
Optimizing Hierarchical Access in OLAP
Environment

Lipyeow Lim #1, Bishwaranjan Bhattacharjee #2

#IBM T. J. Watson Research Center
19 Skyline Dr., Hawthorne, NY 10532, U.S.A.

1liplim@us.ibm.com
2bhatta@us.ibm.com

Abstract— In Online Analytic Processing (OLAP) deployments,
different users, lines of businesses and business units often
create adhoc aggregation hierarchies tailor-made for specific
reporting or analytical applications. As a result, a large number
of these application specific hierarchies accumulate over time.
System administrators typically are not able to optimize all
these hierarchical accesses by hand due to the large number
of hierarchies. However, many optimization opportunities exist
due to the significant amount of overlap between some hierarhies.
In this paper, we sketch a novel method for optimizing OLAP
aggregation queries using precomputed aggregates on other over-
lapping hierarchies. Our method detects common sub-structures
among hierarchies and provides a rewriting algorithm to exploit
any precomputations on these shared sub-structures.

I. INTRODUCTION

Data warehouses and on-line analytical processing (OLAP)
have gained widespread use in almost all parts of an enterprise
for decision support and business performance monitoring.
A typical deployment uses the two-tier data warehousing
approach [1]. The data repository tier consists of one or more
DBMS (eg. IBM DB2 UDB) that extracts, transforms and
cleans the data from multiple sources. The data access tier
consists of one or more data marts (eg. Hyperion Essbase,
Cognos etc) through which users access subsets of the data
for subject-specific OLAP. An OLAP data mart consists of a
fact table, which can be thought of as a materialized view of
the data in the data repository, and several dimensions, each
of which can be associated with multiple complex and unbal-
anced hierarchies. Different users in the enterprise typically
define their own application-specific hierarchies within the
same data mart. For example, within the same OLAP data mart
for sales transactions, an accountant might define a hierarchy
for aggregating sales transactions across all the business units
in the enterprise, and a marketing executive might define
another hierarchy to aggregate sales transactions by geograph-
ical regions. In many real use-cases, a set of enterprise-wide
primary hierarchies is defined on each common fact table.
Different users, lines of business, and business units then
define their own application-specific hierarchies such that the
leaf nodes of each application-specific hierarchy point back
to elements in the primary hierarchies. Figure 1 illustrates an
example of a primary hierarchy and two application specific
hierarchies defined on it.

In the OLAP environment, user queries are defined against

a small number of application-specific hierarchies. These
queries are then translated into an equivalent query on the
fact table automatically. Query optimization usually involves
precomputing certain aggregates on some hierarchies.

Example 1 (Precomputing aggregates) Consider a query
that aggregates the expenses in the fact table (Figure 1(d))
according to the geographical hierarchy in Figure 1(b) and
reports the expenses by continent (North America, Europe, and
Asia). To speedup the query, the administrator can specify that
expense aggregates for certain countries or certain continents
be precomputed and stored in the OLAP environment, so that
the query optimizer can exploit them.

In practice, there can be hundreds of application-specific
hierarchies. Precomputing aggregates for every internal node
of every application-specific hierarchy is not feasible because
of limited storage resources. Moreover, the OLAP administra-
tor typically creates precomputed aggregates only for a few
important hierarchies. Many hierarchies have no precomputed
results associated with them. The question is: can we optimize
access on the hierarchies on which no precomputed aggrega-
tions have been created ? Given that there are overlaps in
the application-specific hierarchies, such optimization should
be possible in principle. If precomputed aggregates have been
created on a hierarchy H1 and H1 overlaps with hierarchy H2,
a query written on hierarchy H2 should be able to exploit the
precomputed aggregates on the overlapping portion of H1 and
H2.

Example 2 (Exploiting overlapping hierarchies) Consider
the same query in Example 1 that reports the total expenses
by continent (North America, Europe, and Asia) according to
the geographical hierarchy in Figure 1(b). Further suppose
no precomputed aggregates exists for the geographical
hierarchy, but precomputed aggregates exists for the projects
in the project hierarchy of Figure 1(c). The query should be
able to exploit the precomputed aggregates for the Project
1 node of the project hierarchy, because the aggregate is
equivalent to the Asia or China node in the geographical
hierarchy.

Unfortunately, current OLAP environments are not able to
rewrite queries to exploit precomputed aggregates across dif-
ferent hierarchies, because the query optimizer does not know

Enterprise

Finance Dept IT Dept HR Dept

Accounting
Team 1

Accounting
Team 2

Senior Accountant 1

Accountant 2

Accountant 3

Accountant 4

Clerk 5

Sales Dept

DB Team

DBA 6

DBA 7

Network
Team

Hardware
Team

Recruiting Team

Benefits Team

Sales
Team

Marketing
Team

Salesman 12

Salesman 13

IT Employee 8

IT Employee 9

Employee 10

Employee 11

Marketer 14

(a) Primary hierarchy for the organization dimension.

North America

Canada USA

Europe

Germany UK China

Asia

World

Accounting
Team 2

Accounting
Team 1

IT Dept HR DeptMarketing
Team

Sales
Team

(b) Application-specific geography hierarchy

All Projects

Project 1 Project 2 Project 3

Sub-project 4

Sub-project 5

Sub-project 6

DB Team
Accounting
Team 2

Sales
Team

IT Employee 8

HR Dept

Accounting
Team 1

Marketing
Team

IT Employee 9

(c) Application-specific project hierarchy

TransactionID EmployeeID Time ExpenseType Amount
10001 DBA 1 2007-05-01-2059 Harddisk 1000
10002 Accountant 2 2007-05-03-0759 Stationary 100
10003 DBA 1 2007-05-03-0859 Software 2000

...
(d) The expense transactions fact table.

Fig. 1. Primary organization hierarchy and hierarchies specific to expense accounts applications. The geographical hierarchy supports aggregations of expenses
by geographical regions or the business units. The project hierarchy supports aggregations of expenses according to projects. Note that the leaf nodes of the
application-specific hierarchies point to nodes in the primary hierarchy.

which hierarchies overlap with each other.
Our contributions. In this paper, we propose a method

for optimizing aggregation queries on a set of hierarchies
using precomputed aggregates from another set of hierarchies.
Our method exploits the fact that most industrial hierarchies
contain a significant amount of overlap and that these overlaps
result in equivalences that can be used in query rewriting.
Our method consists of two phases. In the off-line phase, we
propose an algorithm to discover overlapping relationships in
the hierarchies of the OLAP environment. These relationships
are then stored in the catalog tables of the OLAP server. In
the on-line phase, we propose a query rewrite algorithm that
leverages the overlapping relationships discovered in the off-
line phase to rewrite the OLAP queries.

II. OUR APPROACH

Our approach to optimize aggregation queries on a set of
hierarchies using precomputed aggregates from another set of
hierarchies consists of two phases.

The off-line phase scans all the application-specific hi-
erarchies in the OLAP environment in order to discover
equivalences or overlaps between each pair of hierarchies.
Naturally, only application-specific hierarchies of the same di-
mension can have equivalences, so comparisons of application
hierarchies across different dimensions are not necessary. The

result of the off-line phase is a list of node pairs for each
pair of hierarchy. A node pair (u, v) for hierarchy pair (i, j)
denotes that the node identifier (node ID) u from hierarchy i
is equivalent to node ID v from hierarchy j in the sense that
an aggregation based on the sub-tree rooted at u will yield the
same result as an aggregation based on the sub-tree rooted at
v. These equivalence pairs can be stored in a database catalog
table for use by the optimizer.

The on-line phase rewrites a given query using the equiv-
alence pairs from the off-line phase. An OLAP query is
typically generated by a graphical user interface based on an
application-specific hierarchy. The particular type of query we
are concerned with are aggregations of a fact table column
according to all the leaf labels of some sub-tree of the
application-specific hierarchy. Note that queries consisting of
more complex expressions can often be reduced to several of
such simple aggregation sub-queries. Our rewriting algorithm
proceeds as follows. The leaf nodes associated with the query
are merged according to the associated hierarchy into sub-
trees. A greedy set cover algorithm is used to find the set of
sub-trees that cover the query. We then check the equivalence
pairs from the off-line phase to find equivalent sub-trees in
other hierarchies. Moreover, we only want equivalent sub-trees
whose results have been materialized or cached in the OLAP
environment. The output of the on-line phase consists of a

list of equivalent sub-trees for each sub-tree associated with
the query. If each list contains more than one sub-tree, the
optimizer can pick one using heuristics or cost-based metrics.

III. RELATED WORK

In traditional OLAP environments where the dimension
hierarchies are regular balanced trees, the precomputed aggre-
gates are stored in a summary table or materialized view. Much
research has been done on view selection and query rewriting
to exploit views. Those previous work focus mainly on flat
relational views [2], regular and balanced hierarchies [3], [4],
[3], and cube views. The proposed techniques do no extend
easily to the irregular hierarchies that are supported by the
current state-of-the-art dedicated OLAP servers.

Many relational systems also support materialized views.
Here, frequently used queries are precomputed and stored so
as to improve query performance. When one has many such
materialized views defined on the system, the optimizer has the
task of selecting the appropriate materialized view to answer a
query or a sub-query of the query [5], [6]. The on-line phase of
our approach differs from previous rewriting algorithm mainly
in that we are dealing with overlapping sub-trees as opposed
to overlapping sub-queries.

The problem addressed by the off-line phase of our ap-
proach resembles the problem of finding common sub-trees
addressed by [7]; however, our definition of “common sub-
tree” is quite different Zaki’s and his techniques do not extend
easily to our problem.

IV. CONCLUSION

In this paper, we highlight an important and practical
problem when data warehousing and OLAP are deployed in
the industry: Multiple users create multiple ad hoc application-
specific hierarchies and data warehousing systems fail to
exploit query optimization opportunities across hierarchies.
To the best of our knowledge, this problem has not been
described in previous literature at all. To address this problem,
we propose a solution that discovers and stores cross-hierarchy
relationships in an OLAP environment, and that rewrite queries
using the discovered relationships, so that precomputed aggre-
gates can be better exploited. Our method addresses a limi-
tation of current OLAP environments to exploit precomputed
aggregates across different hierarchies.

REFERENCES

[1] L. Gong, M. Olivas, C. Posluszny, D. Venditti, and G. McMillan, “Deliver
an effective and flexible data warehouse solution, Part 2: Develop a ware-
house data model,” IBM Developerworks, July 2005, http://www-128.
ibm.com/developerworks/db2/library/techarticle/dm-0507gong/.

[2] W. Xu, D. Theodoratos, and C. Zuzarte, “Computing closest common
subexpressions for view selection problems,” in DOLAP ’06: Proceedings
of the 9th ACM international workshop on Data warehousing and OLAP.
New York, NY, USA: ACM Press, 2006, pp. 75–82.

[3] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson, “The treescape system:
Reuse of pre-computed aggregates over irregular olap hierarchies,” in
VLDB 2000, Proceedings of 26th International Conference on Very Large
Data Bases, September 10-14, 2000, Cairo, Egypt, A. E. Abbadi, M. L.
Brodie, S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter, and K.-Y.
Whang, Eds. Morgan Kaufmann, 2000, pp. 595–598.

[4] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson, “Extending practical pre-
aggregation in on-line analytical processing,” in VLDB’99, Proceedings
of 25th International Conference on Very Large Data Bases, September
7-10, 1999, Edinburgh, Scotland, UK, M. P. Atkinson, M. E. Orlowska,
P. Valduriez, S. B. Zdonik, and M. L. Brodie, Eds. Morgan Kaufmann,
1999, pp. 663–674.

[5] C.-S. Park, M.-H. Kim, and Y.-J. Lee, “Rewriting olap queries using
materialized views and dimension hierarchies in data warehouses.” in
ICDE, 2001, pp. 515–523.

[6] C.-S. Park, M.-H. Kim, and Y.-J. Lee, “Finding an efficient rewriting
of olap queries using materialized views in data warehouses,” Decision
Support Systems, vol. 32, no. 4, pp. 379–399, 2002.

[7] M. J. Zaki, “Efficiently mining frequent trees in a forest,” in KDD ’02:
Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining. New York, NY, USA: ACM
Press, 2002, pp. 71–80.

