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Abstract

In enterprise data warehouses, different users in differ-
ent business units often define their own application spe-
cific dimension hierarchies tailor made to their report-
ing and business performance monitoring needs. Due
to resource constraints, only on a small number of these
hierarchies are precomputed for performance optimiza-
tion. Consequently aggregations over hierarchies with-
out precomputations are often less responsive. We re-
port on a performance problem in a very large banking
enterprise where the large number of application spe-
cific hierarchies became a performance bottleneck. This
paper proposes a novel solution for optimizing the per-
formance of data warehouses with a large number of
application specific hierarchies. We exploit the observa-
tion that dimension hierarchies in real data warehouses
often contain significant overlaps. Our method detects
common sub-structures among hierarchies and provides
a rewriting algorithm to exploit any precomputations on
these shared sub-structures. Our solution is applica-
ble to data warehouses of large enterprises with a large
number of business units and hence a large number of
application specific hierarchies.

1. Introduction

Data warehouses and on-line analytical processing
(OLAP) have gained widespread use in almost all parts
of an enterprise for decision support and business per-
formance monitoring. A typical deployment uses the
two-tier data warehousing approach [5] as illustrated in
Figure 1. The data repository tier consists of one or
more DBMS (eg. IBM DB2 UDB) that extracts, trans-
forms and cleans the data from multiple sources. The
data access tier consists of one or more data marts (eg.
Hyperion Essbase, Cognos etc) through which users ac-
cess subsets of the data for subject-specific OLAP. An
OLAP data mart consists of a fact table, which can be
thought of as a materialized view of the data in the data
repository, and several dimensions, each of which can
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Figure 1: OLAP deployments in the industry typically
uses the two-tier data warehousing architecture consist-
ing of a data repository and multiple OLAP data marts.
A triangle denotes a hierarchy.

be associated with multiple complex and unbalanced hi-
erarchies. Different users in the enterprise typically de-
fine their own application-specific hierarchies within the
same data mart. For example, within the same OLAP
data mart for sales transactions, an accountant might de-
fine a hierarchy for aggregating sales transactions across
all the business units in the enterprise, and a market-
ing executive might define another hierarchy to aggre-
gate sales transactions by geographical regions. In many
real usecases, a set of enterprise-wide primary hierar-
chies are defined on each common fact table. Different
users, lines of business, and business units then define
their own application-specific hierarchies such that the
leaf nodes of each application-specific hierarchy point
back to elements in the primary hierarchies. Figure 2
illustrates an example of a primary hierarchy and two
application specific hierarchies defined on it.

In the OLAP environment, user queries are defined
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(c) Application-specific project hierarchy

TransactionID EmployeeID Time ExpenseType Amount
10001 DBA 1 2007-05-01-2059 Harddisk 1000
10002 Accountant 2 2007-05-03-0759 Stationary 100
10003 DBA 1 2007-05-03-0859 Software 2000

... ... ... ... ...

(d) The expense transactions fact table.

Figure 2: Primary organization hierarchy and hierarchies specific to expense accounts applications. The geographical
hierarchy supports aggregations of expenses by geographical regions or the business units. The project hierarchy
supports aggregations of expenses according to projects. Note that the leaf nodes of the application-specific hierarchies
point to nodes in the primary hierarchy.

against a small number of application-specific hierar-
chies. These queries are then translated into an equiv-
alent query on the fact table automatically. Query op-
timization usually involves precomputing certain aggre-
gates on some hierarchies.

Example 1 (Precomputing aggregates)Consider a
query that aggregates the expenses in the fact table
(Figure 2(d)) according to the geographical hierarchy
in Figure 2(b) and reports the expenses by continent
(North America, Europe, and Asia). To speedup the
query, the administrator can specify that expense
aggregates for certain countries or certain continents
be precomputed and stored in the OLAP environment,
so that the query optimizer can exploit them.

If the data warehouse has unlimited resources, every ag-
gregation on every hierarchy can be precomputed in ma-
terialized views. With limited resources, only a small
subset of aggregations can be precomputed.

In small and medium enterprises, the number of
application-specific hierarchies tend to be small in the
order of tens; hence, current data warehouse optimiza-
tion techniques such as materializing summary tables
are adequate. In large enterprises, there could hundreds
of business units or lines of business, resulting in hun-
dreds of application-specific hierarchies. Precomputing
aggregates in summary tables for every internal node of
every application-specific hierarchy is not feasible due
to large space requirement. Moreover, the OLAP ad-



ministrator typically creates precomputed aggregates for
a few important hierarchies. Can we optimize access
on hierarchies on which no precomputed aggregations
have been created ? Given that there are overlaps in
the application-specific hierarchies, such optimization
should be possible in principle. If precomputed aggre-
gates have been created on a hierarchyH1 andH1 over-
laps with hierarchyH2, a query written on hierarchyH2

should be able to exploit the precomputed aggregates on
the overlapping portion ofH1 andH2.

Example 2 (Exploiting overlapping hierarchies)
Consider the same query in Example 1 that reports the
total expenses by continent (North America, Europe,
and Asia) according to the geographical hierarchy
in Figure 2(b). Further suppose no precomputed
aggregates exists for the geographical hierarchy, but
precomputed aggregates exists for the projects in the
project hierarchy of Figure 2(c). The query should
be able to exploit the precomputed aggregates for the
“Project 1” node of the project hierarchy, because the
aggregate is equivalent to the “Asia” or “China” node
in the geographical hierarchy.

Unfortunately, current OLAP environments are not
aware of overlaps between hierarchies and hence are
not able to rewrite queries to exploit precomputed ag-
gregates across different hierarchies.

The failure to exploit hierarchy overlap informa-
tion resulted in a serious performance problem in a large
banking enterprise that we had the opportunity to work
with. The banking enterprise had a financial datamart
(chart of accounts) which used a commercially available
OLAP engine as a front end and a relational engine as
the backend. The datamart design allows for dimensions
for accounts, companies and cost centers. The key prob-
lem is that the financial company has 200,000 cost cen-
ters and each of them has the ability to define its own or-
ganizational hierarchies. This led to the dimension table
having more than 100 million rows. It has resulted in se-
rious performance problems with only 10 to 20 users be-
ing able to use the system simultaneously from a pool of
1500 users. It was determined that if common sub-trees
were identified from the hierarchies and precalculated
in the fact table, it would allow system performance to
improve dramatically.

Our contributions. In this paper, we propose a
method for optimizing aggregation queries on a set of
hierarchies using precomputed aggregates from another
set of hierarchies. Our method exploits the fact that
most hierarchies in an industrial setting contain a sig-
nificant amount of overlap and that these overlaps result

in equivalences that can be used in query rewriting. Our
method consists of two phases. In the off-line phase,
we propose an algorithm to discover overlapping rela-
tionships in the hierarchies of the OLAP environment.
These relationships are then stored in the catalog tables
of the OLAP server. In the on-line phase, we propose
a query rewrite algorithm that leverages the overlapping
relationships discovered in the off-line phase to rewrite
the OLAP queries. In summary, the contributions of this
paper are:

• We highlight an important and practical problem
when data warehousing and OLAP are deployed in
the industry. To the best of our knowledge, this
problem has not been adequately addressed in pre-
vious literature.

• We propose an algorithm to discover and store
overlap relationships in the hierarchies of an over-
lap environment.

• We propose an algorithm to rewrite queries using
the discovered relationships, so that precomputed
aggregates can be better exploited.

• Our method addresses a limitation of current OLAP
environments to exploit precomputed aggregates
across different hierarchies.

• We prototyped our method and evaluated empiri-
cally the effectiveness of the proposed method.

Paper organization. Section 2 describes our
method in detail. Section 3 presents the experimental
evaluation. Section 4 discusses related work. We con-
clude in Section 5.

2. Our Approach

2.1. Overview

Our approach to optimize aggregation queries on a set of
hierarchies using precomputed aggregates from another
set of hierarchies consists of two phases.

The off-line phase scans all the application-specific
hierarchies in the OLAP environment in order to dis-
cover equivalences or overlaps between each pair of hi-
erarchies. Naturally, only application-specific hierar-
chies of the same dimension can have equivalences, so
comparisons of application hierarchies across different
dimensions are not necessary. Section 2.2 describes the
algorithms for discovering these equivalences or over-
laps in greater detail. The result of the off-line phase is
a list of node pairs for each pair of hierarchy. A node
pair (u, v) for hierarchy pair(i, j) denotes that the node



identifier (node ID)u from hierarchyi is equivalent to
node IDv from hierarchyj in the sense that an aggrega-
tion based on the sub-tree rooted atu will yield the same
result as an aggregation based on the sub-tree rooted at
v. These equivalence pairs can be stored in a catalog
table with the following schema,

Overlap( DimensionID, PrimaryHierarchyID,
HierarchyID_A, HierarchyID_B,
NodeID_A, NodeID_B ).

Our algorithms rely on two assumptions: (1) sib-
lings in each hierarchy is ordered using some canonical
ordering such as recursively ordering each sub-tree ac-
cording to their leftmost leaf labels, and (2) the Dewey
labeling scheme [18] is assumed for node identification.
Node IDs can therefore be implemented as Dewey iden-
tifiers. While our algorithms only require the Dewey IDs
to be unique within each hierarchy, Dewey IDs that are
unique across the entire data mart can also be used.

The on-line phase rewrites a given query using the
equivalence pairs from the off-line phase. An OLAP
query is typically generated by a graphical user interface
based on an application-specific hierarchy. The particu-
lar type of query we are concerned with are aggregations
of a fact table column according to all the leaf labels
of some sub-tree of the application-specific hierarchy.
Note that queries consisting of more complex expres-
sions can often be reduced to several of such simple ag-
gregation sub-queries. Our rewriting algorithm proceeds
as follows. The leaf nodes associated with the query are
merged according to the associated hierarchy into sub-
trees. A greedy set cover algorithm is used to find the
set of sub-trees that cover the query. We then check the
Overlap table from the off-line phase to find equiv-
alent sub-trees in other hierarchies. Moreover, we only
want equivalent sub-trees whose results have been mate-
rialized or cached in the OLAP environment. The output
of the on-line phase consists of a list of equivalent sub-
trees for each sub-tree associated with the query. If each
list contains more than one sub-tree, the optimizer can
pick one using heuristics or cost-based metrics.

2.2. Off-line Phase: Discovering Overlaps

The purpose of the off-line phase is to discover equiva-
lences or overlaps in the application-specific hierarchies
for each dimension. Without loss of generality, the rest
of the section describes the off-line phase assuming hi-
erarchies from a single dimension taking a set of values
D. To extend to more than one dimension, the same al-
gorithms can be run on each dimension independently.

Before we describe the algorithmic details of our off-line
phase, we define hierarchies and the notion of overlap
more formally.

Definition 1 A hierarchyh is a quadruple(V,E, l, L)
whereV is a set of nodes,E is a set of edges,l : V 7→ L

is a function that maps nodes to labels in the label setL,
and(V,E) is a tree.

In addition, we will useL(h) to denote the set of leaf
nodes ofh, andAdj(v) to denote the set of children of
the nodev.

Definition 2 A primary hierarchyp = (V,E, l, L) for
a dimension with valuesD is a hierarchy where∀u ∈
L(p), l(u) ⊆ D

Figure 2(a) illustrates an example of a primary hierarchy
for the organization dimension.

Definition 3 An application-specific hierarchyh on a
primary hierarchyp = (Vp, Ep, lp, Lp) is a hierarchy
where∀u ∈ L(h), l(u) ∈ {l(v) : ∀v ∈ Vp}

Figure 2(b) illustrates an example of an application-
specific hierarchy based on the organization primary hi-
erarchy. Another important characteristic of the hierar-
chies that we consider in this paper is that if we con-
sider the dimension values that a hierarchy (whether
primary or application-specific) covers, each dimension
value should not be covered more than once in any hier-
archy. If this condition does not hold, the normalization
techniques from Treescape [16, 15, 16] can be used to
transform the hierarchies into well-behaving ones. We
now formalize the intuition of two hierarchies sharing a
sub-hierarchy.

Definition 4 A hierarchy g = (Vg, Eg, lg, Lg) is a
matching sub-hierarchy of an application-specific hier-
archyh = (Vh, Eh, lh, Lh) denoted byg ¹ h iff there
is a bijectionf betweenVg and a subsetV ′

h ⊆ Vh, such
that

1. for all (u, v) ∈ Eg, (f(u), f(v)) ∈ Eh, and

2. for all u ∈ Vg, Adj(f(u)) = {f(v) : ∀v ∈
Adj(u)}, and

3. for all u ∈ L(h), lg(u) = lh(f(u)).

The first condition ensures that the tree(Vg, Eg) asso-
ciated with hierarchy g is isomorphic to the sub-tree in-
duced by the node setV ′

h. The second condition en-
sures that the bijectionf mapsg to an entire sub-tree of
h, i.e., all descendant nodes of the node setV ′

h are in-
cluded inV ′

h. The third condition ensures that the labels
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Figure 3: Examples of matching and non-matching sub-
hierarches. Figure 3(a) is a matching sub-hierarchy of
Figure 3(b) but not a matching sub-hierarchy of Fig-
ure 3(c).

of the leave nodes in the bijection need to match; how-
ever, labels of internal nodes need not match. Figure 3
illustrates an example of matching sub-hierarchies. Fig-
ure 3(a) is a matching sub-hierarchy of Figure 3(b) but
not a matching sub-hierarchy of Figure 3(c) because the
second condition has been not be satisfied.

Definition 5 Two application-specific hierarchiesh1

and h2 on the same primary hierarchyp has a com-
mon matching sub-hierarchyh iff h is a matching sub-
hierarchy ofh1 andh is also a matching sub-hierarchy
of h2.

The notion of a common matching sub-hierarchy is to
formalize the intuition for anoverlapor overlapping re-
gionbetween two hierarchies.

Definition 6 A common matching sub-hierarchyh of
two application-specific hierarchiesh1 and h2 is max-
imal if there does not exists a common matching sub-
hierarchy h′ with a larger node set such thath is a
matching sub-hierarchy ofh′.

In Figure 3, the sub-hierarchy rooted at the shaded node
is a maximal common matching sub-hierarchy of Fig-
ure 3(b) and Figure 3(c), while the single node sub-
hierarchy rooted at the node with label ‘B’ is a com-
mon matching sub-hierarchy but not a maximal common
matching sub-hierarchy.

In general two application-specific hierarchies
can have several maximal common matching sub-
hierarchies or overlaps. The goal of the off-line phase
is to find all the maximal overlaps between all pairs
of application-specific hierarchies for each dimension in
the data mart. Algorithm 1 outlines the pseudo-code for
the off-line phase.

The off-line phase first constructs an inverted index
that maps a label (from the primary hierarchy) to a list

Algorithm 1 FINDOVERLAP(p, H )
Input: A primary hierarchyp, and a set of application-specific
hierarchyH
Output: M(i, j), ∀(i, j) ∈ H × H , is a set of node
ID pairs of the root nodes of the maximal overlapping sub-
hierarchies

1: Let Lp be the set if labels in the primary hierarchyp.
2: Scan throughH and construct an inverted indexI that

maps a label fromLp to a list of hierarchy IDs fromH

that contain that label.
3: SortI according to the size of the hierarchy ID list
4: Discard labels inI that occur in only one hierarchy
5: for all hierarchy ID listHidx starting from the smallest

list do
6: for all hierarchy pair(i, j) in Hidx × Hidx do
7: if done(i, j) is truethen
8: next;
9: done(i, j) ←true

10: C ← LeafLabels(i) ∩ LeafLabels(j)
11: M(i, j) ←MERGEOVERLAP (C, i, j)

of application-specific hierarchies that contain that label
in its leaf nodes – all the hierarchies in that list con-
tain at least one leaf node with the same label. Line 3
sorts these inverted lists according to the size of each
list. Line 4 prunes away inverted lists that contain only
one hierarchy, because we are only interested in labels
shared by at least two hierarchies. The sorted inverted
lists provide an order for subsequent processing. The
for-loop in line 5 iterates over each of these lists start-
ing from the smallest list. Within each list, all pairs of
hierarchies are compared. Lines 7-9 ensures that each
pair of hierarchy (regardless of which inverted lists they
belong to) is compared only once. The comparison be-
gins by finding the set of common leaf labels of the two
hierarchies in question. The functionLeafLabels(h) re-
turn the set of labels associated with the leaf nodes of
hierarchyh. The bulk of the comparison work is then
performed by the procedure MERGEOVERLAP as out-
lined in Algorithm 2.

The MERGEOVERLAP procedure takes as input two
hierarchiesi andj, and the set of common leaf labels.
The procedure first finds the pairs of leaf nodes from
each hierarchy that are associated with the common leaf
labels and stores them inM . These pairs of leaf nodes
are then sorted according to the Dewey IDs of the first
node in each pair. The sorted pairs inM are then re-
peated scanned to merge groups of sibling nodes into
sub-trees. Since we are dealing with pairs of nodes from
two hierarchies (i and j), the merging of siblings into
sub-trees need to occur in lock step to ensure isomor-



Algorithm 2 MERGEOVERLAP( C.i, j )
Input: A set C of common leaf labels between application-
specific hierarchyi andj.
Output: A set of node ID pairs{(ui, vj)} of the root
nodes of the maximal overlapping sub-hierarchies ini and
j.

1: ConstructM ← {(ui, vj) : li(ui) = lj(vj) = c, ∀c ∈ C}.
2: SortM according to DeweyID(ui).
3: while merge existsdo
4: Scan through M , examine DeweyID(ui) and

DeweyID(vj).
5: Let M ′ ⊆ M be a set of node pairs that are siblings in

both hierarchyi andj.
6: if M ′ covers all the sibling nodes in both hierarchyi

andj then
7: MergeM ′ and replaceM ′ with the pair of parent

nodes inM .
8: returnM

phism (Condition 1 of Definition 4). Line 6 checks
for Condition 2 of Definition 4. Condition 3 of Defi-
nition 4 is automatically satisfied by construction ofM .
Groups of sibling pairs that can be merged are then re-
moved fromM and the pair of parent nodes inserted to
M (Line 7). The while-loop terminates once no more
merging can be applied.

The resulting pairs of nodes from the MER-
GEOVERLAP procedure are then returned and stored in
M(i, j). As mentioned in the overview (Section 2.1),
the equivalence or overlap information contained in
M(i, j) are stored in a relational catalog table. The off-
line phase need only be run whenever the hierarchies
change. In most industrial application, hierarchies are
seldom modified; however, new application-specific hi-
erarchies may be added. If only new hierarchies are
added, the algorithms in the off-line phase can be mod-
ified slightly so that only comparisons between the new
hierarchies and the old hierarchies are performed, since
the overlaps associated with the old hierarchies have not
changed.

Complexity. The complexity of Algorithm 2 is
O(w×d) time, wherew is the maximum number of leaf
nodes any application-specific hierarchy can have, and
d is the maximum depth that any application-specific
hierarchy can have. The while-loop in Line 3-7 exe-
cutes for at mostd iterations and each iteration takes
|C| = |M | = O(w) time. The complexity of Algo-
rithm 3 isO(|H| + |p|log|p| + |HI |

2 × w × d), where
HI is the set of hierarchies that overlap with some other
hierarchy. The|H| term is due to the inverted index
construction in Line 2 and the|p|log|p| term is due to
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Figure 4: An example of how the procedure MER-
GEOVERLAP works.

the sorting of the|p| inverted lists by size in Line 3. The
complexity of the nested for-loop in Line 5-6 is bounded
by the number of comparisons between all pairs of hier-
archies fromHI . If there are no overlaps among the
hierarchies at all,HI will be the empty set.

2.3. On-line Phase: Rewriting Queries

The on-line phase is invoked whenever an aggregation
query that is based on an application-specific hierarchy
is processed. Since the on-line phase attempts to rewrite
the aggregation query using pre-computed results from
other hierarchies, it requires that the off-line phase has
been successfully executed and the equivalence infor-
mation stored in theOverlap catalog table.

OLAP queries in data marts are specified as summa-
tions over the leaf nodes of an application-specific hier-
archy. For example, a query on the application-specific
project hierarchy of Figure 2(c) may be to sum all the ex-
penses associated with the following leaf nodes of that
hierarchy,

query = AccountingTeam2 + SalesTeam

+HRDept + AccountingTeam1

+MarketingTeam + ITEmployee9 .

Note that because the queries are developed based on the
application-specific hierarchy, the summations typically
follow the structure of the hierarchy.

Rewriting query using views is a well-studied prob-
lem [13, 14]; however, the problem that we address here
is unique in that aggregation follow certain hierarchies
and the equivalences may be at any level of a hierarchy.

Algorithm 3 sketches our algorithm for finding



Algorithm 3 REWRITEQUERY(Q , h, M)
Input: A queryQ on application-specific hierarchyh, and the
set of overlapsM
Output: A set of alternate query formulation

1: QN ←MERGEQUERYNODES(Q , h)
2: H ←find all hierarchies inM that overlap withh
3: H ←eliminate hierarchies that do not have precomputed

results
4: /* check all alternate hierarchies for possible rewrites */
5: for all i ∈ H do
6: for all (uh, vi) ∈ M(h, i) do
7: for all q ∈ QN do
8: if q is covered byuh then
9: vq ←find matching node forq in vi.

10: Alternate(q)←Alternate(q)∪ vq

rewrites to an aggregation query. The input to our rewrit-
ing algorithm consists of

• a queryQ , a set of leaf labels that identify rows in
a fact table to be aggregated,

• the application-specific hierarchyh on which the
query is based, and

• the equivalence informationM in the Overlap
catalog table that is discovered by the off-line
phase.

The first step in the rewriting algorithm invokes
the procedure MERGEQUERYNODESoutlined in Algo-
rithm 4 to convert the query (a set of leaf labels) into
a set of sub-tree root nodes in the hierarchyh of which
leaf nodes cover the query. The rewriting algorithm then
findsH, the set of hierarchies that overlap withh, using
theOverlap table (Line 2). Since not every hierarchy
that overlaps withh have precomputed results in cache
or materialized views in the database, such hierarchies
can be pruned fromH (Line 3). Next, we examine the
equivalence node pairs for each candidate hierarchy in
H (Line 5-6), and check if the equivalence nodes cover
any of the query nodes (Line 7-8). This subsumption
check can be done very efficiently using node labeling
techniques such as interval labeling or Dewey labeling.
Since node IDs in our system are Dewey IDs, the sub-
sumption check reduces to checking for prefix match of
the Dewey IDs. If the nodeuh in the equivalence pair
that is associated with the hierarchyh does indeed sub-
sume the query node, we then the node in the equivalent
sub-tree ofvi that is equivalent to the query nodeq (Line
9) and add that node to the alternate list for query node
q (Line 10).

We now describe Algorithm 4 for transforming the
query, a set of leaf labels, to a set of covering sub-tree

Algorithm 4 MERGEQUERYNODES(Q , h)
Input: A queryQ , and the associated application-specific hi-
erarchyh
Output: The set of hierarchy nodesQN that represent the
query.

1: /* construct list of hierarchy nodes associated with the
query */

2: N ← ∅
3: for all termt in the queryQ do
4: Let I(t) be the set of nodes fromh with labelt
5: N ← N ∪ I(t)
6: /* merge nodes inN into sub-trees according toh*/
7: SortN by the DeweyID of each node
8: while merge existsdo
9: Scan throughN , examine DeweyIDs of each node.

10: Let N ′ ⊆ N be a set of nodes that are siblings in hier-
arhcyh.

11: if N ′ covers all the sibling nodes in hierarchyh then
12: MergeN ′ and replaceN ′ with the parent node in

M .
13: /* find sub-trees inN that covers the query */
14: QN ← ∅
15: while Q is not emptydo
16: Pick the sub-treen ∈ N according to some greedy set

cover heuristics
17: QN ← QN ∪ n

18: Q ← Q − LeafLabels(n)
19: if there are overlaps, subtract overlapping portion to avoid

duplicate aggregation.
20: returnQN

root nodes. The first step converts each leaf labels into
its associated leaf node ID in the hierarchyh (Line 2-5).
Note that each leaf label may map to more than one leaf
node. The set of leaf node IDsN is then sorted accord-
ing to the Dewey ID (Line 7). Recall that sorting Dewey
IDs will group sibling nodes together. The while-loop in
Line 8 iterates through the sorted node IDs and attempts
to group sibling nodes into subtrees according to their
Dewey ID. A group of sibling nodes are merged and re-
place with their parent node ID only if the parent has no
other siblings. The while-loop terminates when no more
merging is possible. At this point, the setN contains
node IDs of the root nodes of sub-trees that cover the
query. In fact, we allow more than one sub-tree to cover
the same portion of the query. To find a minimum sub-
tree cover, we employ a standard greedy, heuristic-based
set cover algorithm (Line 15-18), since the problem is
known to be NP-hard.

Complexity. The running time complexity of Al-
gorithm 4 isO(|Q| × depth(h)), because each iteration
of the while-loop in Line 8-12 takes at mostO(|Q|)



time and there are at mostO(depth(h)) iteration (a
leaf node can at most be merged up to the root of the
tree). The complexity of the three nested for-loops in
Algorithm 3 is O(|H| × maxi∈H |i| × |Q |), where|i|
denotes the size or number of nodes in hierarchyi.
Hence, the overall complexity of the on-line phase is
O(|Q| × depth(h) + |H| × maxi∈H |i| × |Q |)

3. Experiments

We prototyped our solution using Perl and investigated
the effectiveness and the scalability of the proposed al-
gorithms. This section presents highlights from our ex-
perimental study.

Data Generation. In order to understand the scal-
ability of our algorithms, we generated synthetic data
with different sizes and characteristics. A data set con-
sists of a set of hierarchies or trees whose leaf labels are
taken from a controlled vocabulary. Moreover, we need
to synthesize controlled overlaps among the trees. Our
approach is to first generate a collection of 100 random
trees to be used as shared sub-trees. We then generate
the trees for the data set such that it will include a sub-
tree from the collection of shared sub-trees with a con-
figurable probabilitysharedprob.

A random tree is generated as follows. Starting
from a node, we generate a random probability and
choose to expand the current node with a configurable
probabilityexpandprob. If the current node is a leaf, it
is assigned a leaf label. Otherwise, a random number
bounded bymaxfanout is generated for the number of
children. The procedure is then called recursively for
each child of the current node. The recursion terminates
whenmaxdepth has been reached. For generating ran-
dom trees that share some common sub-trees, we add an
addition step when expanding a node. A random proba-
bility is generated so that with probabilitysharedprob a
shared sub-tree should be used for expansion, and with
probability 1 − sharedprob the node is expanded nor-
mally. If the current node is to be expanded with a
shared sub-tree, a random shared sub-tree is picked from
the collection without replacement.

We generated several of such data sets and veri-
fied that our off-line phase algorithm discovered all the
shared sub-trees that were injected into the data set. We
now describe some of the scalability results in detail.

Varying the number of hierarchies. In this exper-
iment we study how the off-line phase algorithm scales
with the number of trees in the data set. Themaxfanout

is set at 5, themaxdepth at 16, theexpandprob and
sharedprob both at0.8. For each setting for the num-

ber of hierarchies, we generate 10 random data sets and
ran the off-line phase on these data sets. The average
running time over the 10 runs is then measured. Note
that the running time includes reading the hierarchies
from disk. Figure 5(a) shows our measurements. Al-
though the running time of the off-line phase appears to
be super-linear in terms of the number of hierarchies, if
we replot the measurements using the number of pairs of
shared sub-hierarchies as the X-axis, we observe in Fig-
ure 5(b) a linear relationship with the number of shared
pairs which is also the size of the output.

Varying the hierarchy fanout. The number of
hierarchies is set at 200, themaxdepth at 16, the
expandprob and sharedprob both at0.8. Figure 5(c)
shows the running time of the off-line phase versus the
hierarchy fanout characteristics. Our results show that
the running time of the off-line phase is not sensitive to
the fanout characteristics of the hierarchies. This is a
nice property for an algorithm operating on hierarchies.

Varying the hierarchy depth. The number of
hierarchies is set at 200, themaxfanout at 10, the
expandprob and sharedprob both at0.8. Figure 5(d)
shows the running time of the off-line phase versus the
hierarchy depth characteristics. Our results show that
the running time of the off-line phase is not sensitive to
the depth of the hierarchies. This is a nice property for
an algorithm operating on hierarchies.

Varying the probability of expansion. Recall that
the probability of expansion controls how dense each
random tree is going to be. In this experiment the num-
ber of hierarchies is set at 200, themaxfanout at 10,
themaxdepth at 16, andsharedprob at0.8. Figure 5(e)
shows the running time of the off-line phase versus the
hierarchy expansion probability. Our results show that
the running time of the off-line phase is not sensitive to
the depth of the hierarchies.

Varying the probability of sharing. Recall that the
probability of sharing controls how much overlap there
will be among the hierarchies in the data set. In this
experiment the number of hierarchies is set at 200, the
maxfanout at 10, themaxdepth at 16, andexpandprob

at0.8. Figure 5(f) shows the running time of the off-line
phase versus the hierarchy sharing probability. Some-
what surprisingly, our results show that the running time
of the off-line phase is not sensitive to the sharing prob-
ability of the hierarchies.

4. Related Work

In traditional OLAP environments [2], dimension hi-
erarchies are regular balanced trees that are typically
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Figure 5: Running time of off-line phase against different data set characteristics.

stored as flattened dimension tables. A dimension ta-
ble for a dimension hierarchy consists of one column
per level of the hierarchy. The values in each column
represent the distinct nodes at the level associated with
that column. Roll-up aggregations on a dimension hi-
erarchy can then be computed as a group-by on a join
between the dimension table and the fact table. Such
aggregation queries are typically optimized by precom-
puting the aggregations and storing them in a summary
table or materialized view. Much research has been done
on the problem of view selection [7, 19, 8], the prob-
lem of rewriting a query to exploit a set of materialized
views [3, 4, 13, 14], and the problem of view mainte-
nance [1, 22, 6]. These previous work address flat rela-
tional views, regular and balanced hierarchies, and cube
views. Our work is complementary in that we address
specifically sub-tree overlaps among irregular and un-
balanced dimension hierarchies. Once the overlapping
sub-trees are identified, the techniques from these previ-
ous work can be used to create views on the sub-trees.

The Treescape [16, 15, 16] system proposed by
Pedersen et al. does handle irregular dimension hier-
archies. The focus of their work is on algorithms for
determining what to pre-aggregate. The key idea in
Treescape is to transform hierarchies so that they have
certain nice properties that allow better pre-aggregation
to be done. Our work is orthogonal to Treescape: we
do not address what to pre-aggregate, but what is shared
between hierarchies and how we can exploit the shared
sub-trees if pre-aggregations on them exists.

Xu et al. [20] proposed a method for computing
closest common subexpressions for view selection prob-
lems that works at the level of relational algebra and
hence SQL statements. Our work differs in that we iden-
tify common sub-hierarchies among hierarchies.

Apart from academic research, the Master Data
Management (MDM) [12] approach can be used as an
alternative solution to the problem reported in this pa-
per. MDM is a set of processes and tools for maintain-
ing “a single version of the truth” in an enterprise and
entails significant organizational change. In principle,
MDM and its associated software tools [9, 17, 10] can
be used to maintain a single set of application-specific
hierarchies with no overlaps. On the other hand, MDM
is not very useful if the problem already exists.

The problem addressed by the off-line phase of
our approach resembles the problem of finding common
sub-trees addressed by [21]; however, our definition of
“common sub-tree” is quite different Zaki’s and his tech-
niques do not extend easily to our problem.

The on-line phase of our approach is related to the
problem of query rewriting using views [13, 14]. The
key difference is that in the traditional setting, views
equivalences are flat relations, whereas in our setting
the partial, sub-tree equivalences identified in the off-
line phase needs to be incorporated when searching for
a candidate view to rewrite the query.

Previous research on partial sums on OLAP data
cubes is also related to our work in that each match-
ing sub-hierarchy can be viewed as a partial sum. The



difference is that previous work do not exploit any tree
structure on the full and partial aggregations. Our work,
on the other hand, fully exploits the tree structure in de-
termining the partial sums common to multiple aggrega-
tions.

5. Conclusion

In this paper we describe techniques to optimize OLAP
aggregation queries defined on an application-specific
hierarchy by leveraging precomputed aggregations on
other hierarchies. This is done by detecting common
sub-structures in the different hierarchies and by pro-
viding a rewriting algorithm to exploit any precompu-
tations on these shared structures. Our techniques result
in significant savings of computation and faster query
response times. While current technology like MDM is
very good at keeping track of the many hierarchies that
could be defined on a dimension and resolving them up-
front, it does not do a good job of finding common sub-
structures when the hierarchies have already been de-
fined or in determining a more efficient way to express
the derived accounts in terms of the summary accounts.
It is in situations like this that our techniques help in al-
leviating the performance bottlenecks.
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