
Managing E-Commerce Catalogs in a DBMS with Native XML Support

Lipyeow Lim
IBM T.J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532

lipyeow@us.ibm.com

Min Wang
IBM T.J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532

min@us.ibm.com

Abstract

Electronic commerce is emerging as a major application
area for database systems. A large number of e-commerce
stores provide electronic product catalogs that allow cus-
tomers to search products of interest and store owners to
manage various product information.

Due to the constant schema evolution and the sparsity
of e-commerce data, most commercial e-commerce systems
use the so-called vertical schema for data storage. How-
ever, query processing for data stored using vertical schema
is extremely inefficient because current RDBMSs, especially
its cost-based query optimizer, are specifically designed to
deal with traditional horizontal schemas.

In this paper, we show that e-catalog management can
be naturally supported in IBM’s System RX, the first DBMS
that truly supports both XML and relational data in their
native forms. By leveraging on System RX’s hybrid na-
ture, we present a novel solution for storing, managing, and
querying e-catalog data. In addition to traditional queries,
we show that our solution supports semantic queries as
well. Our solution does not require a separate query op-
timization layer, because query optimization is handled
within the hybrid DBMS engine itself.

1 Introduction

Electronic commerce is emerging as a major application
area for database systems. A large number of e-commerce
sites provide electronic product catalogs that allow buyers,
sellers, and brokers to search products of interest.

Imagine we are running a marketplace for a big retail
chain such as Sears. The e-catalog of this marketplace may
contain tens of thousands of products. Each product has its
own set of attributes. For example, a “T-shirt” product in
woman’s shirt category may be associated with the attribute
set{size, style, color , price}. Another product “TV set” in
the electronics category may have a quite different attribute
set{brand , view type, signal type, screen size, price}.

A natural technique for storage of the product infor-
mation in a relational database system is thehorizontal
schema. Each product is represented as a row in a table,
and the columns are the union of the attribute sets across all
products (see Figure 1(a). However, this natural approach
is not practical due to the following reasons [3]:

• The total number of attributes across all the products
can be huge, but current commercial DBMSs do not
permit a large number of columns in a table (e.g., both
DB2 and Oracle permit only up to1012 columns in a
table).

• Even if a DBMS were to allow huge number of
columns in a table, we would have a lot of nulls in
most of the fields (e.g., any T-shirt product has a null
value inview type column). The large number of null
values creates a big storage overhead and increases the
size of indexes on these columns.

• Due to the large number of columns and null values,
query performance would be very poor since the data
records are very wide and only a few columns are used
in a query.

• In an electronic marketplace, products traded and sold
vary from day to day. We would need frequent alter-
ing of the table to accommodate new products. Main-
tenance and processing of altered tables can be quite
expensive in RDBMSs.

An alternative is to usebinary schema[4, 8]. We cre-
ate one table for each attribute. Each table contains two
columns, one is an attribute column and the other is anOID
column that ties different fields of a tuple across tables (see
Figure 1(c)). While there are no null values when using
a binary schema, the number of join operations is usually
large even when processing simple queries. Hence query
performance is a big issue for the binary schema solution.
An enhancement is to define a table per product set. This
becomes unwieldy since the requirement is for dynamically
adding and deleting new products.

Many commercial e-commerce systems use the so-called

1

OID A1 A2 A3 A4 A5

1 v1 v2 v3 v4

2 v5 v6 v7 v8

3 v9 v10 v11

4 v12 v13 v14

5 v15 v16

6 v17 v18

(a) Horizontal representation.

OID Attr Value
1 A1 v1

1 A2 v2

1 A3 v3

1 A5 v4

2 A1 v5

2 A2 v6

2 A3 v7

2 A5 v8

3 A1 v9

3 A2 v10

3 A5 v11

4 A3 v12

4 A4 v13

4 A5 v14

5 A3 v15

5 A5 v16

6 A4 v17

6 A5 v18

(b) Vertical repre-
sentation.

OID A1

1 v1

2 v5

3 v9

OID A2

1 v2

2 v6

3 v10

OID A3

1 v3

2 v7

4 v12

5 v15

OID A4

4 v13

6 v17

OID A5

1 v4

2 v8

3 v11

4 v14

5 v16

6 v18

(c) Binary representation

Figure 1. An example of how the same data can be rep-
resented using the horizontal, vertical and binary schemas.

vertical schemadesign for their e-catalogs. Like the hori-
zontal method, only one table is used. However, this ta-
ble only has three main attributes:OID , Attr (for attribute
name), andValue (for attribute value). 1 Each product
is represented as a number of tuples in this table, one for
each attribute-value combination and multiple attributes of
a product are tied together using the sameOID across mul-
tiple tuples in the table (see Figure 1(b)).

The vertical schema has the following advantages when
compared to the others:

• High flexibility: The schema can handle any number
of products and attributes.

• Ease of schema evolution:When products are added or
deleted, alter or create table operations are not needed.
We only need to add/delete tuples that correspond to

1In reality, theValue column needs to be extended to accommodate
values of different data types.

the attributes of the added/deleted products.

• Low storage overhead: In contrast to horizontal
schema, the vertical table does not contain null values.

Due to the above reasons, many commercial e-commerce
systems (e.g., IBM Websphere Commerce Server, Ariba
Marketplace, I2 Technology) utilize the vertical schema de-
sign for their e-catalogs.

Unfortunately, the vertical schema’s flexibility intro-
duces performance challenges for one important activity
on e-catalogs, namely,parametric search queries. A para-
metric search query is a lookup of the e-catalog using spe-
cific constraints. Since a product usually contains many at-
tributes, a search query in general is likely to impose several
constraints that could be combined in a logical expression
using AND/OR or even more sophisticated operators. Writ-
ing SQL queries against vertical schema could be cumber-
some and error-prone. To solve this problem, Agrawal et
al. proposed a method of creating a logical horizontal view
on top of a vertical schema [3]. They also presented a set
of query rewrite algorithms to convert relational algebra op-
erators against the horizontal view to that against the verti-
cal table. However, the performance of the converted query
remains an issue. They show that queries against vertical
schema performs no better than against binary schemas in
most cases. The main reason for the poor performance is
that there is a mismatch between the data model of a verti-
cal schema and the storage model of traditional RDBMSs.
The query optimization and planning techniques in tradi-
tional RDBMSs are designed for the horizontal schema data
model where each table contains well-defined and meaning-
ful attributes.

To achieve good query performance in an RDBMS when
using vertical schema, a solution calledSAL, Search Assis-
tant Layer, is proposed in [10]. As a middle-ware solution,
even though SAL can speed up parametric search on verti-
cal schema significantly, it is not tightly integrated with the
RDBMS engine and thus cannot fully leverage on the ca-
pability of the query optimizer to achieve the best possible
performance.

Our Contributions. In this paper we propose a novel so-
lution to store, query and manage e-catalog data using the
hybrid relational-XML paradigm. In particular, a hybrid
relational-XML DBMS called System RX [9] has already
been prototyped by IBM and we describe our work in the
context of System RX. We show that the hybrid relational-
XML approach addresses many of the open issues in man-
aging e-catalog data using the relational approach. More-
over, we show that the hybrid relational-XML approach ex-
ceeds the relational approach especially in its ability to sup-
port interesting semantic queries. In summary, the contri-
butions of this paper are:

2

1. We proposed using a hybrid relational-XML DBMS
to manage e-catalog data. Our hybrid relational-XML
approach addresses (a) the schema evolution problem
associated with using a pure relational approach, and
(b) the query performance problems in using the verti-
cal schema in a RDBMS.

2. We design a hybrid relational-XML database schema
for storing e-catalog data and show how various im-
portant queries and data manipulation operations can
be accomplished using either SQL/XML [5, 6] or
XQuery [2].

3. We show that semantic queries, which are difficult
to process in a pure relational system, can be easily
expressed and processed in a hybrid relational-XML
DBMS.

The rest of the paper is organized as follows. We in-
troduce IBM’s System RX, the first hybrid relational-XML
DBMS in the next section. In Section 3 we describe our
proposed approach to storing e-catalog data. In Section 4
we show how various product search operations can be ac-
complished using SQL/XML or XQuery. In Section 5 we
outline how to maintain and manipulate the e-catalog data
in a hybrid relational-XML DBMS as the e-catalog data
changes. In Section 6, we show how a hybrid relational-
XML DBMS can easily combine meta-data such as cate-
gory hierarchy with the e-catalog data to support semantic
queries. We summarize and draw conclusions in Section 7.

2 IBM’s System RX: The First Hybrid
Relational-XML DBMS

Most business data are stored in relational database man-
agement systems (RDBMSs) and accessed using SQL. With
XML [1] becoming the standard for data retrieval and ex-
change, new functionality to support XML data is being ex-
pected from traditional RDBMSs.

When we store XML data in a traditional DBMS, the re-
lational approach is not adequate for processing them: Ei-
ther we decompose and store the XML data in relational
format, in which case we get a major performance hit be-
cause we have to convert them to and from relational for-
mat whenever we store or retrieve them, or we have to store
them as binary large objects, in which case we cannot do
any processing with them. Ideally, a DBMS should be able
to store XML data in its native form and support the search
and manipulation of XML data as first-class citizens along
with existing relational data types [7]. Towards this goal,
IBM is building a hybrid database system, System RX, that
handles both relational data and XML data in their native
form [9].

System RX is a hybrid relational-XML DBMS that uni-
fies new native XML storage, indexing and query process-

ing technologies with existing relational storage, indexing
and query processing [9]. The system thereby provides a
natural path to XML for SQL applications, as well as scal-
able, transactional support for XQuery applications. It ex-
tends an existing RDBMS with the following components:
(1) a native XML storage that stores an XML document as
an instance of the XQuery Data Model (QDM), i.e., as a
structured, typed, binary tree, (2) new index types for XML
data including structural indexes, value indexes, and full-
text indexes, (3) a hybrid query compiler that can process
XQuery and SQL, and (4) an enhanced query runtime that
supports XQuery and SQL/XML operators.

In System RX, a new data type, XML, is supported as a
basic data type. Users can create a table with one or more
XML type columns. A collection of XML documents can
therefore be defined as a column in a table. For example, a
user can create a tableecatalog with the following state-
ment:

CREATE TABLE ecatalog(productID integer,
categoryID varchar(20),
info XML);

For this paper, we will use thevarchar type for the
category identifier in the interest of readability. The reader
should understand that in a real e-commerce system, the
category identifier is usually declared to be an integer for
efficient processing.

To insert an XML document into a table, it must be
parsed, placed into the native XML storage, and then in-
dexed. We use the SQL/XML function,XMLParse , for
this purpose:

insert into ecatalog values(1, "Women’s shirt",
XMLParse(’<?xml version=’1.0’>
<productinfo id="1" category="women’s shirt">

<name>T-shirt</name>
<size>XL</size>
<color>Blue</color>
<style>Round-neck</style>
<listprice>20.00</listprice>
<material>Cotton</material>
<description>

I love NY printed on the front
</description>
<supplier ID=’19’>

<name>Bob’s Garment factory<name>
<supplier>

</productinfo>’));

Users can query relational columns and XML column
together by issuing SQL/XML query. For example, The
following query returns product ids for all T-shirts that are
red in color:

SELECT productID

FROMecatalog AS C

WHEREXMLExists(‘$t/productInfo[name =
‘‘T-shirt’’ and color =‘‘Red’’]’
PASSING BY REF C.info AS "t")

Note that XMLExists is an SQL/XML boolean func-
tion that evaluates an XPath expression on an XML value.

3

If XPath returns a nonempty sequence of nodes, then
XMLExists is true, otherwise, it is false. Since query op-
timization is handled within the hybrid DBMS engine, no
further query optimization middle-ware is required for pro-
cessing queries on XML data.

3 Storing E-Catalog Data in a Hybrid
Relational-XML System

In this section, we describe how e-catalog data can be
stored in a hybrid relational-XML DBMS. The main ques-
tion we address is how to design the physical database
schema for e-catalog data: what tables and columns are
needed ?

The database schema needs to support the following op-
erations:

• Searching for products that satisfy certain constraints
on some attributes, eg., the user is shopping for a gift
that is red in color and less than $20.

• Search for products within a given category, eg., find
all products in the electronics category that is in the
price range $100 – $200.

• Adding a new category of products, eg. a bookstore
decides to offer audio compact discs (CDs) for sale as
well.

• Removing a category.

• Adding a new product (possibly with new attributes).

• Removing a product.

• Removing all products associated with a given sup-
plier.

Pure relational schemas are limited in their ability to handle
the variability in the information associated with each prod-
uct. We propose a schema that leverages on native XML
support by localizing the highly variable product informa-
tion into an XML column. In this case, product information
and supplier information are stored in XML format. Our
proposed schema creates one single table for the entire e-
catalog,

CREATE TABLE ecatalog(
productID integer,
categoryID varchar(20),
info XML);

The ecatalog table is illustrated in Figure 2. Each
row in theecatalog table corresponds to a single prod-
uct. Each product has an unique product identifier and is
associated with a category (denoted by the category identi-
fier2)

An alternative to the proposed schema is a schema that
creates one table for each category, for example,

2Recall that we use strings for category identifiers in the interest of
readability. Real systems use numeric category identifiers for efficient pro-
cessing.

Figure 2. The proposedecatalog table. Theinfo
column is of XML type and contain pointers to XML data
stored natively as trees.

CREATE TABLE womensshirt(
productID integer,
info XML);

CREATE TABLE electronics(
productID integer,
info XML);

Although this alternative schema is also able to support
all the important e-commerce operations listed above, its
main drawback is that a new table needs to be created when-
ever a new category is added.

In addition to the table schema we proposed, XML
schemas can be associated with each category of products.
For example, the fragment of an XML schema for the prod-
ucts in women’s shirt category might look like,

<xsd:complexType name = "productInfo">
<xsd:attribute name = "id"

type = "xsd:integer" />
<xsd:attribute name = "category"

type = "xsd:string" />
<xsd:sequence>

<xsd:element name = "style"
type = "xsd:string"
minOccurs = "0" />

<xsd:element name = "listprice"
type = "xsd:decimal"
minOccurs = "1"
maxOccurs = "1" />

</xsd:sequence>
</xsd:complexType>

The use of XML schemas is completely optional. The
system designer may choose not to use any XML schemas
at all if she/he does not wish to impose any restrictions on
the type of XML data that can be stored in the system.
System RX allows the user to leverage the full flexibility
of XML by not mandating XML schemas be used. How-
ever, when XML schemas are used, it is mainly for two
reasons: (1) it allows the hybrid relational-XML DBMS
to verify the integrity of the XML data (for example type
checking), and (2) it serves as a structural guide for writ-
ing queries XQuery. System RX provides a mechanism
for validating XML data against a given XML schema.
The XML schemas first need to be registered and stored
in the XML schema repository. The SQL/XML command
XMLValidate can then be invoked to validate an XML
document against a given schema.

4

When using XML schemas, the system designer needs to
decide the granularity of the XML schema. Usually, having
one XML schema per category is the appropriate granular-
ity, because we expect less variability in the XML struc-
ture for products within the same category. However, as
long as the mapping between which XML schema describes
which XML document is maintained, any number of XML
schemas can be used.

4 Product Search on E-Catalog

Product search is arguably the most important operation
on an e-catalog. In this section we show how product search
queries can be formulated in both SQL/XML and XQuery.

4.1 Product Search within a Given Category

One of the most common type of queries in an e-
commerce system is to find all products within a given
category that satisfy certain constraints on some attributes.
Since product information are stored as XML, these con-
straints on product attributes correspond to XPath expres-
sions. Writing such queries is then equivalent to specifying
constraints on the XPath expressions. For example, a shop-
per might want to find all women’s shirt that are red in color,
that are made from the material Lycra, and whose list price
is under $20. We can formulate this query in SQL/XML as,

SELECT productID

FROMecatalog AS C

WHEREXMLExists(‘$t/productInfo[color =‘‘Red’’
and material=‘‘Lycra’’
and listprice < 20]’
PASSING BY REF C.info AS "t")
AND categoryID="women’s shirt";

In this query, the constraints on color corresponds to the
path expression/productInfo/color , the attribute ma-
terial to/productInfo/material , and the constraints on
list price to/productInfo/listprice . The search is re-
stricted to the women’s shirt category by the putting the con-
dition on thecategoryID column in theWHEREclause.

Equivalently, we can also express the same query using
XQuery as

for $p in xmlcolumn(’ecatalog.info’)
/productInfo

where $p/@category = "Women’s shirt"
and $p/color = "red"
and $p/material= "Lycra"
and $p/listprice < 20

return
<product>

<id> {$p/@id} </id>
<name> {$p/name} </name>

</product>;

The xmlcolumn function takes as input the name of
an XML column. The result of a query formulated as an
XQuery statement is returned in XML format.

In general, if the desired output format is relational, the
query should be formulated in SQL/XML. If the desired
output format is XML, the XQuery language should be
used.

4.2 Product Search across Multiple Categories

Another common type of queries is to find products
across multiple or all categories given certain constraints.
For example, a shopper is shopping for a birthday present.
She/he has a budget under $20 and requires that the present
be red in color. The following SQL/XML query may be
used,

SELECT productID

FROMecatalog AS C

WHEREXMLExists(‘$t/productInfo[color =‘‘Red’’
and listprice < 20]’
PASSING BY REF C.info AS "t");

Since the search is over all categories, there is no con-
straint on thecategoryID column.

The same query expressed in XQuery is:

for $p in xmlcolumn(
’ecatalog.info’)/productInfo

where $p/color = ‘‘red’’
and $p/listprice < 20

return
<product>

<id> {$p/@id} </id>
<name> {$p/name} </name>

</product>;

4.3 Product Search using Keywords

Keyword search is yet another important type of query
for e-commerce systems. For example, when searching for
a book, we often do not remember the title exactly, but we
do remember a few keywords that appear in the title. Sup-
pose we want to find all books that have the keyword “algo-
rithms” in the title, we can write the following query,

SELECT productID

FROMecatalog AS C

WHEREXMLExists(‘$t/productInfo[fn:contains(
booktitle,‘‘algorithms’’)]’
PASSING BY REF C.info AS ‘‘t’’)
AND categoryID=‘‘Books’’;

The XQuery functionfn:contains returns true if
booktitle contains “algorithms” as a substring. While
relational DBMSs do not support keyword search effi-
ciently, full-text indexes can be used in hybrid relational-
XML DBMS (such as System RX) to process keyword
search very efficiently.

5

4.4 Optimizing Search with Indexes

For path expressions that are frequently queried, System
RX allows indexes to be created on these path expressions.
For example, in the queries mentioned above, the list price
of a product is queried frequently. We can therefore create
an index on list price in order to speedup the range predi-
cates on list price:

CREATE INDEX listpriceindex ON ecatalog
USING //listprice AS DOUBLE;

If query workloads are available and there is a high
probability that these workloads are representative of fu-
ture queries, frequently queries path expressions can be ex-
tracted from these workloads and indexes can be created on
these path expressions.

5 Maintenance of E-Catalog Data

Besides search, an e-catalog system often needs to sup-
port operations like adding a new product category, delet-
ing an outdated product category, adding new products, and
deleting old products.

Adding a new product category is a relatively simple op-
eration. When a product belonging to the new category is
inserted into theecatalog table, the new category is au-
tomatically added. Removing a category requires all rows
(i.e. all products) associated with the category to be deleted.
For example, if the women’s shirt category is to be deleted,
the following SQL statement can be used.

DELETE FROMecatalog

WHEREcategoryID = "women’s shirt";

In our schema design, we assume that each product cor-
responds to a row in theecatalog table. Adding and re-
moving a product is therefore equivalent to removing the
row associated with the product.

We consider a more interesting delete scenario next.
Suppose the e-store no longer buys products from a par-
ticular supplier with ID 19. All the products that are as-
sociated with this supplier needs to be removed. However,
some products may be supplied by more than one supplier.
Hence, we need to delete products with only one supplier
whose supplier ID is 19. For products that have more than
one supplier and of which supplier 19 is a supplier, the XML
info for these products needs to be updated. To accomplish
the deletion, we can use the following SQL/XML statement,

DELETE FROMecatalog

WHEREXMLExists(‘$t/productInfo[
fn:count(./supplier) = 1
and ./supplier/@ID=19]’
PASSING BY REF ecatalog.info AS "t");

The XPath expression$t/productInfo[fn:count(

./supplier) = 1 and ./supplier/@ID =

19] returns a productInfo node in the XML document
that has exactly one supplier child node and the supplier
identifier is 19.

To update the products supplied by supplier 19 and that
also have more than one supplier, we use the SQL/XML
XMLUpdate function,

UPDATE ecatalog

SET info = XMLUpdate(info,
’/productInfo/supplier[@ID=19]’,
XMLParse(’’))

WHEREXMLExists(‘$t/productInfo[
fn:count(./supplier) > 1
and ./supplier/@ID=19]’
PASSING BY REF ecatalog.info AS "t");

The XMLUpdate function takes as its first argument an
XML value, as its second argument, the XPath expression
to be evaluated on the XML value, and as its third argument
the XML value that will replace the node specified by the
second argument. The resultant XML value is returned.

XML Schema Evolution. Product offering on an e-
commerce website change over time. It is almost certain
that the structure of product information will also need to
change. For example, after the MP3 audio format had
become popular, compact disc players started to have a
new attribute “MP3 compatible”. This addition (and re-
moval) of attributes is one reason why the relational model
is inadequate to handle e-catalog data. The traditional
Entity-Relationship model will require the table schemas to
change. Vertical schemas addresses this schema evolution
problem but at the cost of performance.

In our proposed solution using a hybrid relational-XML
DBMS, changes in the structure of the product informa-
tion is no longer a problem, because we leveraged on the
flexibility of XML to store the product information. In the
case where no XML schemas are used, no further process-
ing is required other than adding the new information into
the XML column (for example, adding the XML element
<feature>MP3-compatible</feature> to the product
information for compact disc players). If XML schemas are
used, the XML schema needs to incorporate the addition
of such new attributes. It is possible that XML data in the
ecatalog may need to be re-validated as a result of the
XML schema change. Managing XML schema evolution is
still an open problem and is part of our future work.

6 Supporting Semantic Queries

6.1 Queries using the Category Hierarchy

E-commerce stores often have a hierarchy of categories
and sub-categories to help users (i.e. shoppers) navigate
their diverse array of product offerings. An example of such

6

Figure 3. A subset of the category hierarchy from the Yahoo website. The sub-category relationship is denoted by indentation.

a hierarchy is shown in Figure 3. Users can therefore also
search for products that fall in any sub-category. For ex-
ample, one user might want to browse through all prod-
ucts in theBookMagazines->SportsRecreation cat-
egory, another user might want to only browse through
products in theBookMagazines->SportsRecreation

->Outdoor->Hiking category.
Such queries are hard to process in a relational system.

First, the relational data model is inherently not suitable for
storing the hierarchical data. Hence the hierarchical tree-
structured data will need to be shredded into an edge-list
representation that can be stored in a RDBMS. Second, ex-
pressing queries that requires tree-traversal in SQL is awk-
ward. Recursive procedures can be used, but they require
many self-joins on the edge-list data.

A hybrid relational-XML DBMS, on the other hand, is
especially suited for supporting such hierarchical data and
the associated queries. We can create acategory table
with one XML column named “info ”. The category hier-
archy can be stored as XML data in thecategory.info
column. Each subcategory name becomes an XML ele-
ment optionally with anID attribute that stores the asso-
ciated category identifier. To simplify the design of the en-
tire e-catalog system, the category identifier column of the
ecatalog table should only contain the identifiers of sub-
categories that are leaves in thecategory.info hierar-
chy.

To find all products in the BookMagazines

->SportsRecreation category, the following SQL/XML
query can be used,

SELECT productID

FROMecatalog AS E, category AS C
XMLTable(’$t/Shopping/BookMagazines
/SportsRecreation//*[fn:empty(*)]’
PASSING C.info as "t",
COLUMNS "categoryID" VARCHAR(20)
PATH ‘fn:string(@ID)’) AS X

WHEREE.categoryID = X.categoryID;

The path expression/Shopping/BookMagazines

/SportsRecreation//*[fn:empty(*)] finds all leaf
nodes in the subtree at/Shopping/BookMagazines

/SportsRecreation . The XMLTable function con-

structs a virtual table aliased “X” consisting of one col-
umn named “categoryID” whose values are the “ID ” at-
tribute of the leaf nodes. Conceptually, the query con-
tracts a list of category IDs that belong toBookMagazines

->SportsRecreation and returns all products whose cat-
egory ID belongs to the constructed list.

To find all products in the BookMagazines

->SportsRecreation->Outdoor->Hiking cate-
gory, we first determine if the path//BookMagazines

/SportsRecreation/Outdoor/Hiking leads to a leaf
node. If it is a leaf node, the query corresponds to a simple
retrieval using the associated category ID. If it is not a leaf
node, the query reduces to theXMLTable query in the
previous example.

6.2 Queries using Semantic Relationships

A more interesting type of semantic queries is when the
user specify a descriptive keyword and wants to search for
all products associated with the given keyword. For ex-
ample, a shopper is shopping for a present for a friend
who likes “orienteering”3. Ideally, the e-commerce system
should be able to return all products associated with the ac-
tivity “orienteering”. The problem is that the keyword “ori-
enteering” is not a category name. In the absence of further
information, the best that we could do is to find all products
whose description or booktitle element contains the word
“orienteering”.

Suppose the e-commerce system has access to some on-
tological data that describes the semantic relationship be-
tween certain keywords and certain product categories. In
our example, suppose there is anontology table with
an XML column namedinfo that contains the following
XML fragment

<activity>
<keyword>hiking</keyword>
<keyword>orienteering</keyword>
<keyword>walking</keyword>
<related>

<category>BooksMagazines</category>
<keyword>Maps</keyword>
<keyword>Hiking</keyword>

3Orienteering is an outdoor activity where a person uses a map and
compass to navigate through some terrain.

7

</related>
<related>

<category>Telecommunications<category>
<keyword>GPS</keyword>

</related>
<related>

<category>Shoes<category>
<keyword>Hiking Boots</keyword>

</related>
<related>

<category>CampingHiking<category>
<keyword>Walking stick</keyword>

</related>
</activity>

Using these semantic relationship, we will be able to
associate the activity “orienteering” with several product
categories. Moreover, for each associated category, addi-
tional keywords are supplied so that relevant products can
be retrieved from that category. Note that such meta-data
can also be (semi-)automatically obtained by performing
market-basket data-mining on data-warehouses and histori-
cal sales information.

To find all products semantically related to the activity
“orienteering”, we can issue the following XQuery,

for $r in xmlcolumn(’ontology.info’)
/activity[keyword="Orienteering"]/related

for $k in $r/keyword
for $p in xmlcolumn(’ecatalog.info’)

/productInfo[@category=$r/category
and fn:contains(description,$k)]

return
<product>

{$p/@id}
</product>;

The firstfor -loop iterates through each related category
associated with the “orienteering” activity, the secondfor -
loop iterates through each additional keyword supplied un-
der each related category, and the lastfor -loop iterates
through each product checking for matches to each pair of
category and keyword. Note that if the category from the
ontology is not a leaf category in thecategory hierarchy,
we can always use anotherfor -clause to generate all the
leaf category IDs using thecategory hierarchy. In sum-
mary, this query will return products associated with hik-
ing books, maps, global positioning (GPS) devices, hiking
boots, and walking sticks.

7 Conclusions

In this paper, we have introduced a novel solution to
store, manage and query e-commerce catalog data using a
hybrid relational-XML DBMS. We have designed an ap-
propriate database schema for the e-catalog that localizes
product information into a native XML-type column. Our
solution leverages on the flexibility of XML to address the
high variability in the structure of e-catalog data and thus

is able to avoid the relational schema evolution problem
faced by relational solutions. Moreover, our solution does
not suffer from the query optimization problems faced by
the vertical schema approach, because there is no mismatch
in the structure of the data and the storage model of a hy-
brid relational-XML DBMS. Query optimization is handled
within the hybrid DBMS engine and hence no separate op-
timization middle-ware is required. We have shown that the
e-catalog data can be easily queried and maintained in a hy-
brid relational-XML DBMS. Besides conventional queries,
our solution is also capable of processing more interesting
queries, such as semantic queries, that are not well handled
in relational systems.

References

[1] Extensible markup language (XML) 1.0 (third edition).
http://www.w3.org/TR/REC-xml .

[2] XQuery 1.0: An XML query language.http://www.w3.
org/TR/xquery/ .

[3] Rakesh Agrawal, Amit Somani, and Yirong Xu. Storage and
querying of e-commerce data. InVLDB. Morgan Kaufmann,
2001.

[4] George P. Copeland and Setrag Khoshafian. A decomposi-
tion storage model. In Shamkant B. Navathe, editor,SIG-
MOD, pages 268–279. ACM Press, 1985.

[5] Andrew Eisenberg and Jim Melton. SQL/XML is making
good progress.SIGMOD Record, 31(2):101–108, 2002.

[6] Andrew Eisenberg and Jim Melton. Advancements in
SQL/XML. SIGMOD Record, 33(3):79–86, 2004.

[7] J. E. Funderburk, S. Malaika, and B. Reinwald. XML pro-
gramming with SQL/XML and XQuery.IBM Systems Jour-
nal, 41(4), 2002.

[8] Setrag Khoshafian, George P. Copeland, Thomas Jagodis,
Haran Boral, and Patrick Valduriez. A query processing
strategy for the decomposed storage model. InICDE, pages
636–643. IEEE Computer Society, 1987.

[9] Fatma Ozcan, Roberta Cochrane, Hamid Pirahesh, Jim
Kleewein, Kevin Beyer, Vanja Josifovski, and Chun Zhang.
System RX: One part relational, one part XML. InSIGMOD,
2005.

[10] Min Wang, Yuan chi Chang, and Sriram Padmanabhan. Sup-
porting efficient parametric search of e-commerce data: A
loosely-coupled solution. InEDBT, volume 2287, pages
409–426. Springer, 2002.

8

