.
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The rest of the chapter is organized as follows. In the next section, we review

related work. Section 4.3 introduces the terms used in our description of the on-line

XML path selectivity estimation problem. Section 4.4 presents the XPathLearner:

the Markov chain model for path expressions, the Markov histogram for storing the

model parameters, two approaches for dealing with single-value path counts, and

two learning strategies. We present our experimental evaluation in Section 4.5 and

draw conclusions in Section 4.6.

4.2 Related Work

To estimate the selectivities of XML path expressions, the Lore system stores statis-

tics of all distinct paths up to length m, where m is a tunable parameter [61]. Se-

lectivity of paths longer than m are estimated assuming the Markov property (see

Equation (4.4.5) of Section 4.4.1). The paths stored include both tags and data

values and no further summarization is performed. The space requirement of the

statistics used in the Lore system is therefore prohibitively large, because the num-

ber of possible data values in a big XML repository can be extremely large and

the number of distinct paths with data values can therefore be even larger. Our

XPathLearner presents two different approaches to address this problem: storing

the counts of paths with data values in a compressed histogram [73], or, alterna-

tively, evicting stored entries based on certain criteria (similar to a cache).

Aboulnaga et al. extended the idea used by the Lore system in their Markov table

method [1]. The Markov table method consists of a set of pruning and aggregation

techniques on the statistics used in the Lore system. One limitation of the Markov

table method is that paths with data values are not considered (i.e., it can only

estimate the selectivity of simple path expressions). This limitation is serious,
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because the selectivities of paths with data values are crucial in optimizing XML

queries that have large top-down search space and highly selective data values.

For such queries, a bottom-up search plan is more cost-effective than a top-down

search [61]. For the XML data in Figure 4.1, the query “find the titles of all books

authored by Jim” is an example. The path expression //author="Jim" is more

selective than //book. Our method aims to overcome this limitation by storing

statistics for paths with data values while keeping the space requirement low.

Aboulnaga et al. also proposed a tree-based method known as the path tree

method [1] for estimating the selectivity of XML paths without data values. A path

tree is a summarized form of the XML data tree where sibling nodes of the same tag

are aggregated. Tree pruning and aggregation techniques are proposed to reduce

the space requirement of path trees. Their experiments, however, have shown that

the path tree method is inferior to the Markov table method for real data sets.

Chen et al. proposed another off-line tree-based method for estimating XML

subtree selectivity [17]. A suffix tree based data structure is used to store the

statistics of the XML data obtained from scanning the repository. Pruning and

aggregation techniques are proposed to compress this data structure. However, the

space requirement of their summarized data structure is especially large for XML

data with long data values. Subtree selectivity estimation involves estimating the

selectivity of a query that matches a subtree in the XML data tree as opposed to

matching a single path. The problem of subtree selectivity estimation is signifi-

cantly more general than the path selectivity problem that our method addresses,

but even if the technique in [17] is modified for path expressions containing tags

only, Aboulnaga et al. have shown that their Markov table method is superior in

accuracy [1].
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Polyzotis et al. have recently proposed XSketch a more general model based

framework [66, 67], however, the construction of an XSketch model requires a

greedy heuristic search that evaluates a candidate model against the XML data (or

a summarized form of it). XPathLearner is much more lightweight, and builds and

adapts itself using only query feedback information.

The XML path selectivity estimation methods proposed in [1, 17, 61, 66, 67] all

require information from scanning the repository. These off-line methods share

several limitations. The requirement of an off-line scan limits the use of these

methods on large (especially Internet-scale) repositories. They are not tuned to

the workload distribution: the workload may only query a small portion of the

XML data and hence a small portion of the statistics stored in the allocated space.

The repository needs to be rescanned whenever the data in the repository change

sufficiently. Our XPathLearner overcomes these limitations by learning the statistics

from query feedback in an on-line manner. Keeping statistics gathered from query

feedback ensures that the allocated space is used to store statistics that are up-to-

date and relevant to the query workload.

Selectivity estimation using statistics gathered from query has been proposed

in [2, 12] for relational data. Tree-structured data such as XML present new chal-

lenges. Whereas the self-tuning histograms of [2,12] capture continuous distribution

over numeric attributes, a corresponding self-tuning XML path selectivity estimator

needs to capture a discrete distribution over a set of non-numeric path labels. In

the continuous case, self-tuning histograms (such as [2, 12]) can start with a uni-

form distribution over a large interval and refine this distribution by creating finer

partitions of this interval. In contrast, a self-tuning XML path selectivity estimator

does not have an interval to start with and needs to learn each and every path label
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Figure 4.3: An XML document and its corresponding tree representation.

in the data. Even if a Markov model is imposed on the tree data to simplify the

distribution entailed by the tree data, it has been shown that learning a Markov

model can be hard [47].

In the off-line XML path selectivity estimation domain, Aboulnaga et al. [1] and

McHugh et al. [61] use estimation techniques based on the Markov model. An order

m − 1 Markov model assumes that the selectivities of all the paths whose lengths

are less than or equal to m capture all the required statistics. The experiments

in [1] show that, in practice, first and second order Markov models are sufficient to

capture the path selectivity statistics with little loss in information. Our method

assumes the Markov model, but differs from previous work in that our method (1)

gathers statistics in an on-line manner without scanning the repository, (2) handles

the three types of common query path expressions, and (3) is workload-aware.

4.3 Preliminaries

In this section, we introduce basic terms and notation used in describing the XML

path selectivity problem. In particular we introduce the different types of path

expressions and define their corresponding selectivities.

An XML document is structurally a tree (we ignore IDREFs) where each node

is associated with a tag or a value. In practice, values are almost always associated
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Figure 4.4: The XML data tree (right) is constructed from a repository of three
XML documents (left). Alphabets in upper case denote tag names, ‘v’ followed
by a number denotes a data value. The selectivity of the simple path expression
//B/C/D is 3, the selectivity of the single-value path expression //B/C/D=v3 is 2,
the selectivity of the multi-value path expression //B/C=v4/D=v3 is 1, and the
selectivity of //A/*/D is the sum of the selectivities of //A/B/D and //A/C/D,
which yields 4.

with leaf nodes. An XML data tree is a huge tree constructed either by merging the

roots of all the XML documents if the tag associated with the root of each document

is the same or by introducing a super root as the parent of the root node of each

XML document. An XML data tree represents a repository of XML documents (see

Figure 4.4).

A simple path expression p of length n is a sequence of tags 〈t1, t2, . . . , tn〉, ti ∈ Σ,

where Σ is the set of all possible tag names. The tag sequence in a path expression

encodes a navigational path through the XML data tree where each pair in the

sequence (ti, ti+1) correspond to a (directed) edge with the tags (ti, ti+1) in the

XML data tree. Using XPath notation, such a navigational sequence can also be

written as //t1/t2/ . . . /tn (e.g., //book/title). We will use as shorthand, where

there is no confusion, the string t1t2 . . . tn to represent //t1/t2/ . . . /tn.

A multi-value path expression is a simple path expression where values are as-

sociated with one or more tags in the path expression1. A special case of a multi-

value path expression is a single-value path expression where only the last tag in

the path is associated with a value. The length of a single-value path expression

1A multi-value path expression is a special case of a twig [17].
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//t1/t2/ . . . /tn=vn is n + 1.

Consider the XML data tree shown in Figure 4.4. The path //B/C/D is a simple

path expression; the path //B/C=v4/D=v3 is a multi-value path expression, and the

path //B/C/D=v3 is a single-value path expression.

We denote the selectivity of a (simple, multi-value or single-value) path expres-

sion p as σ(p). The selectivity of a simple path expression p is defined to be the

number of paths in the XML data tree that match the tag sequence in p. The selec-

tivity of a single-value path expression is similar to that of simple path expressions

except that the navigational path ends in a value instead of a tag in the XML data

tree. The selectivity of a multi-value path expression p is defined to be the number

of subtrees that matches the tag and value sequence in p.

The path expressions that we consider in this chapter are allowed to contain one

wildcard and we restrict each wildcard (‘*’) to match a single tag. Moreover we do

not consider path expressions beginning or ending with a wildcard2. The selectivity

of a path expression p with a single wildcard is the sum of the selectivities of

all the (non-wildcard) path expressions that are possible matches to p. Example

selectivities are given in Figure 4.4.

A query feedback is a tuple (p, σ(p)) consisting of a path expression and its

corresponding true selectivity. Our definition of query feedback assumes minimal

information about the query execution engine. It is possible to obtain more feedback

information from the query execution engine. The amount of information we can

obtain depends upon the underlying data storage model and the query plan used

by the execution engine. For example, using the Lore model and a top-down plan,

the query execution engine can provide as feedback the selectivities of all prefixes

2We are investigating the extensions for more complicated wildcards in ongoing work.
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of the given path. Since XML storage and retrieval technology is still evolving, we

assume minimal feedback information in this dissertation.

4.4 XPathLearner

We propose XPathLearner, an on-line method for estimating the selectivity of a

given path expression (simple, single-value, multi-value), using statistics that are

obtained from query feedback only and reside in a given amount of space (memory).

XPathLearner models the selectivity of path expressions as an order (m − 1)

Markov chain or network. The Markov model has been used by [1, 61] to model

the selectivities of all possible paths in the XML data tree. XPathLearner differs

from [1, 61] in that only the selectivities of paths that occur in the query workload

are modeled. Moreover, in contrast to previous work, XPathLearner learns the

parameters associated with the Markov model in an on-line manner using query

feedback information only. XPathLearner stores these parameters using a Markov

histogram and updates the Markov histogram using query feedback.

In this section we describe in detail the Markov model for path expressions,

the associated Markov histogram, two approaches to dealing with single-value path

counts, the on-line update algorithm, and two update strategies.

4.4.1 Modeling Path Expression Selectivity

A simple path expression query of length n can be modeled as a sequence of random

variables 〈X1X2 . . .Xn〉 (in XPath notation //X1/X2/ . . . /Xn), where each Xi is

instantiated with some tag name from Σ the set of all possible tags. The selectivity
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of an instance of a simple path expression t1t2 . . . tn can be computed from

σ(t1t2 . . . tn) = P (X1X2 . . .Xn)×N, (4.4.1)

where N is the total number of nodes in the XML data tree and P (X1X2 . . .Xn) is

a shorthand for P (〈X1X2 . . .Xn〉 = 〈t1t2 . . . tn〉), the probability that each Xi = ti

for i = 1, 2, . . . , n. An order (m − 1) Markov model for the sequence of random

variables X1X2 . . .Xn assumes that each random variable Xi is only dependent on

its m− 1 predecessors in the sequence,

P (X1X2 . . . Xn) ≈
∏n−m

j=1 P (XjXj+1 . . .Xj+m−1)∏n−m
i=2 P (XiXi+1 . . .Xi+m−2)

. (4.4.2)

Moreover, the Markov model makes the stationarity assumption,

P (〈XjXj+1 . . .Xj+m−1〉=〈tjtj+1 . . . tj+m−1〉)

= P (〈XiXi+1 . . .Xi+m−1〉=〈tjtj+1 . . . tj+m−1〉), (4.4.3)

for any integers i, j ≥ 1. Using the m − 1 order Markov model, it is sufficient

to store P (X1X2 . . .Xl), for l = 1, 2, . . .m, in order to approximate the selectivity

of any simple path expression. In practice, each P (〈X1X2 . . .Xl〉 = 〈t1t2 . . . tl〉) is

stored in a table of frequency counts f(t1t2 . . . tl), where

P (X1X2 . . .Xl) = f(t1t2 . . . tl)/N. (4.4.4)

Each f(t1t2 . . . tl) counts the number of occurrences of the path t1t2 . . . tl in the XML

data tree. Combining Equations (4.4.1), (4.4.2), (4.4.3) and (4.4.4), the selectivity
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of a simple path expression can be approximated by

σ̂(t1t2 . . . tn) =

∏n−m
j=1 f(tjtj+1 . . . tj+m−1)∏n−m
i=2 f(titi+1 . . . ti+m−2)

. (4.4.5)

In particular, when m = 2, the approximation formula becomes,

σ̂(t1t2 . . . tn) =
f(t1t2)f(t2t3) . . . f(tn−1tn)

f(t2)f(t3) . . . f(tn−1)
. (4.4.6)

Previous work [1,17,43] has shown that the Markov model works well for many real

XML data sets for m = 2 and m = 3.

The selectivity of single-value path expressions of the form p = //t1/t2/ . . . /tn=

vn can be approximated analogously by associating an additional random variable

Xn′ with the value vn and instantiating the Xn′ with the value vn,

σ̂(//t1/t2/ . . . /tn=vn) = σ̂(t1t2 . . . tn)
f(tn−m+2tn−m+3 . . . tnvn)

f(tn−m+2tn−m+3 . . . tn)
. (4.4.7)

Similarly, for multi-value path expressions,

σ̂(//t1=v1/t2=v2/ . . . /tn=vn) = σ̂(t1t2 . . . tn)
n∏

j=1

f(tj−m+2tj−m+3 . . . tjvj)

f(tj−m+2tj−m+3 . . . tj)
. (4.4.8)

4.4.2 Markov Histograms

An order (m − 1) Markov model requires storing the counts of all length-l simple

or single-value paths, i.e., all f(t1t2 . . . tl) and f(t1t2 . . . tl−1vl−1), for l = 1, 2, . . .m,

in order to approximate the selectivity of any path expression. In the off-line case,

storing just the counts of the length-m paths are sufficient, because the count of a

length-l path, where l < m, can be computed from the counts of all length-(l + 1)
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Figure 4.5: The first order Markov histogram corresponding the XML data tree
in Figure 4.4.

paths,

f(t1t2 . . . tl) =
∑
τ∈Σ

f(τt1t2 . . . tl) (4.4.9)

by assuming that the XML data is a tree and that the counts of all the length-(l+1)

paths are known. In the on-line case, not all the length-(l + 1) path counts have

been learnt at a given time and for those that have been learnt, the corresponding

counts may not have converged to the true counts. Hence, the counts of paths with

length l < m, have to be stored for on-line selectivity estimation using a Markov

model.

An order (m−1) Markov histogram is a table storing a set of distinct paths, with

length l < m, along with their associated occurrence counts or selectivities. For sim-

plicity of presentation we consider m = 2 for the rest of this chapter. An example of

a first order Markov histogram is shown in Figure 4.5. Markov histograms approx-

imate the selectivity of simple, single-value, and multi-value path expressions using

the formulas in Equations (4.4.5), (4.4.7), and (4.4.8) respectively. When the count

of a length-(l) path (l < m) is needed and is not stored in the Markov histogram,

a default count of 1 is used.

Storing the counts of single-value path (of length l < m) efficiently presents a

unique challenge, because the number of distinct data values is typically very large

compared to the number of distinct tags in an XML data tree. For example, the
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DBLP data set contains 91,878 unique values and only 29 unique tag names. For

m = 2, this translates to 841 possible tag-tag pairs and 2,664,462 possible tag-value

pairs. Given a small amount of memory, it is not possible to store the counts of

all length (l < m) paths exactly. Two approaches are possible. First, store the all

simple path counts exactly and use a form of compressed histogram [73] to store the

counts of single value paths. The second approach is not to differentiate between the

Markov histogram entries for simple and single-value path expressions, but to delete

entries based on some criteria when the Markov histogram runs short of memory

(much like in a cache).

4.4.3 Compressed Histogram Approach

The large number of XML data values prohibits storing the counts of single-value

path expressions with length (l < m) exactly. A similar problem is addressed

in [49]; however, we adopt a simpler approach. Motivated by the fact that most of

the probability mass (of counts) is concentrated in a very small number of single-

value paths in many real XML data sets, we use a compressed histogram approach

similar to [73].

1. Store the k single-value paths with the largest counts exactly. The parameter

k can be tuned. Each entry in the ‘top k’ data structure stores the tuple

〈single-value path, count〉.

2. Single-value paths with a count smaller than the minimum count among the

top k single-value paths are aggregated into buckets. A bucket is a tuple

〈simple path, feature, sum, num〉, where simple path is the tag-only prefix of

the single-value path, the field num is the number of single-value paths it

represents, the field sum is the sum of the counts of those single-value paths
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assigned to that bucket, and the field feature is the feature of the data value

corresponding to that bucket. A single-value path is assigned to a bucket

based on some feature of the data value in the single-value path.

For example, consider a first-order Markov histogram that uses a compressed his-

tograms to deal with the data values. Further assume that the data values are

case insensitive alphanumeric strings and that the first letter of the data value in

a single-value path is used as the bucket assignment feature. The compressed his-

togram for the single-value path counts will then consist of at most k tuples of the

form 〈single-value path, count〉 and at most 36 × |Σ| tuples (where Σ is the set of

tags) of the form 〈simple path, feature , sum, num〉. Ideally, the feature should be

chosen so that the counts in each bucket are as uniform as possible, that is, the

variance of the counts represented in a particular bucket should be minimized.

Retrieval. Accessing the count of a given single-value path requires searching

through the top k entries first. If the required single-value path is not found, the

feature of the given single-value path is used to locate the corresponding bucket and

the count is computed as sum/num.

Update. Given a single-value path and an updated count, the top k entries are

searched first and if a matching single-value path is found, its count is updated.

Otherwise, we check if the updated count of the given single-value path is larger

than the minimum count in the top k entries. If it is larger, the minimum entry in

the top k is displaced into the bucket corresponding to the displaced entry. If it is

smaller, the count of the given single-value path is added to the sum field of the

corresponding bucket, and the num field of the same bucket is incremented. Each

bucket therefore encodes the average selectivity of all the current instances of the
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single-value paths belonging to that bucket.

Compress. When memory is scarce, the tag-feature histogram can be further

compressed by aggregating buckets with similar selectivities.

4.4.4 Cache-based Approach

A different and even simpler approach to keeping the Markov histogram small is to

remove or evict entries based on some criteria. Each entry in a Markov histogram

stores a simple or single-value path p and its associated count f(p).

The first criterion is to evict entries with counts smaller than a threshold pa-

rameter. Recall that our Markov histogram assigns a default value of 1 to entries

that are not stored, so removing entries whose counts are close to 1 represents little

loss of information.

The second criterion is to evict entries that are seldom used (similar to the least

frequently used policy in caching). To keep track of the frequency of use, a counter

needs to be associated with each entry in the Markov histogram. To minimize

memory overhead, one-byte counters can be used. All the counters in the Markov

histogram will need to be reset after every 256 units of use. Each Markov histogram

entry will be of the form 〈single-value path, count , counter〉
In our experiments, whenever memory is short, the small count criterion is first

applied, followed by the least frequently used criterion, until sufficient memory has

been freed up.
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Figure 4.6: A first order Markov histogram using k = 1 and the first letter of the
data value as the bucketing feature. Further suppose that the data values {v1, v2,
v3, v4} all begin with the letter ‘a’ and {v5, v6, v7, v8} with the letter ‘b’.

4.4.5 An Example

We illustrate how selectivity estimation can be done using our Markov histogram

with the compressed histogram approach. Consider our earlier example in Fig-

ure 4.5. The corresponding representation using our Markov histogram with k = 1

is shown in Figure 4.6.

The selectivity of the simple path expression //B/C/D can be estimated by

σ̂(BCD) =
f(BC)

f(C)
× f(CD) =

4

7
× 6 = 3.43,

which has an absolute error of 0.43. The selectivity of the single-value path expres-
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sion //B/C/D=v3 can be estimated by

σ̂(BCD = v3) =
f(BC)

f(C)
× f(CD)

f(D)
× f(D = v3) = 1.47,

which has an absolute error of 0.53, since the real selectivity is 2. The selectivity of

the multi-value path expression //B/C=v4/D=v3 can be estimated by

σ̂(//B/C = v4/D = v3)

=
f(BC)

f(C)
× f(CD)

f(D)
× f(D = v3)× f(C = v4)∑

v f(C = v)
= 0.735,

which has an absolute error of 0.265. Note that the value v4 has feature “a”. The

selectivity of the simple path expression //A/*/D (with wildcard) can be estimated

by

σ̂(A ∗D) =
∑

α

σ̂(AαD) = 3.57,

which has an absolute error of 0.43, since σ(ABD) + σ(ACD) = 1 + 3 = 4.

4.4.6 On-line Update Algorithms

We describe the two update algorithms that our XPathLearner uses to learn a

Markov histogram from query feedback: the heavy-tail rule and the delta rule.

Our two update algorithms follow the high-level steps outlined in Algorithm 4.1

and differ in the update equations used in line 12. The Markov Histogram is as-

sumed to be initially empty. The function compress-add entry adds any unknown

length-2 path to the Markov histogram: it learns the set of labels of a discrete dis-

tribution. A physical entry is not necessarily added to the histogram whenever
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compress-add entry is called. When memory is scarce, compress-add entry can

trigger pruning or aggregation techniques (such as those in [1]) to compress the

histogram. In contrast to learning the labels, the update equation in the algorithm

learns the frequency counts of the discrete distribution.

Algorithm 4.1 Update (f , (p, σ), σ̂)

Input: Markov histogram f , Feedback (p, σ), Estimate σ̂
1: if |p| ≤ 2 then
2: if not exists f(p) then
3: compress-add entry f(p) = σ
4: else
5: f(p)← σ
6: end if
7: else
8: for all (ti, ti+1) ∈ p do
9: if not exists f(titi+1) then

10: compress-add entry f(titi+1) = 1
11: end if
12: f(titi+1)← update {depends on update strategy}
13: end for
14: end if
15: for all ti ∈ p, i 6= 1 do
16: if not exists f(ti) then
17: compress-add entry f(ti)
18: end if
19: f(ti)← max{f(ti),

∑
α f(αti)}

20: end for

4.4.7 The Heavy-tail Rule Update Method

Given estimated selectivity σ̂(p) and query feedback (p, σ(p)), where p = t1t2 . . . tn

and σ(p) is the real selectivity, we first compute the observed error

ε = σ(p)− σ̂(p). (4.4.10)
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Recall that the selectivity of path p is computed as

σ̂(t1t2 . . . tn) =

(
n−2∏
i=1

f(titi+1)

f(ti+1)

)
× f(tn−1tn). (4.4.11)

We need to refine all the f(titi+1) terms in this product based on the observed error

ε. The updates to the f(ti+1) terms are dependent on the f(titi+1) terms through

Equation (4.4.9) and will be described later. We may also want to attribute more of

the estimation error to the terms associated with the end of the path p. There are

two reasons for this: First, the terms closer to the end of the path p are naturally

more relevant to the selectivity of path p. Second, attributing more of the estimation

error to them also minimizes the effect on other paths sharing the same prefix as p.

We therefore assign weights to the f(titi+1) terms that increase with i.

Let wi be the (unnormalized) weight associated with ti in path p. We update

the f(titi+1) terms as follows:

fk+1(titi+1)← fk(titi+1) + sign(ε) (γ|ε|)wi/
P

j<n wj , (4.4.12)

where
∑

j<n wj is the normalization factor, γ is the learning rate or discount factor,

ti is the ith tag in the query path p, and fk(·) and fk+1(·) are the counts before and

after the update, respectively. The weights we used are

wi = 2i, i = 1, 2, . . . (4.4.13)

If the last element tn in the query path is a data value, the weight for f(tn−1tn)

is defined to be the same as that for f(tn−2tn−1). The intuition for this is that an

instance of a tag cannot take more than one data value in an XML data tree. Note
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that for query path p = t1 . . . tn, the updates to the relevant Markov histogram

entries have the following property:

n−1∏
i=1

(γ|ε|)wi/
P

j wj = γ|ε|. (4.4.14)

In general, the discount factor γ is set to be less than one and therefore it makes

the error correction smaller. This prevents XPathLearner from overreacting to an

estimation error and smoothens the error reduction process. The f(ti) terms are

updated as

fk+1(ti)← max{
∑

j

fk+1(tjti), fk(ti)}, (4.4.15)

since the sum of the counts for all length-2 paths ending in ti must be a lower

bound on the true f(ti) (by Equation (4.4.9)). The term fk(ti) could be greater

than
∑

j fk+1(tjti), if XPathLearner has previously encountered a query feedback

with a length-1 query path ti.

Example 4.9 Consider the Markov histogram in Figure 4.6. Suppose the query

path expression is ACD and the feedback is (ACD, 6). The estimated selectivity

σ̂(ACD) = 3 × 6 ÷ 7 ≈ 3. The observed error is ε = 6 − 3 = 3 and using γ = 1,

XPathLearner makes the following updates using the heavy-tail rule:

fk+1(AC) ← round(3 + 31/3) = 4,

fk+1(CD) ← round(6 + 32/3) = 8,

fk+1(C) ← max{4 + 4, 7} = 8,

fk+1(D) ← max{1 + 8, 7} = 9,

The estimated selectivity of the path ACD after the update is 4 × 8 ÷ 8 = 4. The
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estimation error has been reduced.

4.4.8 The Delta Rule Update Method

A more principled way of updating the Markov histogram using query feedback is

to attribute the estimation error to the relevant edge counts using the delta rule.

The delta rule is an error reduction learning technique first proposed by Rumelhart

et al. [70].

The learning scenario is the same as that in the heavy-tail method. The his-

togram learner is given query path p = t1 . . . tn, with estimated selectivity σ̂(p)

and query feedback (p, σ(p)), where σ(p) is the real selectivity. We compute the

observed error for query path p as before,

ε(p) = σ(p)− σ̂(p). (4.4.16)

The delta rule minimizes an error function. We choose our error function for the

query path p to be the squared error,

E(p) = [ε(p)]2 = [σ(p)− σ̂(p)]2 . (4.4.17)

For a particular query path, we often need to express the error function as a function

of a histogram entry. Let w denote some entry in our Markov histogram. For

example, w could denote the count of the length-2 path AB in the Markov histogram

of Figure 4.6. Where it is clear from context which query path is being referred to,

we will use the notation E(w) to denote the error as a function of w. The following



4.4. XPATHLEARNER 132

shorthand notation is also adopted to make the equations more readable:

w
(k)
αβ = fk(α, β), (4.4.18)

W
(k)
β = fk(β) =

∑
x∈Σ

w
(k)
αβ

= wαβ +
∑
x∈Σ
x 6=α

w
(k)
αβ . (4.4.19)

The superscript (k) will be dropped if there is no confusion over the time of the

variable. Note that Wβ is dependent on wαβ.

The delta rule states that for an error function E(wαβ) the update to term

wαβ should be proportional to the negative gradient of E(wαβ) with respect to wαβ

evaluated at time k,

w
(k+1)
αβ ← w

(k)
αβ − γ

∂E(w
(k)
αβ )

∂wαβ
, (4.4.20)

where γ is the proportionality constant or learning rate. Simplifying the derivative

using Equation (4.4.16),

∂E(wαβ)

∂wαβ

= 2ε(p)
∂ε(p)

∂wαβ

= −2ε(p)
∂σ̂(p)

∂wαβ

Using the Equation (4.4.5) for computing σ̂(p), the term wαβ can occur multiple

times in the numerator and in the denominator. For example, in σ̂(ABCBAB),

the term wAB would appear twice in the numerator, and twice in the denominator,

because WB appears twice in the denominator. Consider the general case that wαβ

appears u times in the numerator and v times in the denominator of the expression

for σ̂(p),

∂σ̂(p)

∂wαβ

=
∂

∂wαβ

(
wu

αβ

W v
β

× r

)
, (4.4.21)
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where r = σ̂(p)×W v
β /wu

αβ contains the rest of the terms that do not contain wαβ.

Differentiating using the quotient rule and simplifying,

∂σ̂(p)

∂wαβ
= σ̂(p)

(
uWβ − vwαβ

wαβWβ

)
. (4.4.22)

Hence, our update equation for the Markov histogram term wαβ = f(α, β) that

occurs u in the numerator and v times in the denominator of the formula for σ̂(p)

is

w
(k+1)
αβ ← w

(k)
αβ + 2γε(p)σ̂(p)

(
uW

(k)
β − vw

(k)
αβ

w
(k)
αβ W

(k)
β

)
. (4.4.23)

The learning rate parameter γ is usually chosen by experimentation. A learning

rate that is too small may result in slow convergence to the minimum error and a

learning rate that is too big may result in oscillations between non-optimal error

values.

Example 4.10 Consider the Markov histogram in Figure 4.6. Suppose the query

path expression is ACD and the feedback is (ACD, 6). The estimated selectivity

σ̂(ACD) = 3× 6÷ 7 ≈ 3. The observed error is ε = 6− 3 = 3 and using γ = 0.5,

XPathLearner makes the following updates using the delta rule:

fk+1(AC)← round(3 + 2× 0.5× 3× 3× 7− 3

3× 7
) = 5,

fk+1(CD)← round(6 + 2× 0.5× 3× 3

6
) = 8,

fk+1(C)← max{5 + 4, 7} = 9,

fk+1(D)← max{1 + 8, 7} = 9,

The estimated selectivity for path ACD after the updates is 5 × 8 ÷ 9 ≈ 4. The

estimation error has been reduced.
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4.4.9 On-line Update Overhead

Let the time needed to access an entry in the Markov histogram be O(l), where l

is the size of the data structure used to implement the Markov histogram. Let the

query path in question be p = t1t2 . . . tn. The update equations for the heavy-tail

rule method (Equation (4.4.12)) and the delta rule method (Equation (4.4.23)) both

take O(l) time. There are O(n) iterations of the two loops starting on line 8 and

line 15 of the update algorithm (Algorithm 4.1). Each iteration of the loop starting

at line 15 requires O(l) time, because the summation in line 19 is performed over

at most all the length-m paths in the order (m−1) Markov histogram that has size

l. Therefore each update takes

O(nl) (4.4.24)

time, where n is the query path length and l is the size of the Markov histogram.

Since n is bounded by the height of the XML data tree and l by the small amount

memory allocated to store the Markov histogram, l and n are practically constants.

Therefore the update overhead is effectively a constant.

4.4.10 Batch Update Strategies

While the emphasis of this dissertation is on-line methods, we briefly outline two

batch processing strategies that can be used with XPathLearner. Batch updates

assume that a buffer is available to hold b query feedback tuples until the batch

update procedure is activated. Batch updates are useful for two reasons.

1. When it is not feasible or possible to update the Markov histograms after

each query, a batch of query feedback can be collected and used to update the

Markov histogram periodically.
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2. When a batch of query feedback is available during initialization, the Markov

histogram can be initialize using a batch update strategy instead of being

initialized to empty histograms. This may reduce the estimation errors asso-

ciated with a ‘cold start’.

Subpath Elimination

The subpath elimination strategy for batch updates is based on three assumptions:

1. the set of query paths in the batch contains some paths that are subpaths of

other paths in the batch,

2. the underlying data remained the same for the entire batch of query paths,

and

3. the Markov assumption holds reasonably well for the path selectivities

The implication of these assumptions is that the feedback for the subpath can give

additional statistical information about the longer path. For example, if the query

paths ABCD and ABC both occur in the batch, then using their true selectivities from

query feedback, we know that f(CD)/f(C) should be equal to σ(ABCD)/σ(ABC).

We can now use the on-line delta rule method to update f(CD) and f(C) using

σ(ABCD)/σ(ABC) as the true value for f(CD)/f(C). The subpath elimination

strategy assumes the delta rule method for updating the Markov histogram.

We sketch the algorithm for the subpath elimination batch update method in

Algorithm 4.2. The batch of query feedback is first sorted (line 1) according to

increasing query path length and according to lexicographic order for paths with

the same length. Each iteration of the while-loop (line 2) then applies the subpath

elimination batch update method until some stopping criterion is true. Exactly one



4.4. XPATHLEARNER 136

Algorithm 4.2 SubpathElimination(f , Qfb)

Input: Markov histogram f , Batch of Query Feedback Qfb
1: Sort Qfb in increasing path length and lexicographic order.
2: while stopping criterion 6= true do
3: for all query path p ∈ Qfb do
4: Search for longest query path z ∈ Qfb that is a subpath of p
5: if z does not exist then
6: Update(f, (p, σ(p)), σ̂(p)) using delta rule.
7: else
8: σ ← σ(p)/σ(z)
9: σ̂ ← σ̂(p)/σ̂(z)

10: for all wαβ in σ̂(p), but not in σ̂(z) do
11: Update wαβ using σ, σ̂, and delta rule Equation (4.4.23).
12: end for
13: Update all affected Wβ using Equation (4.4.15).
14: end if
15: end for
16: end while

scan through the batch of query feedback is made in each iteration. The sorted

batch of query feedback facilitates the search for the longest query path that is a

subpath of the current query path p that is being processed (line 4). If no subpath

is found, the on-line delta rule update procedure is used to perform the update

(line 6). If a subpath is found, the true selectivity of the subpath is eliminated from

the true selectivity of the current query path p. The delta rule is then applied to

the histogram entries that are used in the computation of σ̂(p) and not used in the

subpath (line 11).

The while-loop applies the subpath elimination batch update method until some

stopping criterion is true. The while-loop can terminate when

• the error has reached a given error threshold, or

• the decrease in error between consecutive iterations has fallen below a given

threshold, or
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• the number of iterations has exceeded a given constant.

Batch Delta Rule

Let B be the set of b query paths whose query feedback has been buffered. We can

use delta rule to update the Markov histogram by defining a sum of squared error

function for the set of query paths B,

E(B) =
∑
p∈B

[ε(p)]2 =
∑
p∈B

[σ(p)− σ̂(p)]2 .

To update a particular histogram entry wαβ, we compute the derivative,

∂E(wαβ)

∂wαβ
=
∑
p∈B

∂[ε(p)]2

∂wαβ
=
∑
p∈B

2ε(p)
∂ε(p)

∂wαβ

Let B′ be the subset of B containing paths that require the histogram entry wαβ in

the computation of their selectivity estimates. The selectivity estimates of all the

paths in B − B′ do not depend on wαβ and their derivative is zero,

∂E(wαβ)

∂wαβ
=
∑
p∈B′

2ε(p)
∂ε(p)

∂wαβ
= −

∑
p∈B′

2ε(p)
∂σ̂(p)

∂wαβ
. (4.4.25)

Using Equation (4.4.21) and the delta rule, we can update a Markov histogram

entry wαβ = f(α, β) using the query feedback for a set of query paths B′ using,

w
(k+1)
αβ ← w

(k)
αβ +

2γ

w
(k)
αβ W

(k)
β

∑
p∈B′

{
ε(p)σ̂(p)

[
u(p)W

(k)
β − v(p)w

(k)
αβ

]}
, (4.4.26)

where γ is the learning rate parameter, and u(p) and v(p) are the number of times

that wαβ occurs in the numerator and denominator of the formula for σ̂(p) respec-
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tively.

We sketch the algorithm for the delta rule batch update method in Algorithm 4.3.

The first for-loop (line 1) initializes all non-existent entries in the histogram that

Algorithm 4.3 BatchDeltaRuleUpdate(f , Qfb)

Input: Markov histogram f , Batch of Query Feedback Qfb
1: for all wαβ = f(αβ) used in Qfb do
2: Initialize wαβ = 1, if wαβ is not in histogram.
3: Update Wβ using Equation (4.4.15).
4: end for
5: while stopping criterion 6= true do
6: Initialize array U to zeros.
7: for all query path p ∈ Qfb do
8: for all wαβ involved in σ̂(p) do

9: U [wαβ ]← U [wαβ ] + ε(p)σ̂(p)
{
u(p)W

(k)
β − v(p)w

(k)
αβ

}
10: end for
11: end for
12: for all wαβ = f(αβ) used in Qfb do
13: wαβ ← wαβ + 2γ

w
(k)
αβ W

(k)
β

U [wαβ ]

14: end for
15: Update all affected Wβ using Equation (4.4.26).
16: end while

are required for the batch of queries. The while-loop (line 5) implements the delta

rule batch update method as derived in Equation (4.4.26). Our implementation is

optimized using the assumption that the size of the batch of query feedback is much

larger than the total number of histogram entries updated. Hence each iteration

of the while-loop scans through the batch of query feedback only once. If this

assumption is not true, the order of the two for-loops (line 7 and 8) needs to be

reversed.

The while-loop applies the delta rule until some stopping criterion is true. Rea-

sonable stopping criteria includes stopping when the error has reached a given error

threshold, or when the decrease in error between consecutive iterations has fallen
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below a given threshold, or when the number of iterations has exceeded a given

constant.

4.5 Experiments

We implemented our XPathLearner in C/C++ using the XML Parser Toolkit [21].

We investigate the following issues in our experiments:

1. the accuracy of XPathLearner under varying memory constraints when it is

trained on one query workload and evaluated using a different workload,

2. the convergence properties associated with XPathLearner,

3. the adaptivity of XPathLearner when the workload changes from one distri-

bution to another,

4. the on-line accuracy of XPathLearner, i.e., the estimation accuracy on one

workload, as XPathLearner updates itself after each query,

5. the distribution of on-line errors according to the true selectivity of the queries,

and

6. the occurrence frequency of on-line errors.

We describe briefly the data sets used, the query workloads, the performance mea-

sures, and the methods used in the comparisons, before describing each experiment

in greater detail.

Performance Measures. We have used the average relative error and the aver-

age absolute error to measure the accuracy of XPathLearner. The average relative

error (a.r.e.) and the average absolute error (a.a.e.) with respect to a set of queries
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Characteristic DBLP XMark

Size (MBytes) 10 116
No. of nodes 261,256 1,479,327
No. of distinct tags 29 74
No. of distinct values 91,878 415,262
Path tree depth 5 13
No. of path tree tag nodes 57 514
No. of path tree value nodes 109,741 675,844

Table 4.1: Characteristics of the DBLP data set and the XMark data set.

Q of size n are defined as

a.r.e. =
1

n

∑
q∈Q

|σ(q)− σ̂(q)|
σ(q)

, a.a.e. =
1

n

∑
q∈Q

|σ(q)− σ̂(q)|, (4.5.27)

where σ(q) is the selectivity of query path q in the workload Q and σ̂(q) is the

corresponding estimated selectivity. The state of the selectivity estimation method

is assumed to remain unchanged for all the queries in the workload Q. In an on-

line setting, we would also like to measure the on-line or dynamic performance of

an estimation method. The on-line a.a.e. and the on-line a.r.e. are defined as in

(4.5.27), except that the selectivity estimation method is allowed to update itself in

between queries.

Data Set. We performed our experiments on the XMark synthetic data set [72,85]

and on several real data sets: DBLP [53], Swiss protein3, and Shakespeare4. For

the real data sets, we present only the representative results from the DBLP data

set. The characteristics of each data set are summarized in Table 4.1.

3http://www.expasy.ch/sprot
4http://metalab.unc.edu/bosak/xml/eg/shaks200.zip



4.5. EXPERIMENTS 141

B6 C3

A1

D
3

v2

1

v3

1

v4

1

C4

v4

1 v8

1

D
3

v3

2

v5

1

D
1

v6

1

v1

1

v7

1

Figure 4.7: The path tree corresponding to the XML data tree in Figure 4.4.
Circle nodes denote tag names and square nodes denote values.

Query Workload. In the experiments we present in this section we used work-

loads consisting of simple and single-value query path expressions with positive

selectivity. We did generate negative workloads (consisting of query paths that

do not appear in the data, i.e., query paths with zero selectivity) by generating

random sequences of legal tags ending with a random legal value; however, for all

the negative workloads that we generate, our XPathLearner consistently returns a

selectivity of 1 for each negative path5. (The default return value for paths that are

not captured in our Markov histogram is 1.) Hence, the average absolute error is 1.

This result contrasts sharply with the summarized Markov tables of [1], where the

average absolute error for negative workloads can be as high as 250.

Positive query workloads are generated from the path tree [1] of the given XML

data set. Recall that a path tree summarizes an XML data tree by aggregating every

sibling having the same tag into a single node annotated by a count of the number

of occurrences in the original XML data tree. Figure 4.7 shows an example of a

path tree corresponding the XML data tree in Figure 4.4. We generate positive path

queries as follows. All the root-to-leaf paths in the path tree are first enumerated. A

query path is generated by randomly choosing a root-to-leaf path and then randomly

5A positive workload of 1000 query paths was used as the training workload for that experiment.
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choosing a starting level and a path length that are within limits of the length of

the chosen root-to-leaf path. The random query path of the chosen length is then

output starting from the chosen level in the chosen root-to-leaf path.

These root-to-leaf paths are not chosen uniformly, but from a distribution weighted

according to their selectivities,

P [choosing root-to-leaf path p] =
σ(p)∑

r∈R σ(r)
, (4.5.28)

where R is the set of all root-to-leaf path of the given path tree. The reason for

choosing the root-to-leaf path in this way is to prevent the query workload from

having too many query paths with very small selectivities.

Comparisons. We compare the performance of the off-line method and several

versions of XPathLearner. The labeling convention for the different versions are as

follows:

xpl-o1-dt-lb denotes a first order (“o1”) XPathLearner using the delta rule (“dt”)

and the compressed histogram approach for storing paths with leaf values

(“lb” for leaf buckets);

xpl-o1-ht-lb denotes a first order XPathLearner using the heavy-tail rule (“ht”)

and the compressed histogram approach;

xpl-o1-dt-ca denotes a first order XPathLearner using the delta rule and the

cache-based approach to storing paths with leaf values (“ca”);

xpl-o2-dt-ca denotes a second order (“o2”) XPathLearner using the delta rule and

the cache-based approach.
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The off-line method differs from the XPathLearner in that the Markov histogram is

constructed by scanning the repository. It differs from the Markov table method [1]

in that (1) no summarization is done of the tag-tag counts, (2) the tag-value counts

are stored, and (3) the tag-value counts are summarized using the method described

in Section 4.4.3.

Initial Condition. We assume that we do not know anything about the workload

distribution at the start of each experiment; that is, we start with an empty Markov

histogram. More sophisticated ways of obtaining an initial Markov histogram are

possible, but an empty initial histogram represents a reasonable worst case.

Counting Memory. An order (m− 1) XPathLearner using the compressed his-

togram approach consists of m tables and a compressed histogram data structure.

Each table i stores entries of the form 〈path i, count〉, where path i is a simple path of

length i. A compressed histogram stores k entries of the form 〈pathm, count〉 where

pathm is a single-value path of length m, and some number of aggregated entries

of the form 〈pathm−1, feature , sum, num〉, where pathm−1 is a simple path of length

m−1. Each length i path requires i integers. All other fields take one integer each.

Each integer takes four bytes. (For a first order example see Figure 4.6.)

An order (m− 1) XPathLearner using the cache-based approach consists of just

m tables, each table i storing entries of the form 〈path i, count , counter〉, where pathi

is a simple or single-value path of length i. Each length i path again requires i four-

byte integers, each count requires one four-byte integer, and each counter requires

one byte.

The memory requirements of each method is accounted for by counting the

number of entries in each table and compressed histogram, and multiplying by the
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corresponding memory requirement of each type of entry.

Parameters. We set the learning rate γ to 1 for the heavy-tail rule update strat-

egy and 0.1 for the delta rule update strategy. For the cache-based approach, we

set the threshold for evicting low count entries to 30, i.e., entries with count less

than 30 are candidates for eviction. These values were found to be reasonably good

by experimentation.

4.5.1 Accuracy vs Space

In this experiment, we measure the estimation error under varying memory con-

straints. Two different query workloads from the DBLP data set are used: one as

the training set and the other as the testing set. Each workload consists of 4096

query paths, of which about 3100 paths are distinct. The average true selectivities

of the training and testing workloads are 2034 and 22966, respectively.

The goal of this experiment is to see how our on-line Markov histogram performs

on a workload that is different from its training workload. We define a workload dif-

ference measure with respect to a first-order Markov histogram in order to quantify

the difference between two workloads.

Workload Diff. Given two workloads A and B, we construct for each workload

the set of length-2 paths of all the query paths in the workload. Let the set of

length-2 paths of A and B be SA and SB, respectively. The workload difference

6Since the total number of nodes in the XML data tree is N = 261, 256, these selectivities
correspond to 0.77 % and 0.87 %.
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measure of A and B is

workload diff(A,B) = 1− |SA ∩ SB|
|SA ∪ SB| . (4.5.29)

Intuitively, the workload diff measures how different the first-order Markov models

of the two given workloads are.

We experimented on a large number of training-testing workload pairs and we

present a typical result set in Figure 4.8. The workload diff of the training and

testing workload we present is 88.4%. For the XPathLearner using the compressed

histogram approach, we measure the estimation error as k varies from 32 to 4096.

The k values (for the top k values) are then converted to memory usage in bytes and

the estimation errors are plotted against memory usage. Our experiments show that

in terms of absolute errors our on-line XPathLearner (xpl-o1-ht-lb, xpl-o1-dt-lb,

and xpl-o2-dt-ca) is more accurate than the off-line version. Amongst the two on-

line update strategies, the delta rule is usually more accurate than the heavy-tail

strategy. In terms of relative errors, the second order xpl-o2-dt-ca is the most

accurate under tight memory constraints. The performance of xpl-o1-ht-lb and

xpl-o1-dt-lb are within 10% of the off-line method.

The relationship between k and the memory usage in bytes for the off-line and

on-line XPathLearner (using compressed histogram approach) is graphed in Fig-

ure 4.12. We note that, for fixed k, the memory requirement of the off-line method

is more than that of the on-line method; for k = 512, the off-line method requires

2947 bytes and the on-line method only 1934 bytes. The off-line method has to

store statistics for the entire XML repository while the on-line method only needs

to store the statistics of the workload.

We also show our results for two workloads (training and testing) consisting of
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Figure 4.8: Accuracy vs Memory for DBLP data set. Accuracy of the on-line
Markov histogram method on a testing workload that is 88.4% different from the
training workload. Both workloads contain 4096 single-value query paths, about
3100 of which are distinct.

Method a.a.e. a.r.e.(%) Memory
xpl-o1-dt-lb 0.086 0.197 764 Bytes
off-line 0.110 0.331 796 Bytes
xpl-o1-ht-lb 1.198 0.243 764 Bytes
xpl-o1-dt-ca 87.9 19.535 760 Bytes

Table 4.2: Accuracy of various methods for simple path expression queries on
the DBLP data set. Estimation error of the off-line method, the on-line xpl-o1-
ht-lb, xpl-o1-dt-lb, and xpl-o1-dt-ca methods for a workload consisting only
of simple path expressions (tag-only path expressions). The on-line xpl-o1-dt-lb
outperforms the others.

simple path expressions only (no value nodes involved). Both workloads consist

of 1000 simple path expressions, and although the two workloads are different,

their workload diff is zero7. This property arises because the set of length-2 paths

entailed by both workloads are the same. The estimation error rates are tabulated

in Table 4.2.

7Since the number of possible tags is small, a workload of 1000 paths captures most of the
length-2 paths.
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4.5.2 Convergence

We want to investigate how well the on-line method converges to a given workload

distribution. One query workload of 1000 query paths (840 distinct) from the DBLP

data set is used in this experiment. We measure the average absolute and relative

errors over the entire workload as the histogram learner processes each query path

in the same workload. Since the Markov histogram is initially empty, the first few

error measurements will be large, and as the Markov histogram converges to the

workload distribution, the measured error will be small. The error measurements

over each iteration or update of a Markov histogram are plotted in Figure 4.9 and

Figure 4.10. All the methods are given the same amount of memory (7.7 KBytes

or k = 512). The results in Figure 4.9 and Figure 4.10 show that the accuracy

of our XPathLearner reaches very acceptable levels within the first 100 iterations.

Figure 4.11 shows how the memory constraint (governed by k when the compressed

histogram approach is used) affects the convergence properties of XPathLearner.

Our results show that XPathLearner can still be very accurate even when little

memory is allocated. The spike in the xpl-o1-dt-lb plot of Figure 4.9 is due to the

occurrence of a path that violates the Markov assumption.

4.5.3 Adapting to Data Distribution Change

This experiment investigates how the on-line Markov histogram will adapt to a

workload that has its first 1000 query paths generated from the original DBLP path

tree and the next 1000 query paths generated from a modified DBLP path tree with

random perturbation to the counts at each node. The perturbation is intended to

simulate the DBLP data changing over time. We introduce the perturbation by

generating a random number U ∈ [1 − δ, 1 + δ] for each node r in the path tree.
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Figure 4.9: Convergence of a.a.e. (fixed memory) on the DBLP data set. The
absolute error averaged over an entire workload at each iteration of the learning
process.

The count associated with node r is then scaled by the random number U ,

count(r)← max{1, U × count(r)} (4.5.30)

The modified path tree that we generated using δ = 0.7 has a Kullback-Liebler

divergence of 0.129299 bits. The Kullback-Liebler (KL) divergence of a modified

path tree f1 with respect to the original path tree f0 is defined as

KL(f0|f1) =
∑

y∈{root-to-node paths}
f0(y) log

f0(y)

f1(y)
. (4.5.31)
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Figure 4.10: Convergence of a.r.e. (fixed memory) for the DBLP data set. The
relative error averaged over an entire workload at each iteration of the learning
process.

The KL divergence is a common difference measure of distributions [47].

This experiment is performed as follows. Let the workload of 1000 query paths

generated from the original path tree be Qold and the workload of 1000 query paths

generated from the modified path tree be Qnew . Let Qmix be the concatenation of

Qold and Qnew . We let our XPathLearner (k = 32) learn the Markov histogram from

this mixed workload. For the first 1000 iterations we measure the average absolute

error over Qold after each update and for the next 1000 iterations we measure the

average absolute error over Qnew after each update. The average absolute error at

the end of each iteration is plotted in Figure 4.13. The spikes near iteration 320

in the plot for xpl-o1-dt-ca are probably an artifact of the cache-based approach.
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Figure 4.11: Convergence of a.a.e. (variable memory) for the DBLP data set.
Each plot shows the absolute error convergence curves for two different memory
constraint and for most of the time, the two curves are indistinguishable. These
plots show that convergence is not sensitive to the memory constraint.

The spike at iteration 1001 is expected and shows the transition from workload

Qold to workload Qnew . Since the distribution underlying Qold is different from

that underlying Qnew , the average absolute estimation error with respect to Qnew

at iteration 1001 is very large. About 100 iterations after the transition, the on-line

method has adapted to Qnew .

4.5.4 On-line Accuracy vs Space

How does XPathLearner perform in an on-line setting? We measure the on-line

estimation errors of XPathLearner under different memory constraints and plot
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Figure 4.12: Memory vs k for the DBLP data set.

the results in Figure 4.14. A query workload of 10,000 queries generated from the

XMark data set is used. Recall that the on-line average error measures the error of

each query in the workload while allowing the estimation method to update itself

after each query. The on-line average error therefore measures the performance of

XPathLearner while it is “in action”. In terms of on-line a.r.e., the XPathLearner

using the delta rule and compressed histogram is the most accurate method among

the four methods. In terms of on-line a.a.e., the cache-based approach (with delta

rule) seems to be more accurate.

4.5.5 On-line Errors vs Selectivity

We further analyze the on-line estimation errors (absolute errors) by partitioning

the errors into 40 bins according to the true selectivity of the queries. The errors in

each bin are averaged and the average error for each bin is plotted in Figure 4.15.

The on-line errors we used are for the same workload of 10,000 queries from the

XMark data set used in Section 4.5.4. Each XPathLearner method is given about

7.3 KBytes of memory. The plots show that the compressed histogram approach

tend to produce larger errors for larger selectivities compared to the cache-based

approach. This result is consistent with the on-line accuracy results in Section 4.5.4
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Figure 4.13: Adaptability (DBLP data set). Average absolute error averaged over
Qold for iteration 1-1000 and averaged over Qnew for iteration 1001-2000.

where the compressed histogram approach is more accurate than the cache-based

approach in terms of relative error, even though the cache-based approach is better

in terms of absolute error.

4.5.6 The Frequency of Online Errors

We investigate how often on-line errors of a certain (relative) magnitude occurs.

The on-line relative errors we used are for the same workload of 10,000 queries from

the XMark data set used in Section 4.5.4. Each XPathLearner method is given

about 7.3 KBytes of memory. The on-line relative errors are partitioned into 40

bins by their magnitude and the normalized count of the number of errors in each
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Figure 4.14: On-line error vs memory for the XMark data set. The on-line estima-
tion performance of XPathLearner under varying memory constraints on a workload
of 10,000 queries drawn from the XMark data set.

bin is plotted in Figure 4.16. Our results show that the relative estimation error is

very small most of the time. Relative errors larger than 200% occur less than 2 %

of the time.

4.5.7 Discussion

Our experiments have shown that XPathLearner is very accurate in terms of the

traditional error measures as well as the on-line error measures we proposed. More-

over, we have shown that most of the the errors that XPathLearner makes are very

small relative errors. XPathLearner adapts readily to changing data distributions

and converges to very low error rates even under tight memory constraints.

What may be surprising is that XPathLearner can be even more accurate than

the costly off-line method. We would expect the off-line method to be more accurate

than the on-line method because the Markov histograms are constructed by scanning

the data itself. The main reason for the on-line method being more accurate than the

off-line is that the off-line method attempts to model all the data using the limited

amount of given memory, whereas the on-line method uses the same amount of
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Figure 4.15: On-line error distribution across selectivities for the XMark data set.

memory to model the portion of the data that is frequently queried in the workload.

A secondary reason is that in constructing a Markov histogram over all the data,

the off-line method can be affected by paths that violate the Markov assumption.

Recall that for an order-1 Markov chain, the frequency of the next tag depends on

the frequency of the current tag only. We illustrate effect these Markov-violating

paths with an example.

Example 4.11 (Paths violating the order-1 Markov assumption.) Con-

sider the path tree in Figure 4.17(a) and the two paths //A/C/D and //B/C/D in

the path tree. Assume that the tags A, B, C, D do not occur anywhere else in the

path tree. The two paths //A/C/D and //B/C/D violate the order-1 Markov assump-

tion because the count of D conditioned on being at C (via B) is 1/200 and the the
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Figure 4.16: Frequency of on-line relative errors for the XMark data set. The
occurrence frequency of different ranges of on-line relative errors for an XMark query
workload of 10,000 queries are plotted. More than half the errors that XPathLearner
makes are relative errors of less than 5%.

count of D conditioned on being at C (via A) is 50. The violation is due to the large

difference between the two conditional counts. In the off-line method, these two con-

ditional counts will be aggregated and the entries f(AC) = 2, f(BC) = 200, and

f(CD) = 101 will be stored. Hence, the selectivity of path //B/C/D will be computed

as σ̂(BCD) = 200 × 101 ÷ 202 ≈ 100 which has an absolute error of 99. For the

on-line method, in the best case when the workload does not contain any path with

//A/C or //C/D, the on-line method with delta rule will learn that f(BC) = 200 and

f(CD) = 1. XPathLearner with delta rule will then give a more accurate estimate

of //B/C/D.
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Figure 4.17: Two examples of a pair of paths that violate the order-1 Markov
assumption.

The effect of these Markov-violating paths on the on-line method depends on

whether the Markov-violating paths occur in the workload and how they are in-

terleaved in the workload. The bottom line is that the on-line method has a chance

of avoiding these Markov-violating paths, while the off-line method does not.

4.6 Conclusions

In this chapter, we presented XPathLearner, a new on-line method for estimating

the selectivities of path expressions (simple, single-value, multi-value) without ex-

amining the XML data. All previous methods require an off-line scan of the XML

repository to collect the statistics. Our method relies on the feedback from the query

execution engine to construct and refine a Markov histogram of the underlying path

selectivity statistics. Besides the on-line property, our method also has two other

novel features: (a) XPathLearner is workload aware in collecting the statistics and

thus can be more accurate than the more costly off-line method under tight memory

constraints, and (b) XPathLearner automatically adjusts the statistics using query
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feedback when the underlying XML data change.

We have proposed two approaches to deal with storing the statistics of the large

number of single-value paths (tag-value pairs). These single-value path statistics are

used to estimate the selectivity of paths containing data values. The cache-based

approach treats the Markov histogram like a cache and evicts entries when the

given memory is exceeded. The compressed histogram method stores the largest-k

single-value paths (tag-value pairs) exactly and aggregates the rest into buckets.

We have also presented two on-line update strategies, the heavy-tail rule and

the delta rule, as well as outlined two batch update strategies, subpath elimination

and batch delta rule.

Our experiments show that our method is accurate under modest memory re-

quirements on both synthetic data and real data and that XPathLearner adapts

readily to changing data distributions and converges to very low error rates even

under tight memory constraints.



Chapter 5

On-line Classification-Based
Histograms

5.1 Introduction

One of the key insights gleaned from Chapter 4 is that given limited space, for

the purpose of selectivity estimation, modeling queries can be more effective than

modeling the data. In this chapter, we build on this insight and present CXHist, a

new type of on-line histogram for storing the approximate mapping between queries

and their selectivities.

Previous types of histograms are often restricted to a single data and query type

(see [39] for a survey). For example, a histogram technique for numerical attributes

cannot be used for string attributes, and a histogram technique for single attribute

queries cannot accurately estimate multi-attribute queries. Hence a database system

often has to maintain multiple histograms of different types according to attribute

type and query type. CXHist addresses this issue by providing a single histogram

technique that can be used for different types of data and queries. The key paradigm

shift that allows CXHist this flexibility is that CXHist models queries instead of data.

Therefore CXHist is different from all previous types of histograms that model the

data. The decoupling of CXHist from the underlying data model also enables CXHist

158
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Figure 5.1: Schematic of CXHist.

to be applicable to both relational and XML databases.

CXHist also differs from previous histogram types in that it uses a Bayesian

classifier to remember in an approximate manner the mapping between queries and

their selectivities. CXHist builds a histogram in an on-line manner by grouping

queries into buckets using their true selectivities obtained from query feedback (see

Figure 5.1). The correspondence between a bucket and its associated set of queries

is captured approximately using a Bayesian classifier. The Bayesian classifier is

learned from query feedback in an on-line manner. An introduction to Bayesian

classifiers is given in Section 5.2.2 for the benefit of readers not familiar with the

subject.

In this chapter, we will describe CXHist (Section 5.2) and apply CXHist to the

specific problem of estimating the selectivity two important types of XML queries

(Section 5.3). The two types of XML queries are of the form 〈path, string〉 and

differ in the string constraints specified by string . Exact match queries retrieve all

XML nodes that match the query path and the query string value exactly. Substring

match queries are similar, but relax the matching of the query string to a substring
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match. In Section 5.6 we will show experimentally that CXHist provides accurate

selectivity estimation for both exact match queries and substring match queries.

Section 5.7 concludes this chapter.

5.2 CXHist Histograms

5.2.1 Overview

A key difference between our on-line CXHist technique and traditional off-line his-

tograms is that the off-line methods are modeling data whereas CXHist is modeling

queries. A query q is modeled as a set of features ~x = 〈x1, . . . , xk〉. The map-

ping of a query to its feature set is determined by the query model. Query models

are problem-specific, and we describe the query model for the specific XML string

selectivity estimation problem in Section 5.5.1.

A CXHist histogram consists of a set of m buckets indexed by B = {1, 2, . . . , m}.
Each bucket b stores

1. sum(b), the sum of the selectivities of all the query feedbacks seen so far that

are associated with bucket b,

2. count(b), one plus the number of query feedbacks seen so far that are associ-

ated with bucket b,

3. {P (Xi|B=b) : i = 1, . . . , k}, a set of query feature probability distributions.

One distribution is stored for each feature random variable Xi.

Each pair of sum(b) and count(b) fields stores an average selectivity for all the

queries associated with the bucket b. Traditional bucket-based histograms for nu-

merical attributes typically partition the data space into regions and associate a
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region of space with each bucket. CXHist differs from traditional bucket-based

histograms in that feature probability distributions are stored in each bucket in-

stead. These feature distributions (and associated algorithms to be described) form

a Bayesian classifier.

Given a query q, CXHist estimates the selectivity σ(q) by first computing the

bucket b̂ that is associated with q using the query model and the feature distributions

for each bucket. The selectivity of q is then computed as

est(b̂) =
sum(b̂)

count(b̂)
. (5.2.1)

The feature distributions of a bucket b approximately “remembers” which queries

belong to bucket b. Each feature distribution P (Xi=xi|B=b) is not stored as proba-

bilities, but using counts1. Let N(Xi=xi, B=b) be the number of times a particular

feature has been observed to be associated with bucket b. The probabilities are

recovered using,

P (Xi=xi|B=b) =
N(Xi=xi, B=b)∑
ξ N(Xi=ξ, B=b)

. (5.2.2)

CXHist updates itself using query feedback. Suppose the query execution engine

computes σ(q) as the true selectivity for query q. CXHist finds the bucket b∗ whose

selectivity is closest to σ(q). If the computed bucket b̂ is not the same as b∗, the

feature distributions of bucket b∗ are updated so that CXHist will remember that

query q should be associated with bucket b∗.

The update process potentially adds new entries to the feature distributions and

hence increases the memory used by CXHist. Whenever CXHist exceeds a given size

threshold, the feature distributions are pruned so that the size of CXHist stays below

1Note that fractional counts are allowed for the purpose of updates.



5.2. CXHIST HISTOGRAMS 162

the given threshold. Since the size threshold is set to a small constant (usually

1–2% of the data size), the space complexity of CXHist is effectively O(1). The

time complexity of the selectivity estimation, update and pruning procedures are

therefore also effectively O(1) because their time complexity are only dependent on

the size of the CXHist histogram.

We give an introduction to Bayesian classifiers next, before describing each com-

ponent of CXHist in greater detail.

5.2.2 Introduction to Bayesian Classifiers

A classifier is a mechanism for storing a mapping f : X 7→ B of a set of feature

vectors X to a set of class labels B approximately. Given a classifier f ′ and a feature

vector ~x ∈ X , the class label of ~x can be approximated using the classifier as f ′(~x).

A classifier can be built using a set of examples. An example is a pair consisting

of an instance of a feature vector and its associated class label. The process of build-

ing a classifier takes as input a set of examples {(~x1, f(~x1)), (~x2, f(~x2)), . . . , (~xk, f(~xk))}
and outputs the classifier f ′ that approximates the true mapping f .

A Bayesian classifier f ′ models the mapping f : X 7→ B as a joint probability

distribution over the space of X × B [29]. Let Xi denote the random variable for

feature i and B denote the random variable for the class label. The joint probability

density function over X × B is

P (X1=x1, X2=x2, . . . , Xn=xn, B=b)

where b ∈ B and 〈x1, x2, . . . , xn〉 ∈ X . For conciseness, we will use vector notation

for a sequence of random variables and also omit the value for each random variable
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Figure 5.2: The graphical model corresponding the naive Bayes assumption.

when it is clear from context,

P (X1=x1, X2=x2, . . . , Xn=xn, B=b) ≡ P ( ~X=~x, B=b)

≡ P ( ~X, B)

Given a vector of feature values ~x = 〈x1, x2, . . . , xn〉, a Bayesian classifier f ′

classifies ~x into the class label b that maximizes the a posteriori probability,

f ′(~x) = arg max
b

P (B=b| ~X=~x).

A naive Bayesian classifier is a Bayesian classifier that makes the naive Bayes

assumption on the joint probability distribution. The naive Bayes assumption states

that features Xi, Xj, i 6= j are conditionally independent given the class label B, ie,

P (X1, X2, . . . , Xn|B) =

n∏
i=1

P (Xi|B).

In the context of graphical models, the naive Bayes assumption imposes the con-

ditional independence model of Figure 5.2 on the joint probability distribution.

Using Bayes rule and the naive Bayes assumption, the a posteriori probability can
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be computed as,

P (B=b|X1, X2, . . . , Xn) =
P (X1, X2, . . . , Xn|B=b)P (B=b)∑
b′ P (X1, X2, . . . , Xn|B=b′)P (B=b′)

=

{∏n
i=1 P (Xi|B=b)

}
P (B=b)

∑
b′

{∏n
i=1 P (Xi|B=b′)

}
P (B=b′)

(5.2.3)

Note that the denominator is a constant with respect to the random variable B

for class label and therefore can be omitted during the classification computation

because it does not affect the maximal point in the classification formula,

f ′(~x) = arg max
b

{
P (B=b)

n∏
i=1

P (Xi|B=b)

}

The classification formula in (5.2.3) requires only P (Xi|B) for each i = 1, 2, . . . , n

and P (B). Hence, to construct a naive Bayesian classifier from a set of k examples,

we count for each distinct feature-label pair (xi, b) the number of times it occurs in

the set of examples. Let N(Xi=xi, B=b) denote the number of examples in which

feature Xi takes the value xi and the class label B takes the value b. The required

probabilities can be computed from

P (X=xi|B=b) =
N(Xi=xi, B=b)

N(B=b)

and

P (B=b) =
N(B=b)

k
.

where N(B=b) is the number of examples with class label b. Note that N(B=b)
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X1 X2 B
AddisonW Knuth 1
Houghton Tolkien 0
AddisonW Lamport 1
Cambridge Knuth 1
Ballantine Tolkien 0

(a) Training examples.

X1 B N(X1, B)
AddisonW 1 2
Houghton 0 1
Cambridge 1 1
Ballantine 0 1

(b) N(X1, B)

X2 B N(X2, B)
Knuth 1 2
Tolkien 0 2
Lamport 1 1

(c) N(X2, B)

Figure 5.3: The training examples and the corresponding naive Bayesian classifier
for Example 5.12.

can be computed from N(Xi=xi, B=b) by

N(B=b) =
∑

x

N(Xi=x, B=b).

We illustrate the use of a naive Bayesian classifier with an example.

Example 5.12 Suppose a librarian needs to shelve a pile of books onto two shelves.

Shelf 0 is for fiction and shelf 1 is for non-fiction. Not particularly fond of manual

labor, he decides to automate the classification task using a naive Bayesian clas-

sifier. Two features were chosen: X1 represents the name of the publisher, and

X2 represents the name of the author. The shelf number is represented by random

variable B. He manually classified five books to be used as training examples (see

Figure 5.3(a)). The naive Bayesian classifier constructed from these training exam-

ples consists of the tables N(X1, B) and N(X2, B) as shown in Figure 5.3(b) and
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Figure 5.3(c).

To classify a book authored by “Knuth” and published by “AddisonW”, the clas-

sifier computes the a posteriori probability given those features,

P (B=0|X1=AddisonW, X2=Knuth)

∝ P (X1=AddisonW|B=0)P (X2=Knuth|B=0)P (B=0)

=
0

2
× 0

2
× 2

5
= 0

P (B=1|X1=AddisonW, X2=Knuth)

∝ P (X1=AddisonW|B=1)P (X2=Knuth|B=1)P (B=1)

=
2

3
× 2

3
× 3

5
=

4

15
.

Since shelf 1 maximises the a posteriori probability, the classifier returns shelf 1

(non-fiction) as the answer.

Note that the classifier is ambiguous (the a posteriori probability is uniformly zero)

when it encounters an author or publisher that did not appear in the training

examples. A default shelf or a special ‘unknown’ flag can be returned for such

cases.

We now show how a naive Bayesian classifier can be used in CXHist for selectivity

estimation.

5.2.3 Estimating Selectivity with CXHist

Given a query q, selectivity estimation is done by determining which bucket the

query belongs to. The mapping between a query and its bucket is modeled as a

joint probability distribution with the random variable B for the bucket and a series
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of random variables, ~X=〈X1, . . . , Xk〉, for the features of the query (under a given

query model). Suppose that the query model maps the query q into a set of features

~x = 〈x1, . . . , xk〉, then the bucket b̂ that q belongs to is computed as the bucket that

maximizes the posterior probability of the query belonging to a bucket b given its

feature values,

b̂ = arg max
b∈B

{
P (B=b| ~X=~x)

}
(5.2.4)

= arg max
b∈B

{
P (B=b)P ( ~X=~x|B=b)

}
, (5.2.5)

where the second equality is obtained using Bayes rule and by simplifying the de-

nominator into a constant that is independent of b and hence does not affect the

maximal point. In the machine learning literature, this technique is known as a

Bayesian classifier [29] where each bucket is the class label. A naive Bayesian

classifier further simplifies the conditional distribution P ( ~X=~x|B=b) by assuming

conditional independence among the features given the bucket (the naive Bayes

assumption),

P (X1, X2, . . . , Xn|B=b) =

n∏
i=1

P (Xi|B=b). (5.2.6)

Therefore, a naive Bayesian classifier computes the bucket of a set of feature ~x using,

b̂ = arg max
b∈B

{
P (B=b)

n∏
i=1

P (Xi=xi|B=b)

}
. (5.2.7)

Naive Bayesian classifiers have been shown to be very accurate even for datasets with

strong dependencies among the features [28, 51]. The probabilities {P (Xi|B=b) :

∀i} are precisely those stored in each bucket and the probability P (B=b) can be
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computed as,

P (B=b) =
count(b)− 1∑

b′(count(b′)− 1)
. (5.2.8)

Once the bucket b̂ for query q is computed, the selectivity of q is then computed

as est(b̂). There is a boundary case when the posterior distribution is flat and no

maximum point exists. In this case, a default selectivity such as the minimum can

be returned.

Observe that if a particular feature Xj has uniform probability P (Xj=x|B=b)

over the space of B for each value x, the bucket computed by a naive Bayesian

classifier using Equation 5.2.7 will be unaffected by the exclusion of feature Xj. Such

features are uninformative and could be excluded from the query model without any

loss in classification accuracy.

5.2.4 Initializing CXHist

Given a fixed query model, a fixed number of buckets m, the minimum selectivity l,

and the maximum selectivity h, a CXHist histogram is initialized with m buckets,

such that, for each bucket b, the bucket count count(b) is set to one, the feature

distributions are set to empty, and the sum(b) field is initialized with a representative

value from the interval [l, h]. Recall that each bucket b in CXHist is associated with

an average selectivity encoded using sum(b) and count(b). Each count(b) field is

initialized to one, because initializing it with zero would result in an undefined

average selectivity. The initial value of the sum(b) field will determine the initial

representative average selectivity of the bucket.

The set of representative values used to initialize each sum(b) field can be chosen

in several ways.
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Query (descending selectivity)Query (descending selectivity)

Selectivity Selectivity

q

q

q

3

2

1

Figure 5.4: Initializing CXHist with a sample workload of 12 queries using clus-
tering. The left diagram plots the selectivity of the queries (denoted by the hollow
circles) in the sample workload sorted by descending selectivity. The diagram on
the right shows the representative selectivity values {q1, q2, q3} if three buckets are
to be used.

1. Clustering. If a sample query workload is available during initialization, the

MaxDiff [68] algorithm or the Lloyd-Max algorithm [57, 60] can be used. See

Figure 5.4 for an example.

2. Uniform intervals. If a query workload is not available, the representative

values can be picked to be uniformly spaced in the given interval.

3. Exponential intervals. An alternative to uniform intervals is exponentially

increasing intervals (e.g. {1, 2, 4, 8, 16, . . .}).

4. Uniform-exponential hybrid. If the number of buckets m is larger than log2(h−
l), the smallest j representative values, where j is a tunable parameter, are

chosen to be exponentially increasing and the remaining values uniformly

spaced in the rest of the interval,

sum(b) =

{
l × 2b−1 b ≤ j

l × 2j−1 + (b− j)h−l×2j−1

m−j
j < b < m

(5.2.9)

For example, if m=10 and j=5, the representative values for the interval [1, 66]
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are {1, 2, 4, 8, 16, 26, 36, 46, 56, 66}.

In our experiments we have used the uniform-exponential hybrid method for choos-

ing the representative values.

Picking exponentially increasing representative values for the smaller selectivities

might give better estimates in terms of relative error. For the intuition, consider

the hypothetical case in which CXHist remembers the mapping between queries and

their associated bucket perfectly and assume that the representative values in the

buckets do not change over time (i.e., no updates). If the representative values

are chosen to be exponentially increasing, the relative error of each estimate is no

more than 50%. On the other hand, if uniformly spaced representative values are

chosen, the absolute error of each estimate will be bounded by the distance between

consecutive representative values.

5.2.5 Updating the CXHist Histogram

CXHist is an on-line histogram: once it has been initialized, it updates itself after

each query using query feedback. We discuss how this update is performed in this

section.

Given a query feedback, i.e. a 〈q, σ(q)〉 pair, we want to update the histogram

so that it will give a better estimate when it encounters query q again. For our

discussion assume that query q maps to the feature vector ~x = 〈x1, . . . , xk〉. The

update algorithm is outlined in Algorithm 5.2 and it requires a subroutine AddIn-

stance(b, 〈x1, . . . , xk〉) outlined in Algorithm 5.1 that increments all the feature

distribution entries associated with each given feature value xi in the given bucket b.

First, find the bucket b∗ whose estimate est(b∗) is closest to σ(q) (see Algo-
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Algorithm 5.1 AddInstance ( b, 〈x1, . . . , xk〉)
Input: bucket index b and query feature vector 〈x1, . . . , xk〉
1: for all i ∈ {1, . . . , k} do
2: if @ entry N(Xi=xi|B=b) then
3: add new entry N(Xi=xi|B=b) = 0
4: end if
5: increment N(Xi=xi|B=b)
6: end for

Algorithm 5.2 Update ( 〈q, σ(q)〉, 〈x1, . . . , xk〉, γ)

Input: query feedback 〈q, σ(q)〉, feature vector 〈x1, . . . , xk〉 for query q, learning
rate γ

1: b∗ ← arg minb{|σ(q)− est(b)|}
2: sum(b∗)← sum(b∗) + σ(q)
3: increment count(b∗)
4: compute b̂ using Equation (5.5.19).
5: if @b̂ or b∗=b̂ then
6: AddInstance(b∗, 〈x1, . . . , xk〉)
7: else
8: p̂← P (B=b̂)P ( ~X=~x|B=b̂)/P (B=b∗)
9: p∗ ← P ( ~X=~x|B=b∗)

10: if p∗=0 then
11: AddInstance(b∗, {x1, . . . , xk})
12: p∗ ← P ( ~X=~x|B=b∗)
13: end if
14: while p∗ < p̂ do
15: for all i ∈ {1, . . . , k} do
16: update N(Xi=xi|B=b∗) using Equation (5.2.17)
17: end for
18: recompute p∗

19: end while
20: if p∗ = p̂ then
21: AddInstance(b∗, 〈x1, . . . , xk〉)
22: end if
23: end if
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rithm 5.2 line 1). Second, update the bucket b∗ by incrementing count(b∗) and

adding σ(q) to sum(b∗) (lines 2-3). Third, update the feature distributions of bucket

b∗. If either no maximum point is found when estimating the selectivity of q or the

closest bucket b∗ is the same as the bucket that maximizes the posterior probability

b̂, i.e., no classification error, then increment the count N(Xi=xi|B=b∗) for each

i = 1, . . . , k (lines 5-6). Otherwise, there is a classification error, i.e., b∗ 6= b̂. We

want to update the feature distributions such that q will be classified into the bucket

b∗ instead of b̂. Specifically, the desired condition is

P (B=b∗)P ( ~X=~x|B=b∗) > P (B=b̂)P ( ~X=~x|B=b̂) (5.2.10)

≡ P ( ~X=~x|B=b∗) >
P (B=b̂)P ( ~X=~x|B=b̂)

P (B=b∗)
. (5.2.11)

A naive method for updating the feature distributions is to keep incrementing

the count N(Xi=xi|B=b∗) for each i = 1, . . . , k until the above condition is met.

A more principled method for getting the same effect is to perform gradient

descent [70] until the required condition is met (line 14). The number of iterations

can be bounded by a specified constant to prevent the while-loop (line 14) from

taking too long. For gradient descent, we define the error of a selectivity estimate

as,

ε(~x) = P ( ~X=~x|B=b∗)− p̂, (5.2.12)

and the error function to be minimized as,

E(~x) =
[
ε( ~X=~x)

]2
(5.2.13)

=
[
P ( ~X=~x|B=b∗)− p̂

]2
, (5.2.14)



5.2. CXHIST HISTOGRAMS 173

where p̂=P (B=b̂)P ( ~X=~x|B=b̂)/P (B=b∗) is a constant target value. Let wi be a

shorthand for the count N(Xi=xi, B=b∗). For each feature value xi of the query,

the gradient descent method updates the count wi using the negative gradient,

w
(t+1)
i ← w

(t)
i − γ

∂E(~x)

∂wi

, (5.2.15)

where w
(t)
i and w

(t+1)
i are the counts before and after the update respectively, and γ

is the learning rate parameter. We will adopt the shorthand ∆wi for the derivative

∂E(~x)/∂wi. Simplifying the derivative,

∆wi = 2ε(~x)
∂P ( ~X=~x|B=b∗)

∂wi
, (5.2.16)

the update equation becomes,

w
(t+1)
i ← w

(t)
i − 2γε(~x)

∂P ( ~X=~x|B=b∗)
∂wi

, (5.2.17)

where the derivative ∂P ( ~X=~x|B=b∗)/∂wi depends on the query model used in the

actual problem.

Two boundary cases need to be addressed. The first boundary case occurs before

the gradient descent iteration when wi=0 for some i and hence P ( ~X=~x|B=b∗)=0

and the gradient may be undefined. This situation is avoided by incrementing

N(Xi=xi, B=b∗) for i = 1, . . . , k (lines 10-12). The other boundary case occurs

after the gradient descent loop when P ( ~X=~x|B=b∗) = p̂. The desired condition is

P ( ~X=~x|B=b∗) > p̂, so the feature distributions in b∗ are incremented once more to

break the tie (line 20).

One problem with using gradient descent in this form is that the updates ∆wi
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can be very small (less than 10−10) when the number of feature values are large.

We address this problem by computing the updates ∆wi for all i and normalizing

them so that the smallest ∆wi is one. The learning rate is then applied onto the

normalized updates.

5.2.6 Pruning CXHist

The size of a CXHist histogram is the sum over each bucket b of the size of the

sum(b) field, the count(b) field and the feature distributions {N(Xi|B=b)}. The

initialization and selectivity estimation procedures do not increase the size of the

histogram. The update procedure potentially adds new entries to the feature dis-

tributions. After some number of updates, the CXHist histogram might need to be

pruned so that it does not exceed the memory allocated to it.

Pruning is governed by two parameters both in units of bytes: the triggersize

and the targetsize . Whenever the size of the histogram exceeds triggersize bytes,

the pruning procedure is activated and the CXHist histogram is pruned down to

targetsize bytes.

Pruning is achieved by discarding entries with small counts in the feature dis-

tributions. All feature distribution entries {N(Xi=xi|B=b) : ∀i, xi, b} are sorted by

magnitude and we keep discarding the smallest entry until the desired target size is

achieved. Mathematically, discarding an entry is the same as setting the magnitude

of that entry to zero. The entries with the smaller counts are good candidates for

pruning because (1) they are likely to be less frequently used, otherwise the up-

date procedure would have incremented their counts, and (2) they are less likely

to affect the maximal point in the selectivity estimation computation, since their

probabilities are already small.
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5.3 XML String Selectivity Estimation

For the rest of the chapter, we apply CXHist to a specific selectivity estimation

problem in XML databases: estimating the number of leaf nodes reachable via a

given path and whose associated data value matches a given string constraint. We

motivate and describe the problem in this section.

Recall that in XML native DBMSs, XML documents are stored as trees (see

Figure 5.5) and queries are processed using either indexes or tree traversals (a

more detailed exposition about query optimization in XML databases has been

given in Chapter 4 Section 4.1.1). A path is a sequence of tag names that spec-

ify a navigational trajectory to a set of nodes in the XML tree. A rooted path

is one that begins at the root node of the XML tree. For efficient processing,

complex path expressions in XML queries are often preprocessed into a set of can-

didate 〈path, pred〉 query pairs, where path is a linear rooted path and pred is a

string predicate on the leaf value reachable via path. Consequently, an XML query

(such as XQuery) can be mapped to several retrieval operations using 〈path, pred〉
query pairs [44, 76, 87, 89]. For the example data in Figure 5.5, the path expres-
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Figure 5.5: An example XML data tree. Tag names are in bold and data values
are in italics. The special symbols ‘@’ and ‘$’ denote the start and end of data
values respectively.



5.3. XML STRING SELECTIVITY ESTIMATION 176

sion //author=@Tim$2 can be mapped to query pairs 〈/DBLP/book/author, @Tim$〉
and 〈/DBLP/article/author, @Tim$〉, where the string predicate is the exact match

predicate. These retrieval operations using 〈path, pred〉 query pairs form the set of

basic query processing operators. Accurate estimation of the selectivity of such

〈path, pred〉 query pairs is therefore crucial for choosing an optimal execution plan

in cost-based query optimization.

The XML string selectivity estimation problem is defined as follows: Given a

〈path, pred〉 query, where pred is a string predicate, estimate the number of nodes

in the XML data that are reachable by path and whose associated string values

satisfy the string predicate pred . Examples of queries with different string predi-

cates include exact match queries and substring queries. An exact match query is

specified by a 〈path, string〉 pair and retrieves all nodes reachable via path whose

string value matches the query string exactly. A substring query is specified by a

〈path, substring〉 pair and retrieves all nodes reachable via path whose string value

contains substring . Using the example XML tree in Figure 5.5, the selectivity of

exact match query 〈/DBLP/book/author, @Tim$〉 is 2 and the selectivity of substring

query 〈/DBLP/book/author, im$〉 is 3.

The string aspect of the XML string selectivity estimation problem is especially

important to XML DBMSs for two reasons. First, XML data are weakly-typed and

therefore XML databases must support the retrieval of XML data as string data,

even though some data could be treated as numeric data as well. For numeric leaf

values, selectivity estimation can be easily done using traditional histograms and

this approach has been adopted by [35, 67]. Second, the set of distinct path-string

pairs in an XML tree is typically orders of magnitude larger than the set of distinct

2The symbols ‘@’ and ‘$’ denote the start and end of a string respectively.
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rooted paths. For example, the DBLP XML data set has 2,026,814 distinct path-

string pairs, but only 275 distinct rooted paths. The small number of paths means

that the selectivity of all distinct rooted paths can be easily stored in an index using

little space3. The selectivity of distinct path-string pairs, however, would require

more sophisticated approximation techniques.

Three unique challenges make XML string selectivity estimation a nontrivial

problem:

1. How to capture substring statistics accurately in limited storage?

2. How to capture the correlation between paths and the substring statistics

accurately?

3. How to support a broad class of query types?

Capturing substring statistics for selectivity estimation in relational databases

has been studied in [15, 41–43, 49, 82]; however, the accuracy of these proposed

solutions is far from satisfactory [15]. The problem is hard because the set of

distinct strings is large and the corresponding set of possible substrings is even

larger (by orders of magnitude). Storing the selectivity of each distinct string or

substring is clearly infeasible and more sophisticated approximation techniques are

required to capture the substring statistics.

XML string selectivity estimation differs from relational substring selectivity

estimation in that a correlated path (whether implicitly encoded as a path ID or

explicitly as a XPath) is associated with the query substring. Hence, the XML string

selectivity estimation problem is harder than the relational substring selectivity

estimation problem, because the correlation between path and substring statistics

3In the case that the number of distinct rooted paths is significantly large, techniques based
on the Markov assumption and/or bi-similarity can be used [1, 17, 55, 66, 67].
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needs to be captured as well. Previous work on XML selectivity estimation has

emphasized the selectivity of navigational paths and tree structures [1,17,35,55,66,

67] over the selectivity of string predicates on leaf values. While correlated subpath

trees (CSTs) [17] and XPathLearner [55] do address the correlation between paths

and their associated string values in a limited way, XPathLearner does not capture

substring statistics and CSTs suffer from the underestimation problem [15]. The

problem of accurately capturing substring statistics that are correlated with paths

has not been adequately addressed.

As a consequence of the flexibility of XML, XML query languages, and XML

applications, XML DBMSs need to support a broad class of query types (exact

match, substring, prefix, suffix, etc.). Two particularly important query types are

exact match queries and substring queries. Exact match queries occur frequently

in transaction processing and in application generated queries, whereas substring

queries occur frequently in user generated queries, because users do not usually

remember a text string exactly. While separate statistics and techniques can be

used for each query type, a single estimation framework that is accurate for a broad

class of query types is preferable. Previous work that supports string predicates is

very restrictive in this aspect. The CST method [17] supports substring queries, but

is prone to underestimation for exact match queries [15]. The XPathLearner [55]

method supports exact match queries, but cannot handle substring queries at all.

The challenge then is a single framework for the accurate estimation of the selectivity

of a broad class of string predicates.

The XML string selectivity problem is even more challenging when we impose

on-line requirements:

1. no off-line scans of underlying data,
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2. adaptivity to query workload characteristics, and

3. adaptivity to changes in underlying data.

With the exception of [55], all existing techniques suffer from several limitations of

off-line techniques: they require expensive scans over the original data to gather

statistics, they do not adapt to workload characteristics, and they do not adapt to

changes in the underlying data.

We propose using CXHist for estimating the selectivity of exact match and sub-

string queries in XML databases. CXHist is a novel on-line selectivity estimation

method that is capable of supporting selectivity estimation on a broad class of query

types. CXHist captures accurate path-correlated statistics not from costly off-line

scans of the underlying data, but from query feedback, i.e. past query answers (see

Figure 5.1). Consequently CXHist is able to adapt to changes in the query workload

characteristics and in the underlying data.

The rest of the chapter is organized as follows. Related work is discussed in

the next section. Section 5.2 presents the CXHist customized for the XML string

selectivity estimation problem. Experimental results are given in Section 5.6. For

ease of exposition, we make several unnecessary assumptions that will simplify our

description of CXHist. CXHist will be presented in the context of exact match

and substring queries, even though CXHist is applicable to a broad class of query

types. We will also assume that rooted paths have been mapped to path identifiers

(pathIDs), because our main focus is on string predicates. This assumption is

motivated by the fact that many XML DBMSs map rooted paths to pathIDs for

more efficient data storage and query processing [44,76,87,89]. If the set of distinct

paths is too large to be mapped to a set of pathIDs, a Markov model can be used

to model the set of paths explicitly [1, 55] in the query model.
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5.4 Related Work

Sub-string selectivity estimation for relational databases has been studied in [41–

43,49,82]. All these techniques rely on a pruned suffix tree (PST) as the summary

data structure. Note that to adapt these techniques for XML selectivity estimation,

one PST will be required for each distinct path. PST-based methods typically parse

a query string into possibly (overlapping) component substrings that have an entry

in the PST. The counts of the component substrings are combined using either

complete independence or Markov assumptions. These assumptions often result in

large underestimation errors [15]. CXHist is a new type of histogram that is different

from a PST and therefore do not suffer from the same limitations.

Recently, Chaudhuri et al. [15] proposed using a regression tree on top of a basic

string estimation technique such as a PST to correct the underestimation problem

often associated with independence and Markov assumptions. While modeling of

estimation errors can always be used to reduce or correct the errors in a basic

string estimation technique, a simpler, more elegant solution is preferable. CXHist

is based on a new paradigm using Bayesian classifiers. CXHist does not combine

constituent substring selectivities using the independence or Markov assumptions;

therefore CXHist does not share the same limitations as PST-based methods.

XML selectivity estimation has also been studied in [1,17,35,55,66,67,84]. These

methods can be categorized by whether they are on-line or off-line, whether they

handle subtree queries or path queries only, whether they handle leaf values, and

whether the leaf values are assumed to be strings or numbers. One major difference

between our use of CXHist and previous work is that previous work has focused on

queries on the navigational paths or subtrees, whereas our use of CXHist focuses on

string-based queries on the leaf values reachable via a given path.
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The correlated subpath tree (CST) method [17, 18] is an augmented PST con-

structed from the XML data by treating element tags as atomic alphabets and the

leaf values as strings. The CST method is off-line, handles subtree queries, and

supports substring queries on the leaf values. Being a PST-based technique, the

CST method suffers from the underestimation problem. CXHist is a new histogram

technique that overcomes this limitation.

The Markov Table (MT) method of [1] uses a fixed order Markov model to

capture sub-path statistics in XML data. Queries on leaf values are not supported.

The XPathLearner method [55] extends the MT method [1] to an on-line method.

In addition, XPathLearner supports exact match queries on leaf values using a

form of compressed histogram to store the tag-value pair distribution. However,

XPathLearner cannot handle substring queries at all. CXHist is a new type of

histogram (not based on the Markov model) that can handle a broad class of query

types including substring queries.

The XSketch summary structure [66] is a variable order Markov model con-

structed by performing a greedy search for best fitting model. XSketch as pre-

sented in [66] handles subtree queries on element tags only. The extension presented

in [67] handles numeric leaf values using standard histograms – string predicates on

leaf values are not supported. Our use of CXHist assumes that ambiguity in navi-

gational path has been resolved to a set of rooted paths and addresses string-based

queries on the leaf values instead.

A different approach is taken by StatiX [35]. StatiX exploits structural informa-

tion in XML schemas to build histograms that support subtree queries on numerical

leaf values. Our use of CXHist addresses string-based queries on leaf values.

Position histograms [84] encode the ancestor-descendent relationship of each



5.5. CXHIST FOR XML STRING SELECTIVITY ESTIMATION 182

XML node using points on a 2D plane and builds a histogram for those points. Po-

sition histograms specifically address ancestor-descendent queries, whereas CXHist

is used to address string-based queries on leaf values.

The concept of using query feedback to build histograms has been used in [2,12]

for relational, numerical data and in [55] for XML path expressions. CXHist uses

query feedback in a similar way, but builds a different kind of histogram for string

data.

5.5 CXHist for XML String Selectivity

Estimation

5.5.1 Modelling XML Queries

To use CXHist histograms for estimating exact match and substring queries, a query

model for the two types of queries needs to be defined. A query modelM(q)=~x maps

a query to a feature set. A good query model should include features that distinguish

queries associated with different buckets with respect to the classifier. Conversely, a

good query model should exclude features that do not distinguish queries associated

with different buckets: a feature Xi whose probability P (Xi=x|B=b) is uniform over

the space of B for each value x would not affect the classification computation and

hence can be excluded without affecting classification accuracy.

For the substring or exact match queries that we consider, our query model maps

each query to a pathid and all the n-grams of the query (sub)string, where n is a

tunable parameter. In terms of probability modeling, each query is modeled as a

random variable T for the pathID and a series of random variables {G1, G2, . . . , Gk}
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for the sequence of n-grams of the query (sub)string. The distinction between

substring and exact match queries are implicitly encoded using a start of string

symbol ‘@’ and an end of string symbol ‘$’. For example, an exact match query (5,

@LIM$) is mapped to 〈5, @L, LI, IM, M$〉 for n = 2.

5.5.2 Estimating String Selectivity

Using the query model described in Section 5.5.1, each substring or exact match

query is modeled as a random variable T for the pathID and a series of random

variable {G1, G2, . . . , Gk} for the sequence of n-grams of the query (sub)string. In

addition to conditional independence (the naive Bayes assumption), we assume

stationarity of the n-gram distribution,

P (Gi|B) = P (G|B) ∀i. (5.5.18)

The n-gram model and the stationarity assumption were first used by Shannon [74]

for predicting English text and has since been widely used in text modeling. Sta-

tionarity allows us to store just one n-gram distribution per bucket instead of one

distribution for each position in a string. Hence, given a query with feature values

〈t, g1, g2, . . . , gk〉, its associated bucket is computed as,

b̂ = arg max
b∈B

{
P (B=b)P (T=t|B=b)

k∏
i=1

P (G=gi|B=b)

}
, (5.5.19)

and the selectivity of q is estimated as est(b̂) = sum(b̂)/count(b̂).
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5.5.3 Updating the CXHist Histogram

In Section 5.2.5 we have discussed gradient descent update for CXHist without

assuming a specific query model. We now show the update equations for the the

query model we adopted for substring and exact match queries. To simplify the

notation, we will use the following shorthand,

p(t, g1, . . . , gk) =P (T=t|B=b∗)
k∏

i=1

P (G=gi|B=b∗),

wx =N(X=x, B=b∗),

WX =
∑

x

N(X=x, B=b∗),

where X is a feature random variable (either T or G). The squared error function

for gradient descent is,

E(t, g1, . . . , gk) = [ε(t, g1, . . . , gk)]
2

= [p(t, g1, . . . , gk)− p̂]2 . (5.5.20)

For the pathID distribution, the update for wt is,

∆wt =
∂E(t, g1, . . . , gk)

∂wt

= 2ε(t, g1, . . . , gk)p(t, g1, . . . , gk)

(
1

wt

− 1

WT

)
. (5.5.21)

For the n-gram distribution, recall that we have assumed stationarity and that

{g1, . . . , gk} are not necessarily all distinct; hence, for each distinct n-gram g that
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occurs α times in {g1, . . . , gk}, the update in wg is computed as,

∆wg =
∂E(t, g1, . . . , gk)

∂wg

= 2ε(t, g1, . . . , gk)p(t, g1, . . . , gk)

(
α

wg
− k

WG

)
. (5.5.22)

We now illustrate the use of CXHist with an example.

5.5.4 Example

Consider the following query workload along with the true selectivities:

No. Path ID String Selectivity

1 0 @LIM$ 2

2 1 @MIN 20

3 0 @LIM 10

4 0 @LIM$ 2

5 0 IM 18

Note that query 2 and 3 are prefix queries, query 1 and 4 are exact match queries,

and query 5 is a proper substring query.

Given that the minimum and maximum selectivity are 1 and 20 respectively, and

that 5 buckets are to be used, we initialize the representative values as 1, 2, 4, 8, 16.

The count(b) field for each b is set to 1. The query model maps each query into a

pathID random variable T , and a series of 2-gram random variables Gi. We further

assume stationarity for the 2-grams and store only a single 2-gram distribution

per bucket. The feature distributions are initially empty. We adopt the following
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shorthand for computing the posterior probability for a given query,

L(b) = P (B=b)P (T=t|B=b)

k∏
i=1

P (G=gi|B=b),

p̂ =
P (B=b̂)

P (B=b∗)
P (T=t|B=b̂)

k∏
i=1

P (G=gi|B=b̂)

p∗ = P (T=t|B=b∗)
k∏

i=1

P (G=gi|B=b∗)

Query 1. CXHist gives a default estimate of 1 (50 % relative error) for the first

query because all the feature distributions are empty and no maximal point exists.

CXHist receives the true selectivity 2 as feedback and updates itself. The bucket

with the closest estimate is bucket b∗=2 and we update bucket 2 by adding 2 to

sum(2) and incrementing count(2). The feature distributions are initially empty,

so AddInstance is called and the resulting CXHist is:

B sum(b) count(b)
1 1 1
2 4 2
3 4 1
4 8 1
5 16 1

B T N(T,B)
2 0 1

B G N(G,B)
2 @L 1
2 LI 1
2 IM 1
2 M$ 1

Query 2. The second query is processed similarly and the resulting feature dis-

tributions are shown as follows:
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B sum(b) count(b)
1 1 1
2 4 2
3 4 1
4 8 1
5 36 2

B T N(T,B)
2 0 1
5 1 1

B G N(G,B)
2 @L 1
2 LI 1
2 IM 1
2 M$ 1
5 @M 1
5 MI 1
5 IN 1

Query 3. For the third query, only bucket 2 gives a non-zero posterior probability,

L(2) = P (B=2)× P (T=0|B=2)× P (G=@L|B=2)

× P (G=LI|B=2)× P (G=IM|B=2)

=
1

2
× 1× 1

4
× 1

4
× 1

4
= 0.007813,

therefore the selectivity is estimated as est(2) = 2 with a relative error of 400 %.

Using the query feedback, the bucket with the closest estimate is b∗ = 4 and

count(4) and sum(4) are updated accordingly. Since the feature distributions in

bucket 4 are empty, we apply the subroutine AddInstance once and check if

gradient descent is required,

p̂ =
1/3

1/3
× 1× 1

4
× 1

4
× 1

4
= 0.015625,

p∗ = 1× 1

3
× 1

3
× 1

3
= 0.037037.

Since p∗ > p̂, no further updates are required . The resulting state of CXHist is:
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B sum(b) count(b)
1 1 1
2 4 2
3 4 1
4 18 2
5 36 2

B T N(T,B)
2 0 1
4 0 1
5 1 1

B G N(G,B)
2 @L 1
2 LI 1
2 IM 1
2 M$ 1
4 @L 1
4 LI 1
4 IM 1
5 @M 1
5 MI 1
5 IN 1

Query 4. Only bucket 2 has a non-zero posterior probability,

L(2) =
1

3
× 1× 1

4
× 1

4
× 1

4
× 1

4
= 0.001302, (5.5.23)

so CXHist computes the estimate as est(2) = 2 with zero error. The update process

applies the subroutine AddInstance once on the feature distributions of bucket

2. The resulting histogram is as follows.

B sum(b) count(b)
1 1 1
2 6 3
3 4 1
4 18 2
5 36 2

B T N(T,B)
2 0 2
4 0 1
5 1 1

B G N(G,B)
2 @L 2
2 LI 2
2 IM 2
2 M$ 2
4 @L 1
4 LI 1
4 IM 1
5 @M 1
5 MI 1
5 IN 1



5.5. CXHIST FOR XML STRING SELECTIVITY ESTIMATION 189

Query 5. Computing the posterior probabilities,

L(1) = L(3) = L(5) = 0

L(2) =
2

4
× 1× 2

8
= 0.125

L(4) =
1

4
× 1× 1

3
= 0.083333,

CXHist concludes that bucket 2 maximizes the posterior probability and returns

est(2) = 2 as the estimate (with 89 % relative error).

Using the query feedback, the bucket with the closest estimate is computed to

be b∗ = 5, and count(5) and sum(5) are updated accordingly. Since L(5) = 0,

the subroutine AddInstance is applied once. The resultant state of the CXHist

histogram is shown below:

B sum(b) count(b)
1 1 1
2 6 3
3 4 1
4 18 2
5 54 3

B T N(T,B)
2 0 2
4 0 1
5 1 1
5 0 1

B G N(G,B)
2 @L 2
2 LI 2
2 IM 2
2 M$ 2
4 @L 1
4 LI 1
4 IM 1
5 @M 1
5 MI 1
5 IN 1
5 IM 1

In order to determine whether gradient descent is required, the update procedure

computes p̂ and p∗,

p̂ =
2/5

2/5
× 1× 2

8
= 0.25, p∗ =

1

2
× 1

4
= 0.125.

Since p̂>p∗, gradient descent is required and we compute the deltas for wt=N(T=0, B=5)
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and wq=N(G=IM, B=5) using Equation (5.5.21) and (5.5.22),

∆wt = 2× (0.125− 0.4)× 0.125× (1− 1

2
) = −0.034

∆wq = 2× (0.125− 0.4)× 0.125× (1− 1

4
) = −0.052.

Normalizing (∆wt, ∆wq) by the minimum absolute delta value, we have (∆wt= −
1, ∆wq=− 1.5). Using a learning rate of 1, CXHist updates the following,

N(T=0, B=5) ← N(T=0, B=5) + 1,

N(G=IM, B=5) ← N(G=IM, B=5) + 1.5.

Recomputing p∗, we have

p∗ =
2

3
× 2.5

5.5
= 0.303030 > p̂,

and the gradient descent loop terminates.

5.6 Experiments

In this section, we present our experimental evaluation of CXHist for the XML

string selectivity estimation problem. We study the effects of different parameters,

evaluate the performance of CXHist under varying memory constraints and workload

skew, and also investigate the stability of CXHist under changes in the workload

characteristics.
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substring exact match mixed
ID s uniq usize size uniq usize size uniq usize size

I 100K 3,279 56,449 87,825 4,964 221,426 223,020 8,243 277,875 310,841
II 10K 3,337 57,283 87,302 4,687 207,945 222,033 8,024 265,228 309,331

III 1K 2,712 46,877 87,584 2,808 125,285 223,184 5,520 172,162 310,764
IV 100 1,175 20,674 88,000 522 24,583 239,024 1,697 45,257 327,020
V 10 253 4,484 87,793 67 3,436 265,349 320 7,920 353,138

Table 5.1: Workload characteristics. The standard deviation of the Gaussian
distribution used to generate the workload is given by column “s”. The number
and size of the distinct queries in the workload is given by the “uniq” and “usize”
fields. The “size” field gives the size of the workload in bytes. Each exact match
and substring workload has 5000 queries per workload and each mix workload has
10,000 queries.

Data Set. We have used the DBLP XML data (as of October 2003). The XML file

has been preprocessed into a collection of 〈pathid, string, count〉 triples by hashing

the rooted path associated with each leaf node into a numeric pathID and counting

the occurrences of each distinct 〈pathid, string〉 pair. The total number of leaves

is 5,045,240 of which there are 2,026,814 distinct 〈pathid, string〉 pairs. The most

frequent 〈pathid, string〉 pair occurs 77,555 times.

Query workloads. For each experiment we have used three types of workloads:

substring match workload, exact match workload, and a mixed workload. Query

workloads are generated using the collection of 〈pathid, string, count〉 triples. The

〈pathid, string, count〉 triples are first randomly permuted, so that the generated

workload is not dependent of the initial order of the triples. Let the randomly

permuted triples be indexed by 1, 2, . . . , n. We randomly pick an index µ as the

mean or mode. Given a particular standard deviation s, we generate a discretized

Gaussian distribution G(n, µ, s) over the indexed set, centered at µ with standard
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Figure 5.6: Sorted query selectivities of Workload IIs, IIe, and IIm. The plot for
IIe is shown in log scale to highlight the similarity to a Zipf distribution.

deviation s. To generate a query in a query workload, we generate a random index4

i from the discretized distribution G(n, µ, s). If we are generating an exact match

query, the generated query consists of the pathid and text string from the i-th triple.

If we are generating a substring query, the generated query consists of the pathid

from the i-th triple and a substring token generated by uniformly randomly picking

a token from the text string of the i-th triple. A substring query is generated only

4This can be accomplished by generating a uniform random variate u ∈ [0, 1] and then finding
the index i such that P (I=i) = u, where I ∼ G(n, µ, s).
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if the chosen triple has a text string with more than one token and tokens with

length shorter than three characters are discarded. A string is broken into tokens

using white space and punctuation symbols. After all the queries of the workload

have been generated, the workload is randomly permuted. Mixed workloads are

generated by mixing and randomly permuting a substring workload and an exact

match workload.

We present results from a subset (mean µ=992, 942) of the workloads we exper-

imented with. Table 5.1 summarizes the important workload characteristics. The

cardinality and size (in bytes) of the set of distinct queries in each workload (see

Table 5.1) are important in allocating memory to a selectivity estimation method:

If the allocated memory is large enough to store the set of distinct queries (and the

corresponding selectivities), it forms a cache that can estimate selectivity with zero

error.

Figure 5.6 shows the typical distribution of query selectivities (sorted in de-

scending order) of the three types of workloads. Note that these distributions are

consistent with Zipf’s Law for word frequencies [90]: the selectivity distribution

over query rank in log scale (see Figure 5.6(d)) is almost linear.

Each workload will be referenced using its ID and a letter (s,e,m) denoting

whether it is a substring, exact match, or mixed workload respectively. For exam-

ple, workload IIm refers to the mixed workload generated with standard deviation

10,000.

Comparisons. CXHist will be compared with two other methods: the off-line

pruned suffix tree (PST) method and the on-line compressed histogram (CH) method.

The PST method constructs one pruned suffix tree per pathID for the leaf values
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associated with the pathID. Note that this is the same as constructing one large

suffix tree where the first level nodes contain the pathIDs as alphabets. The suffix

trees are pruned by increasing threshold counts to obtained the desired size. The

CH method is adapted from XPathLearner [55]. CH caches the top-k query feed-

back with the largest selectivity and aggregates the selectivity of the other query

feedback into buckets according to the pathID and the first q letters of the leaf value.

Whenever CH uses more than triggersize bytes of memory, CH discards buckets in

increasing order of selectivity until memory usage is less than targetsize bytes.

Counting Memory. For CXHist, 4-byte integers are used for the sum(b) and

count(b) fields. Each pathID distribution stores a list of 8-byte 〈pathid, count〉
pairs and each n-gram distribution stores a list of (n + 4)-byte 〈n-gram, count〉
pairs. For the CH method with parameters k and q, the memory usage consists of

the memory used to store the top k queries and their selectivity, and the memory

used by the list of buckets. Each bucket stores a q-byte prefix string, and three

4-byte fields for the pathID, sum, and count. For the PST method, consult [49] for

memory accounting.

Parameters. For both CXHist and CH the parameter targetsize is set to be 10%

lower than triggersize. The parameter triggersize is set to be a fraction of usize,

the size of the set of distinct queries in the workload. For CH, the parameter k

needs to be a small fraction of uniq , the number of distinct queries in the workload,

otherwise all the distinct queries will be cached. Where there is no confusion which

workload is being used, the values for triggersize and k will be specified as a percent-

age. For our experiments, we have set k = 0.125× uniq or equivalently k = 12.5%.

The notation CH(k, q, triggersize) denotes the CH method with parameters k, q and
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triggersize. For CXHist, the buckets are initialized with nexp exponential values and

the gradient descent update method with a learning rate of 1 is used. The maxi-

mum selectivity is set to half the maximum number of 〈pathid, string〉 pairs, i.e.,

2,522,620. The notation CXHist(n, m, nexp, triggersize) denotes the CXHist method

with the following parameters: n-gram features, m buckets, nexp exponential rep-

resentative bucket values and triggersize as the pruning threshold. Section 5.6.1

discusses the effect of the parameters n, m and nexp on accuracy. For PST, we

found the independence strategy I1 of [49] to be most accurate in terms of average

relative error among the different estimation strategies in [43,49]; hence, the results

we present for PST uses strategy I1.

Metrics. We use the average relative error (a.r.e.) to measure the accuracy of the

selectivity estimation methods. The a.r.e. with respect to a set W of n queries is

defined as

a.r.e. =
1

n

∑
q∈W

|σ(q)− σ̂(q)|
σ(q)

, (5.6.24)

where σ(q) is the selectivity of query q in the workload W and σ̂(q) is the cor-

responding estimated selectivity. The state of the selectivity estimation method

is assumed to remain unchanged for all the queries in workload W . For on-line

methods, the on-line a.r.e. better reflects the performance of the on-line selectivity

estimation method during deployment. The on-line a.r.e. is defined as in (5.6.24),

except that the selectivity estimation method is allowed to update itself in between

queries. For an off-line method, the on-line a.r.e. and the a.r.e. are the same.
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5.6.1 Effect of Parameters

CXHist is governed by three main parameters: the number of buckets, the number

of exponential values nexp used in the initialization of the bucket representative

values (see Section 5.2.4), and the length n of each n-gram. We investigate the

effect of each of these three parameters on the performance of CXHist (all else being

constant). We present the results for the mixed workload IIm.
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Figure 5.7: Performance of CXHist for different settings of n, the length of each
n-gram feature.
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Figure 5.8: Performance of CXHist for different settings of nexp, the number of
exponential representative values used for initializing the buckets.

Figure 5.7 shows the effect of varying the length of each n-gram. Using longer

n-grams as features does improve the accuracy of CXHist, but note that longer n-
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Figure 5.9: Performance of CXHist with different number of buckets.

grams also require more storage space for fixed number of entries in the feature

distributions.

Figure 5.8 shows the effect of varying nexp, the number of exponential values

used to initialized the buckets. Our results show large improvement in performance

when increasing nexp from 4 to 10, but less significant improvement beyond 10.

This is not surprising, since smaller values affect the relative error more.

Figure 5.9 shows the effect of varying the number of buckets with the parameter

nexp set to ten, the smallest number of buckets we experimented with. Our results

show that increasing the number of buckets beyond ten does not significantly affect

the relative error.

5.6.2 Accuracy vs Memory

In this experiment, we vary the amount of memory allocated to each method via the

triggersize parameter and measure the relative error performance for each workload.

Note that triggersize is set to a fraction (1
8
, 1

4
, 1

2
, 1) of the usize of the workload (see

Table 5.1), which in turn is less than 1% the size of the XML data (ca. 125 MB).

We present a set of representative results (Figure 5.10) using Workload II. The
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Figure 5.10: Performance of the PST, CH and CXHist methods over varying mem-
ory (triggersize) allocations.
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overview plots (Figure 5.10(a), 5.10(c) and 5.10(e)) show that the PST method is

less accurate and uses more memory compared to CH and CXHist. The detailed

plots (Figure 5.10(b), 5.10(d) and 5.10(f)) compare the performance of CH and

CXHist. We also show the results of the CH method for two prefix lengths (3 and

4) and the results of CXHist for two n-gram lengths (3 and 4), because accuracy

is dependent on both memory and the prefix/n-gram length. For substring and

mixed workloads, CXHist is more accurate than CH (Figure 5.10(b) and 5.10(f)).

For exact match queries, CH is slightly (less than 1%) more accurate than CXHist

(Figure 5.10(d)). The reason is that the selectivity distribution of the exact match

queries is more skewed than that of the substring queries (see Figure 5.6) and hence

the top-k cache in CH captures almost all of the queries with large selectivities and

the buckets need only capture the remaining selectivities which are uniformly small

and close to one.

We further analyze the results for triggersize=25% by partitioning the selectivity

estimates according to the true selectivity. Because small selectivities occur much

more frequently in the data and consequently in the workload, we show the average

relative error for the small selectivity partitions in Figure 5.11 and augment the

figures with the fraction (normalized to a percentage) of the queries in the workload

with the specified true selectivity. The CH method is not accurate for queries with

small selectivities when the selectivity distribution in the workload is less skewed

(for example, in the substring workload, see Figure 5.11(a)). The reason is that

the selectivities of the queries not captured by the top-k cache is less uniform and

cannot be captured by the buckets accurately. The CXHist, on the other hand,

seems to be consistently accurate for queries with small selectivities. For queries

with very large selectivity, however, CH is more accurate than CXHist, because it
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Figure 5.11: Performance of the CH and CXHist methods over Workload IIs, IIe,
and IIm partitioned by selectivity for the smallest 10 selectivities.

caches the selectivity of the k queries with the largest selectivity. This is not a

limitation in CXHist, because (1) queries with large selectivity are infrequent, and

(2) the CXHist buckets with large representative values can be modified to store

their associated queries exactly (without query modeling) to mimic the behavior of

a cache for queries with large selectivity.
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5.6.3 Accuracy vs Workload Skew

In this experiment, the parameter triggersize is fixed at 25%×usize and the perfor-

mance on workloads generated with different skew (standard deviation) is measured.

Increasing standard deviation denote increasing uniformity, i.e., queries in the work-

load cover the XML data more uniformly. Highly skewed workloads are generally

easy for on-line selectivity estimators, because the set of distinct queries are small

and repetitions are frequent. Highly uniform workloads are generally hard, because

repetitions seldom occur and almost every query is unique. Figure 5.12 shows the

on-line a.r.e. vs skew plots. For substring workloads, CH is significantly less accu-

rate than CXHist especially when the workload is highly skewed. For exact match

workloads, both CH and CXHist are very accurate with CH being slightly more

accurate for medium skew. For mixed workload, the superior accuracy of CXHist

on substring queries dominates.

5.6.4 Changing Workload Characteristics

In this experiment, we investigate how changes in the workload characteristics affect

accuracy of the estimates. The performance of CH and CXHist are tested on special

workloads that are constructed by concatenating two workloads generated with

different mean and standard deviation. We present the results for the concatenated

workload IIm-IIIm. Other combinations of workloads exhibit similar behavior.

In Figure 5.13, we measure the a.r.e. with respect to IIm after each of the first

10,000 queries and we measure the a.r.e. with respect to IIIm, after each of the last

10,000 queries. CXHist remains accurate throughout the 20,000 queries, whereas

the accuracy of CH degrades after the first 5000 queries.
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Figure 5.12: Performance of the CH and CXHist methods over workloads with
different skew.

In Figure 5.14, we show the accuracy of CH and CXHist for different memory

allocations on the same concatenated workload IIm-IIIm. Compared to the perfor-

mance on Workload IIm alone (see Figure 5.10(f)), the performance of CH on the

concatenated workload has degraded significantly (the parameter settings are the

same for both figures). The performance of CXHist, on the other hand, remains

stable.
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Figure 5.14: On-line performance of the CH and CXHist methods with different
triggersize settings over a concatenated workload IIm-IIIm.

5.7 Conclusion

In this chapter, we have presented a new type of histogram called CXHist. CXHist

uses a Bayesian classifier to capture the mapping between queries and their selec-

tivity. The key idea is to partition the query selectivities into buckets and use a

Bayesian classifier to approximately capture the queries that are associated with

each bucket. To the best of our knowledge, CXHist is the first type of histogram

based on classification. CXHist is on-line: it gathers statistics from query feedback

rather than from costly data scans, and hence adapts to changes in workload char-

acteristics and in the underlying data. We have designed an update algorithm based
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on the gradient descent method (delta rule) for learning a CXHist histogram from

query feedback. CXHist is general and can be applied to a broad class of queries on

possibly different data models by defining an appropriate query model. CXHist can

be easily implemented and deployed in practice.

We have applied CXHist to an important selectivity estimation problem in XML

databases — the XML string selectivity estimation problem. Previous work on XML

selectivity estimation has focused mainly on the tag-labeled paths (tree structure)

of the XML data; however, for most real XML data, the number of distinct string

values at the leaf nodes is orders of magnitude larger than the set of distinct rooted

tag paths. The real challenge lies in accurately estimating the selectivity of string

predicates on the leaf values reachable via a given path. We have defined a query

model for the XML string selectivity estimation problem using an n-gram model of

the (sub)string predicate together with the stationarity assumption on the n-gram

distribution. The algorithms for selectivity estimation and for updating the CXHist

histogram have also been customized accordingly. Our experiments have shown

that CXHist provides very accurate estimates for both exact match and substring

queries — no previous technique have this property. Moreover, its performance is

stable over changes in workload characteristics.



Chapter 6

Dissertation Conclusion

In this dissertation, we have proposed on-line algorithms for the inverted index

update problem and three particular versions of the selectivity estimation problem.

The landmark-diff method exploits the non-uniform locality of edits in an up-

dated document to minimize the amount updates required on an inverted index.

SASH builds and maintains a set of histograms using only query feedback in-

formation in order to support selectivity estimation of range queries on a relational

database. In gathering statistics using query feedback, SASH exploits the non-

uniform query characteristics of the workload to optimize the use of limited amount

of given memory to store statistics that are most relevant to the query workload.

XPathLearner addresses the selectivity estimation of path expressions in XML

databases. XPathLearner models the selectivity of path expressions using a Markov

chain, but differs from previous work in that the model is inferred from query

feedback information as opposed to constructing the model from the XML data

itself. The statistics gathered by XPathLearner is therefore tuned to the query

workload characteristics.

Building on the insight that modeling the query workload is more effective and

205



206

space efficient than modeling the data, we develop a classification based histogram

called CXHist. CXHist builds a histogram by grouping queries into buckets according

to their selectivities and maintains the query-to-bucket mapping using a Bayesian

classifier. We apply CXHist to the estimation of substring and exact match queries

in XML data with excellent empirical results.

All the methods proposed in this dissertation avoids off-line scans of the under-

lying data and exploits non-uniform update or query characteristics to optimized

performance or accuracy. Our experiments have shown that on-line methods can be

very effective in practice and sometimes surpass the performance of off-line meth-

ods. While current information processing methods are predominantly off-line in

nature, as more and more information is generated, collected and accumulated in

digital media, off-line scans will become increasingly costly and infeasible. On-line

methods as exemplified by those presented in this dissertation will then become

increasingly important.
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