Data Analytics for Solar Energy Management

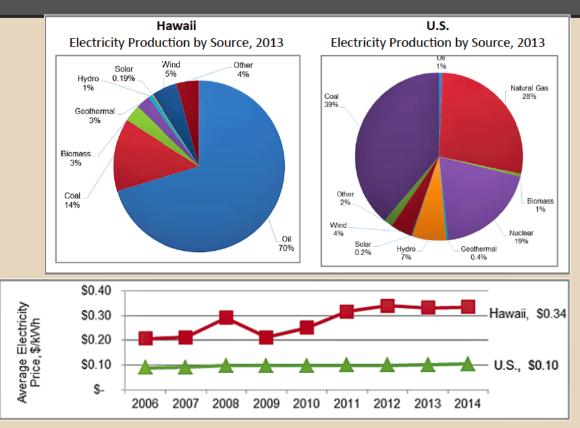
Lipyeow Lim¹, Duane Stevens², Sen Chiao³, Christopher Foo¹, Anthony Chang², Todd Taomae¹, Carlos Andrade¹, Neha Gupta¹, Gabriella Santillan², Michael Gonzalves², Lei Zhang²

¹ Info. & Comp. Sciences, U. of Hawai`i at Mānoa
² Atmospheric Sciences, U. of Hawai`i at Mānoa
³ Met. & Climate Science, San Jose State University

Energy in the State of Hawai`i

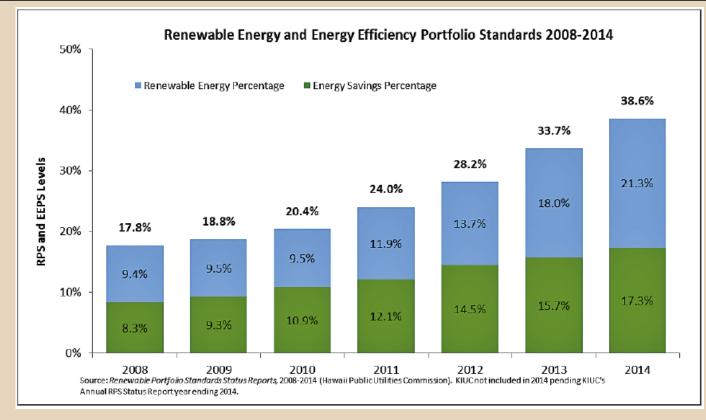
 In 2013, Hawaii relied on oil for 70% of its energy.

 Hawaii's electricity cost is 3 times the US average



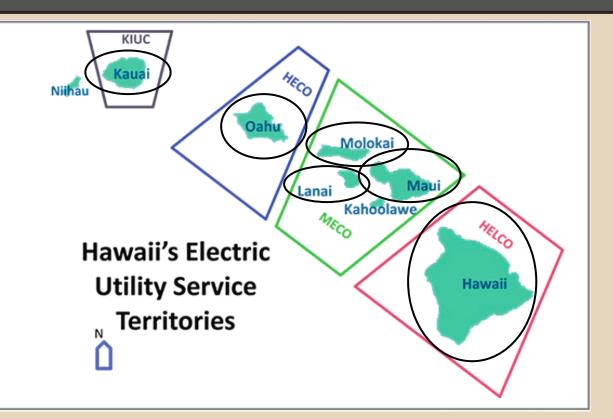
Renewables in the State of Hawai`i

Meet & exceed 70% clean energy by 2030



Disconnected Grids

Six independent grids: Kauai, Oahu, Molokai, Lanai, Maui, Hawaii.



Research Objective

Investigate the use of data-centric methods for predicting solar irradiance at a specific location

- complement not replace NWP (eg. WRF)
- 1-3 hour ahead predictions
- 1 day ahead predictions

Data Sources

MesoWest

- 30 Weather Stations
- ~10 sensors each
- 5-60 min sampling interval
- 4 Years of Hourly Data

 January 1, 2010 to December 31, 2013

 SCSH1, PLHH1 & KTAH1 stations



1-Hour Ahead Predictions

- Linear Regression
 - Select top-5 features from diff
 sensors at diff time at diff
 neighboring location
- Cubist Trees
 - Decision trees with linear regression models at the leaves
- Normalize data to hourly readings

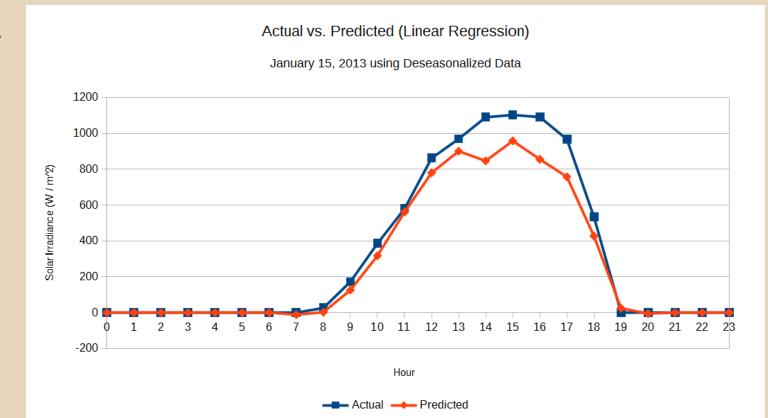
Dealing with Seasonality

Two types of cycles in the (irradiance) data: daily & yearly

- Separate models for each "season"
 - eg. a separate model for each month & hour: Jan 10am
- Deseasonalize the data
 - Mean signal: for each day & hour average the values over the 4 hours
 - Subtract the mean signal from the data

On a good day...

Month-hour with top 5 features



Prediction Errors

Comparison of Absolute Error for Best Deseasonalized and Normal Models

SCSH1 Station

Error (W/m^2) Hour LR 5 Features Deseasonalized Monthly Cubist 5 Features Deseasonalized Monthly I R 10 Features Normal LR 5 Features Normal

1-3 Hour Ahead Predictions

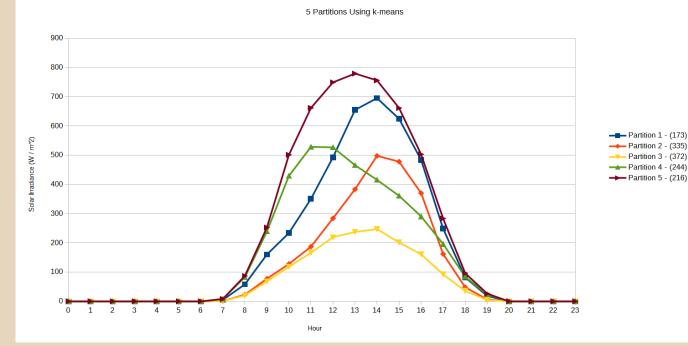
Comparison of Absolute Errors for 1 to 3 Hours of Lead Time

Monthly-Hourly Models on Deseasonalized SCSH1 Data



1-Day Ahead Predictions

- Consider granularity of 1 day
- Apply a clustering algorithm
 - k-means
 - \circ **PAM**
- Examine centroids / medoids



SCSH1 Solar Irradiance Partitions

Partition 1 - (173)

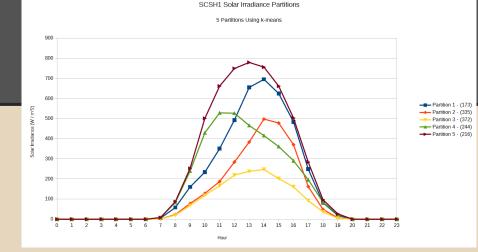
Partition 2 - (335)

Partition 3 - (372)

Partition Chains

• Procedure

- Order partition numbers by date
- Find consecutive days with the same partition number
- Find the length of these "chains"
- Result:Normally about 2 ~ 3 consecutive days in the same partition

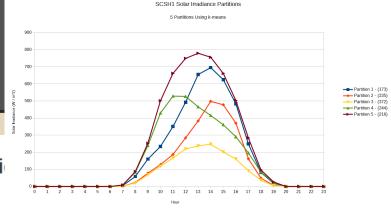


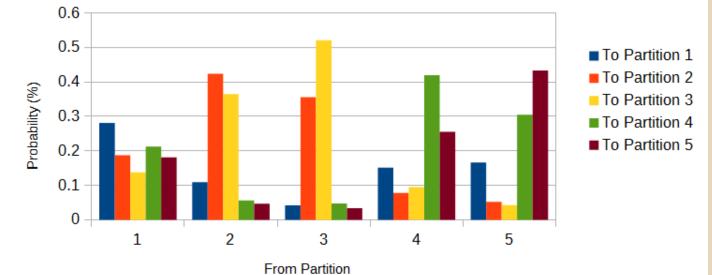
	Partition 1	Partition 2	Partition 3	Partition 4	Partition 5
Average Chain Length	2.286	2.863	3.583	2.732	2.717
Maximum Chain Length	5	11	13	6	11

Partition Transitions

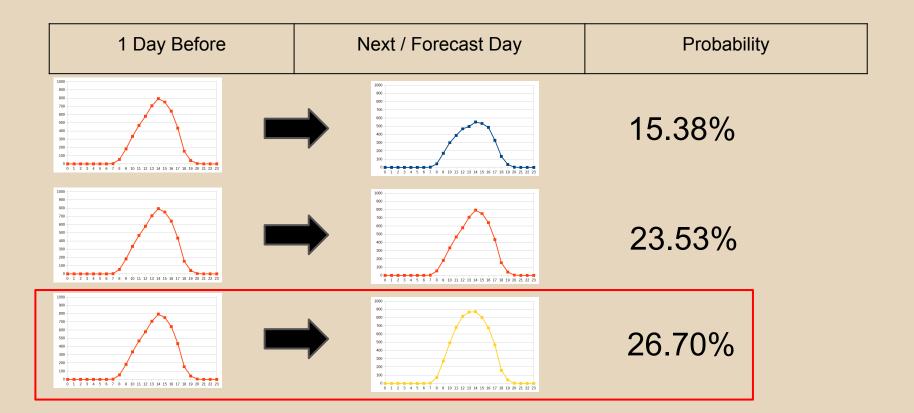
Conditional Probability of Transitions between Partiti

5 partitions generated using k-means

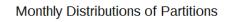




Conditional Probability



vs. Months



SCSH1 Solar Irradiance Partitions 5 Partitions Using k-means

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Partition 1 - (173) Partition 2 - (335) Partition 3 - (372) Partition 4 - (244) Partition 5 - (216)

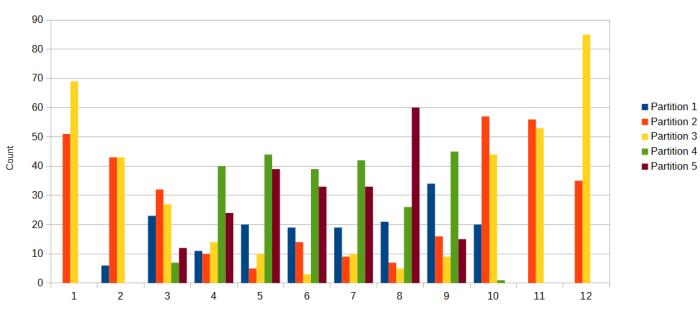
900 800

700

200

(2,..., 7 M) source (M / M) source 400 400 300

SCSH1



Month

Naive Bayes Classifier

Probabilistic classifier using Bayes' theorem
 Assumes independence between features

$$\bigcirc \quad \text{classify}(f_1, \dots, f_n) = \underset{c}{\operatorname{argmax}} p(C = c) \prod_{i=1}^n p(F_i = f_i | C = c).$$

• Feature Selection

- Relative Humidity, Temperature, Wind, Solar Clusters for target site
- Greedy
 - Select best number of clusters for each feature
 - Find best combination of features

Setup

- 1 Day and 4 Day lead time
- 3 years training (2010 2012)
- 1 year testing (2013)
- PLHH1 & KTAH1
- Hourly
 - Top 5, 10, 20, 30, 50 features
 - 6 hour data window
- Daily
 - Conditional Probability & Naive Bayes
 - Predicting 6 solar irradiance partitions
 - 2 day data window

WRF Comparison

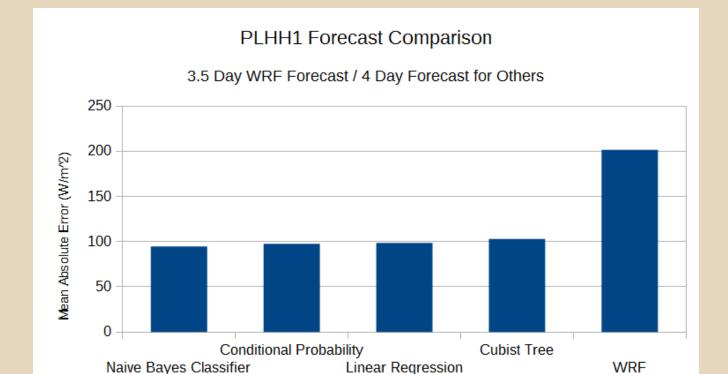
• WRF Irradiance Forecasts

- Run by Prof. Yi-Leng Chen of the Meteorology Department in SOEST
- Freely available online
- 3.5 Day Hourly Forecasts
- 1.5 km resolution
- Find closest grid to stations
- Difference between forecasted and observed

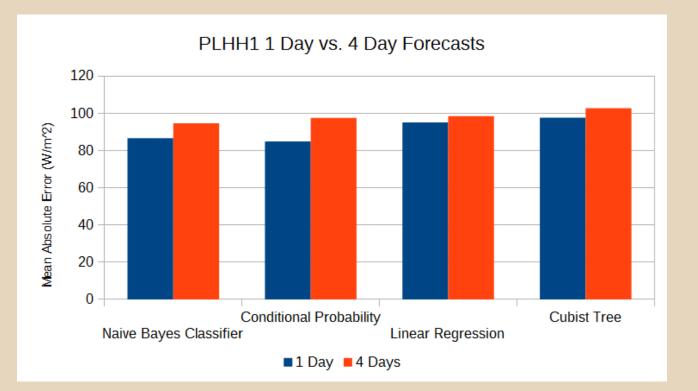
Metric

- Mean Absolute Error = $\frac{1}{N} \sum_{i=1}^{N} |predicted_i actual_i|$
- WRF & Hourly Forecasts
 - Predicted = Forecasted solar irradiance at the hour
 - Actual = Observed solar irradiance at the hour
- Daily Forecasts
 - Predicted / Actual solar irradiance values obtained from the cluster
- Only daytime hours (7 am 8 pm) are considered

Data Driven vs. WRF - PLHH1



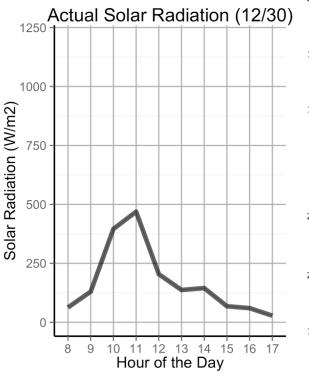
1 Day vs. 4 Days - PLHH1

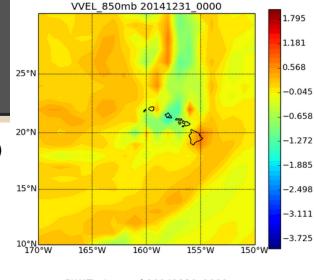


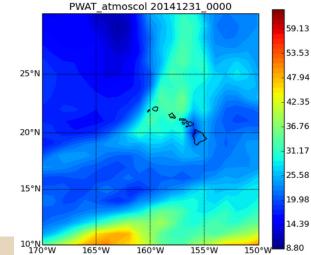
"Rare" Events

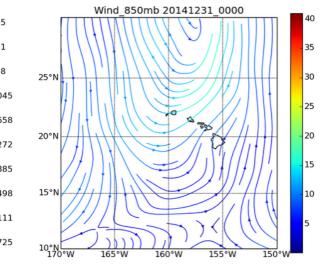
- Similar to outlier analysis
- Several possible definitions depending on how we model what is NOT rare:
 - Infrequent events (phenomenological)
 - Events not predicted well by a given model (statistical or dynamical or both)
 - Events with high disagreement in an ensemble of models

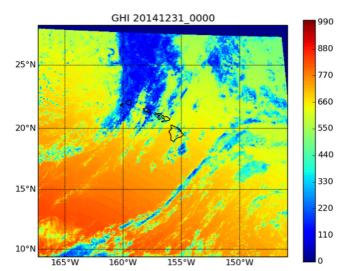
GFS Rare Day: Dec 30, 2014 (- 0 days)











Conclusions

• 1-3H ahead forecasts

- Linear Regression & Cubist Trees: ~15% error
- 1-3D ahead forecasts
 - Clustering into daily irradiance profiles
 - Interesting analysis using discrete techniques: chains, conditional entropy etc.
 - Discrete prediction techniques: ~15% error
- Outlier analysis
 - Incorporate "signal" from larger scale

vs. Temperature

[60.9,62.7] (62.7,64.4] (64.4,66.1] (66.1,67.8] (67.8,69.6] (69.6,71.3]

(73,74.8] (74.8,76.5] (76.5,78.2]

Temperature Range (F)

(71.3,73]

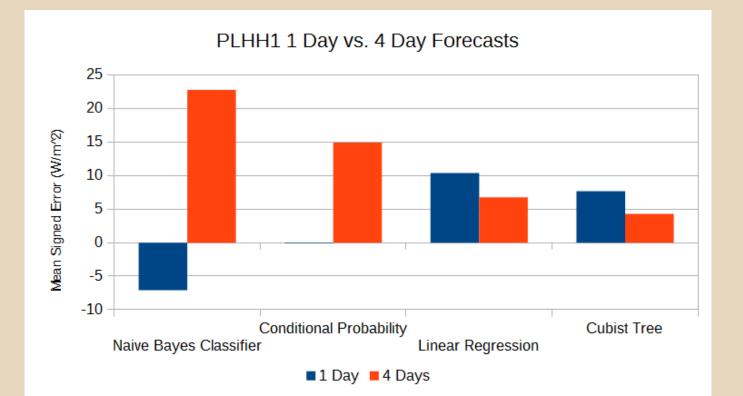
Count

SCSH1 Solar Irradiance Partitions

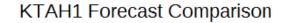
5 Partitions Using k-means

← Partition 1 - (173)
 ← Partition 2 - (335)
 ← Partition 3 - (372)
 ← Partition 4 - (244)
 ← Partition 5 - (216)

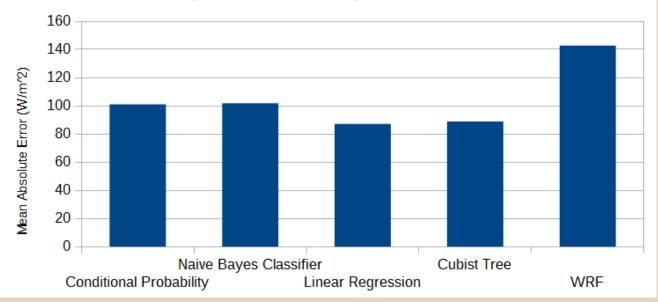
1 Day vs. 4 Days - PLHH1



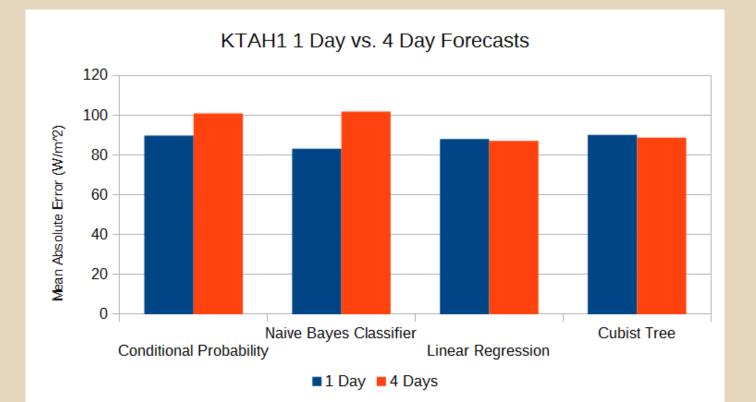
Data Driven vs. WRF - KTAH1



3.5 Day WRF Forecast / 4 Day Forecast for Others



1 Day vs. 4 Days - KTAH1



1 Day vs. 4 Days - KTAH1

