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Abstract—Solar irradiance forecasting is an important prob-
lem in renewable energy management where any dips in solar
energy generation must be made up for by reserves in order to
ensure an uninterrupted energy supply. In this paper, we study
several data mining methods for short term solar irradiance
forecasting at a given location. In particular, we apply linear
regression, probabilistic models, and naive Bayes classifier to
forecast solar irradiance one day ahead, i.e., we forecast what
tomorrow’s solar irradiance will be like at sundown today. We
evaluate the forecasting performance of our adaptations of the
three models using land-based weather data from several weather
stations on the island of Oahu in Hawai‘i.

I. INTRODUCTION

The increasing adoption of grid-linked photovoltaic energy
generation systems at the residential and commercial scale has
created the need for accurate forecasts for solar irradiance
(measured in Watts per square meter, W/m2) in order for
energy grid operators to manage the variability in renewable
energy supply. Essentially energy grid operators need to ramp
up conventional energy generation whenever there is a drop
in the renewable energy generation in order to meet energy
demands. Meteorologists have used physics-based numeri-
cal weather prediction (NWP) models such as the Weather
Research and Forecasting (WRF) model to make weather
(including solar irradiance) forecasts, but such systems often
cannot take into account the rich abundance of land-based
sensor data that are now available. Computational scientists
have also used machine learning techniques such as artificial
neural networks for this forecasting problem with reasonable
results [7]. The solar irradiance forecasting problem is in fact
a suite of related forecasting challenges depending on the type
of data available, the time granularity of the data, the lead
time, the spatial granularity and many other parameters. It is
generally recognized that NWP methods are best for a lead
time of a few days, whereas machine learning methods may
be more suitable for shorter lead times up to a day or two.

In this paper we address a particular instance of the solar
irradiance forecasting problem. Given historical and current
time series data of weather variables (most notably, solar
irradiance) measured using land-based sensors, we would like
to forecast the solar irradiance for the brightest daylight hours

(0800-1700) of the next day given the current day’s data (up
to 1700 hours).

As an example, consider the solar irradiance at Schofield
Barracks on the island of Oahu (in Hawai‘i) between February
12th and 15th, 2014 as shown in Fig. 1. At 1700 on Feb.
13, 2014, we would like to forecast the solar irradiance at
0800, 0900, . . . , 1700 on Feb. 14, 2014. In this particular
case, an accurate forecast would be very useful for energy
grid operators to plan for standard oil-based generation f or
the overcast day (Feb. 14).

In this paper we are primarily interested in the use of
probabilistic modeling techniques for this problem; however,
we also discuss the use of linear regression model as a
point of comparison. We have investigated the use of more
sophisticated probabilistic models such as Bayesian networks,
but have settled on using joint distributions on the solar irradi-
ance time series due to the following reasons. Our analysis
of the information-theoretic dependency between the solar
irradiance and weather variables at prior times (at the same
location) show that solar irradiance is mostly dependent on
precipitation and solar irradiance at prior times. Unfortunately,
that result is not consistent across different locations on the
island. Moreover, there are many locations where we do not
have precipitation data. Hence, for this paper we focus on
building joint distribution models on the solar irradiance time
series data. We also consider the Naive Bayes classifier as an
alternative to the joint distribution model.

In order to study how well probabilistic models perform for
the solar irradiance forecasting problem, we chose publicly
available weather observation data from land-based weather
stations on the island of Oahu in the state of Hawai‘i, USA to
build, tune and test our probabilistic models.

The contributions of this paper are as follows:

1) We propose specific adaptations of linear regres-
sion models, probabilistic models, and Naive Bayes
models for the specific 1-day ahead solar irradiance
forecasting problem described above. The importance
of this specific problem is validated with the local
Hawaiian utility company. We evaluated our models



(c) Overcast Day

Fig. 1. Land-based observations of solar irradiance (W/m2) at Schofield Barracks from 02/12/2014 to 2/15/2014 between 0800 and 1700.

using real weather station data from the island of
Oahu in Hawai‘i.

2) We studied the mutual information between daily
solar irradiance profiles and (other) weather variables
at different prior times for different locations on
the island. We found that solar irradiance is consis-
tently dependent on itself at prior times. For some
locations, precipitation also yields significant mutual
information. The mutual information characterization
is different for each location.

3) We found that the size of the training data set
has an effect on the forecast error patterns. Naive
Bayes classifier seems to perform very well for small
training data sets (2 years).

4) Dynamically (for each prediction) choosing a model
from an ensemble of probabilistic models using en-
tropy or entropy weighted with support increases the
robustness of the forecast.

5) In general, probabilistic models that are dependent on
the solar irradiance profile the previous day provides
good forecasting performance. If the data set is small,
Naive Bayes classifier might be more accurate. Linear
regression is not far behind in accuracy.

The rest of the paper is organized as follows. Section II will
describe the forecasting models we used with our proposed
adaptations. Section III will describe the experiments and the
results. Section IV will describe related work and we conclude
in Section V.

II. MODELING SOLAR IRRADIANCE

A. Problem Formulation

We assume that land-based weather stations collect ob-
servation data on solar irradiance (W/m2) and other weather
variables such as temperature, relative humidity, etc. at a fixed
sampling rate. The data associated with each weather variable
is conceptualized as a time series.

Given historical weather time series data, learn a
model that would predict the solar irradiance for the
daylight hours of the next day given the observation
data up to 1700 of the current day.

Since we are interested in daylight hours with significant
amounts of solar insolation, we ignore data points between

1701 to 0759.

We investigate the use of three different forecasting models
for this problem: Linear Regression, Naive Bayes, Probabilistic
Model.

B. Linear Regression Models

Given that the solar irradiance time series is continuous,
an obvious solution is to use linear regression. Let each data
point in the solar irradiance time series be denoted by St,
where t denotes the timestamp at the granularity of hours. To
forecast the solar radiation of each hour 1-day ahead, we create
a separate linear regression model for each hour of the next
day using all hours of the previous (consecutive) w days. For
example, the model for predicting S20140214.0900 with w = 1
would be,

S20140214.0900 = c1 · S20140213.1700

+c2 · S20140213.1600 + c3 · S20140213.1500

+ . . .+ c10 · S20140213.0800 + c11. (1)

Hence, there would be 10 linear regression models for each
hour between 0800 and 1700. We use the standard least squares
algorithm to obtain the coefficients ci for each model.

C. Probabilistic Models

An interesting alternative to using continuous techniques
(eg. linear regression) is to discretize the data and apply
probabilistic techniques. Since we are interested in 1-day ahead
prediction, we discretize the data into daily profiles (or weather
regimes). For each day in the data set, we construct a vector of
solar irradiance values from 0800h to 1700h. The set of daily
vectors are then fed to a clustering technique such as k-means.
Figure 2 shows the daily profiles (centroids) from k-means
clustering [6] with k = 5 and the euclidian distance measure.
In consultation with domain experts, it was determined that
k = 5 gives profiles that fit human intuition of the solar
characteristics for that location.

Using the five daily profiles from k-means clustering, we
transform the original solar irradiance time series (hourly
sampling rate or less) into a sequence of daily solar irradiance
profiles. We now redefine St to be the discrete random variable
for the daily profile at a particular date t. Oftentimes, we will
use relative dates in the subscript of St instead of actual date
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Fig. 2. Solar irradiance (W/m2) profiles from 01/01/2003 to 12/31/2013
between 8 AM and 5 PM of Schofield Barracks. The centroids are obtained
by applying k-means with k = 5 and euclidian distance as similarity function.
C0875 profiles are similar and therefore omitted from the work.

such as t = 20030101. Given a window size w, we construct
a joint probability distribution as

P (St, St−1, . . . , St−w+1), (2)

and use the following prediction function to predict St given
that the previous (w−1) days’ profiles are 〈s1, s2, . . . , sw−1〉,

ŝ = arg max
s

P (St=s|St−1=s1, St−2=s2, . . . ,

St−w+1=sw−1). (3)

Note that the joint probability distribution can be easily esti-
mated by counting the number of occurrences of each distinct
w-day sequence in the discretized time series data. For the days
when the previous (w − 1)-day sequence 〈s1, s2, . . . , sw−1〉
does not occur in the training data at all, the conditional
distribution does not exist for that sequence and we return the
most frequent daily solar irradiance profile (using the prior
distribution) as the prediction.

We are still faced with one problem: if we have a set
of values for w, we will have a set of different probabilistic
models (one for each value of w). How do we choose which
model to use (i.e. choose w)? It should be clear that w is
associated with the question of how much history is needed
to predict the profile for the next day. We investigate three
approaches:

Fixed Choose the w that minimizes the prediction errors
on the training data and use the same w for all
the testing instances,

Entropy Given a testing instance, dynamically choose the
w that minimizes the entropy of the posterior
distribution (Eqn 3),

Support Similar to entropy, but further weight the entropy
with support.

The fixed method is straightforward and requires no further
explanation.

For the entropy method, we are given a testing instance
which is a profile sequence 〈s1, s2, . . . , sw−1〉 and need to
predict the profile on day i. Let H(w) denote the entropy for
the distribution,

P (St|St−1=s1, St−2=s2, . . . , St−w+1=sw−1). (4)

The entropy method would choose w as

ŵ = arg min
w

H(w). (5)

Minimizing the entropy ensures that the model with the most
skewed posterior distribution is chosen. Recall that a uniform
distribution cannot distinguish between the five profiles. A
skewed distribution, on the other hand, means that the his-
torical data tends to favor a particular profile given the w− 1
previous days’ profiles.

One difficulty with the entropy method is that it is
possible for a skewed distribution to be based on very
few data points (giving us less confidence), while a less
skewed distribution may be supported by a large por-
tion of the data (giving us more confidence). Note as
the window size w increases, the number conditional vari-
ables (St−1=s1, St−2=s2, . . . , St−w+1=sw−1) increases, but
the number of occurrences of each distinct sequence of
〈s1, s2, . . . , sw−1〉 decreases, resulting in lower support for
that conditional distribution. To account for the support, we
weight the entropy by the number of supporting data points
for that distribution. The support method would choose w as

ŵ = arg min
w

H(w)

N(s1, s2, . . . , sw−1)
, (6)

where N(s1, s2, . . . , sw−1) denote the number of occurrences
of the sequence 〈s1, s2, . . . , sw−1〉 in the data.

D. Naive Bayes Classifier

An alternative to using the joint distribution with different
window size w is to apply the Naive Bayes assumption, i.e., the
predictor variables (St−1, . . . , St−w+1) are independent given
the dependent variable. The solar irradiance profile on the date
t can then be predicted using

ŝ = arg max
s

P (St=s)

w−1∏
i=1

P (St−i|St=s). (7)

Observe that the Naive Bayes assumption is used to factorize
the full joint distribution into a product of lower-order joint
distributions ( P (St−i|St=s)’s ). For small data sets, estimat-
ing the lower-order distributions would often be more accurate
than estimating the full joint distribution.

III. EXPERIMENTS

Data. We used publicly available weather station data from
Mesowest Network1. While we experimented on all weather
stations with solar irradiance data on the island of Oahu,
we present results on two specific weather stations. Schofield
Barracks (SCBH1) station is located in the center of Oahu and
has data starting from 2003 to 2014 (giving a total of 4079
time points). New Jersey Avenue (C0875) is located on the
southeast of Oahu and we used the data between 2012 and
2014 when solar irradiance data is available for that station.
Whenever the data sampling rate is finer than every hour, we
aggregate (usually average) the data to hourly time points.

Preprocessing. Using real sensor data has many chal-
lenges. The foremost being missing data. While interpolation

1http://mesowest.utah.edu/
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(a) Probabilistic Model
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(b) Naive Bayes
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(c) Linear Regression

Fig. 3. Mean absolute error of all forecast models for SCBH1 Station.
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(b) Naive Bayes
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(c) Linear Regression

Fig. 4. Mean absolute error of all forecast models for C0875 Station.

is certainly an option, we chose to discard missing data from
our training and testing data set in order to avoid interpolated
data from biasing our results.

Performance Measures. We measure the accuracy of our
forecasting models by measuring the mean absolute error
(MAE) of each daylight hour being predicted (0800-1700).
Given a testing time series data set with hourly time points
(daylight hours only) indexed from 0 to n, MAE is defined as

MAE =
1

n

n∑
t=0

|st − ŝt|. (8)

To evaluate the performance of the models, we split the dataset
into a training data set (earlier years) and a testing data set
(2014 data). The MAS is measured on the testing data set. We
did not use cross validation because the use of earlier years for
training and later years for test better mimic operational usage
of such forecasts. Since the probabilistic models predicts the
daily solar irradiance profile for the next day, the hourly solar
irradiance in the profile is used to compute the MAE. Note that
the maximum solar irradiance during the sunniest hour on the
sunniest day is approximately 1200 W/m2. In the following
plots, “Ent” and “Spt” denote respectiviely the entropy and
support method for choosing the best joint distribution for the
probabilistic model approach.

A. Overall Performance

Figures 3 and 4 show the accuracy of the forecasts of
the different models over different values of w. For SCBH1,
observe that the probabilistic model with a fixed w = 2 yielded
the most accurate forecast although Naive Bayes and linear
regression are very close. The window size w did not seem to
make much difference for each of the models. In fact, a bigger
window (and hence more history) seems to make the forecasts
slightly worse.

More interestingly, for C0875, Naive Bayes is the most
accurate and the probabilistic models is significantly worse
especially with w = 6, 7, 8. However, the entropy and support
based methods for dynamically choosing the optimal w (and
hence model) seem to provide much needed robustness, since
their performance seems very close to the best models (w =
4, 5).

There are two possible reasons why the performance char-
acteristics of the two stations could be so different. First, the
weather patterns at the two stations could be so different as to
favor different forecasting models. Second, the SCBH1 result
uses 10 years of training data, while the C0875 result uses
only 2 years worth of training data. Could that account of the
difference ?

Varying the training set size. To shed light on the question
of how training data set size affects forecasting performance,
we measured the accuracy of the probabilistic models for the
SCBH1 station for different training data set size (2, 3, . . . , 10
years). In the interest of space, Fig. 5 only shows the results for
2, 3 and 10 years and we denote the shape of those 3 error plots
as pattern A, B, and C respectively. Our analysis of the rest of
the results (not shown) show a repeating error pattern between
training data set size of 2-10 years: A,B,B,B,C,B,C,B,C. We
are currently still investigating the reason for this repeating
pattern. We conjecture that there may be a hidden weather-
related variable (El Niño years?) that we have not accounted
for. In any case, the error plots for the probabilistic models
for SCBH1 with two years of training data does look similar
in shape to that for C0875, which leads us to think that it is
likely that the difference in the size of training data is likely
to account for the difference between the results of the two
stations.

A consequence of the above reasoning is that the Naive
Bayes classifier is likely to be a better predictor when the
training data set is small as compared to the more complex
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(a) 2 years of training data (pattern A)
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(b) 3 years of training data (pattern B)
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(c) 10 years of training data (pattern C)

Fig. 5. Accuracy of probabilistic models using training data with different size.
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Fig. 6. Number of times the entropy method chose each of the w
values/models for SCBH1 using two years of training data (2012 and 2013).

joint distributions. That does fit our mathematical intuition that
since the Naive Bayes classifier only uses joint distributions
of size w = 2, given a small training data set, it is likely to
be able to have more support for those distributions than joint
distributions where w > 2.

Robustness of the Entropy & Support methods. Ob-
serve in the errors for the probabilistic models on C0875
Fig. 4(a) and on SCBH1 Fig. 5(a) that while the entropy and
support methods for dynamically choosing a w (and hence
a joint distribution model) do not give the best accuracy,
they consistently provide a forecast that is very close to the
best fixed-w model. We plot in Fig. 6 the number of times
the entropy method chooses a particular joint distribution
(denoted by w = 2, . . . , 8) for SCBH1. The plot shows that
the entropy method tends to favor the model associated with
w = 4, 5 which corresponds to the two most accurate models
in Fig. 5(a).

B. Dependency on Other Weather Variables

Will including other (land-based) weather variables in our
forecasting models help? We address that question in this
section. We analyze the mutual information between the daily
solar irradiance profile paired with various weather variables
(including itself) and at varying lead times to determine
the strength of the dependency. The weather variables un-
der consideration (pressure, temperature, humidity, dew point,
wind and precipitation) are chosen based on their widespread
availability on most weather stations on Oahu where solar
irradiance data are also available. In particular, we found that
pressure data is only available with solar data at C0875.

We calculate the mutual information between each weather
variable time series and the solar radiation time series by
varying the amount of days w between both time series. For
the solar mutual information we use the same time series with
varying values of w. Figures 7 shows the calculated mutual
information for SCBH1 for 11 years of data (2003 to 2014).

Observe that precipitation yields the strongest dependency
with solar irradiance profiles across all weather variables, even
stronger than its auto-dependence. From a meteorology point
of view, it is not surprising since rain (precipitation) requires
rain clouds which would block the sun’s radiation.

We do need to be careful with generalizing the results
to other stations on the island, because the Hawaiian islands
are well-known for its wide variety of micro-climates. Even
regions in close proximity may exhibit wildly different climate
conditions! Fig. 8 plots the mutual information of solar irradi-
ance profile with other variables for the C0875 station using
two years of data. Unfortunately precipitation is not measured
at C0875. We observe only very weak dependency with the
other weather variables for C0875.

IV. RELATED WORK

Current state-of-the-art solar irradiation forecasting models
can be divided into two broad categories: physical models and
statistical models. Physical models uses mathematical equa-
tions to describe the physics and dynamics of the atmosphere.
High performance computing systems and numerical methods
are then used to simulate the physical models forward in
time for forecasting. Statistical models are typically based on
extracting statistics from historical data in order to predict
solar irradiance. Examples include neural networks [7], and
auto-regressive models [5]. We can further categorize statistical
models according to how they address (1) time granularity (e.g.
hour, day), (2)resolution and location (e.g. Martin et al. [3];
Moreno et al. [4] uses global irradiance while Wang et al. [7]
included land-based solar irradiation), and (3) transformations
(e.g. derivative or meteorology based composition of variables
related to solar radiation [7]).

Our work explored one particular forecasting time gran-
ularity, one-day ahead, using statistical models. Previous
work on solar forecasting for Oahu island, Hawai‘i, focused
on the minute level (short-term forecasting):[8] evaluated the
performance of the lasso and other linear models for 5-
min solar irradiance forecasting using land-based sensors;[1]
focused on modeling weather patterns on Oahu island. It is also
important to note that different levels of time granularity ad-
dress very different questions and have different applications.
For instance, [8] uses very short-term irradiance forecasting to
manage the variability within a central PV power plant. Our
work is more focused on ensuring uninterrupted energy supply
for the following days instead of smaller fluctuations during the
same day. Other concerns include identifying the best locations
in terms of average solar irradiance on the island of Lanai in
Hawaii [9], and normalizing solar radiation measurements in
the island of Maui using clear-sky radiation models [2].
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Fig. 7. Mutual information of daily solar irradiance profiles paired with itself and other weather variables over different lead times (in days) for SCBH1.
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Fig. 8. Mutual information of daily solar irradiance profiles paired with itself and other weather variables over different lead times (in days) for C0875.

V. CONCLUSION

In this work, we evaluated the forecasting performance of
our adaptations of the three models using land-based weather
data from several weather stations on the island of Oahu
in Hawaii. Different from previous work, we investigated
solar forecasting at the daily level. We were able to observe
consistent error patterns across different models conditioned on
amount of training data provided, and verified weather vari-
ables can not so quickly generalize across different locations
even within the same island distance. We plan to extend this
work through a similar analysis done here in order to explore
the performance of the models with these and other weather
variables.
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