
Modeling and Querying E-Commerce Data in Hybrid
Relational-XML DBMSs

Lipyeow Lim, Haixun Wang, and Min Wang

IBM T. J. Watson Research Center
{liplim,haixun,min}@us.ibm.com

Abstract. Data in many industrial application systems are often neither com-
pletely structured nor unstructured. Consequently semi-structured datamodels
such as XML have become popular as a lowest common denominator to man-
age such data. The problem is that although XML is adequate to representthe
flexible portion of the data, it fails to exploit the highly structured portion of the
data. XML normalization theory could be used to factor out the structured por-
tion of the data at the schema level, however, queries written against the original
schema no longer run on the normalized XML data. In this paper, we propose
a new approach called eXtricate that stores XML documents in a space-efficient
decomposed way while supporting efficient processing on the original queries.
Our method exploits the fact that considerable amount of information is shared
among similar XML documents, and by regarding each document as consisting
of a shared framework and a small diff script, we can leverage the strengths of
both the relational and XML data models at the same time to handle such data ef-
fectively. We prototyped our approach on top of DB2 9 pureXML (a commercial
hybrid relational-XML DBMS). Our experiments validate the amount of redun-
dancy in real e-catalog data and show the effectiveness of our method.

1 Introduction

Real data in industrial application systems are complex. Most data do not fit neatly
into structured, semi-structured or unstructured data models. It is often the case that
industrial data have elements from each of these data models. As an example consider
managing product catalog data in E-Commerce systems. Commercial e-Commerce so-
lutions such as IBM’s Websphere Product Center (WPC) have traditionally used a ver-
tical schema [1, 2] in a relational DBMSs to manage the highlyvariable product catalog
data. In addition to the vertical schema, the research community has proposed several
strategies for managing data with schema variability usingrelational DBMSs. These in-
clude variations on the horizontal, the vertical, and the binary schema [3, 4]. However,
the relational data model remains ill-suited for storing and processing the highly flexible
semi-structured e-catalog data efficiently. The flexibility of the XML data model, on the
other hand, appears to be a good match for the required schemaflexibility and Lim et
al. [5] has proposed managing product catalog data using XML-enabled DBMS. How-
ever, the flexibility of XML in modeling semi-structured data usually comes with a big
cost in terms of storage especially for XML documents that have a lot of information in
common.

Example 1. Consider the XML fragments for the specifications of two plasma HDTV
product on thewww.newegg.com website. Not only do the two XML documents
share many common structural elements (eg. “AspectRatio”,“Resolution”), they also
share many common values (eg. “16:9”, “1200 cd/m2”).

<ProductInfo>
<Model>

<Brand>Panasonic</Brand>
<ModelID>TH-58PH10UK</ModelID>

</Model>
<Display>

<ScreenSize>58in</ScreenSize>
<AspectRatio>16:9</AspectRatio>
<Resolution>1366 x 768</Resolution>
<Brightness>1200 cd/m2</Brightness>
<Contrast>10000:1</Contrast>
<PixelPitch>0.942mm</PixelPitch>

</Display>
...

</ProductInfo>

(a) Panasonic Plasma HDTV

<ProductInfo>
<Model>

<Brand>Philips</Brand>
<ModelID>42PFP5332D/37</ModelID>

</Model>
<Display>

<ScreenSize>42in</ScreenSize>
<AspectRatio>16:9</AspectRatio>
<Resolution>1024 x 768</Resolution>
<Brightness>1200 cd/m2</Brightness>
<Contrast>10000:1</Contrast>
<ViewingAngle>160(H)/160(V)</ViewingAngle>

</Display>
...

</ProductInfo>

(b) Philips Plasma HDTV

Fig. 1. Two XML fragment of Plasma HDTV product info from on-line retailernewegg.com.
Bold face denotes information that is unique to that XML document.

It is clear from Ex. 1 that XML descriptions of products in thesame or similar
category have many structural elements and values in commonresulting in storage in-
efficiency. If minimizing storage were our only goal, XML compression methods (such
as XMill [6] and XGrind [7]) could be used to eliminate most ofthe storage inefficiency
at the expense of less efficient query processing due to the need for decompression. An-
other approach would be to apply XML normalization [8–10] onthese XML documents
assuming a super-root. Unfortunately, applying XML normalization poses two prob-
lems. First, XML normalization is a design-time process that requires both the schema
and the functional dependencies of the XML data to be specified. In many real appli-
cations the functional dependencies are neither identifiednor specified. In fact, some
applications do not even require a schema to be specified. Whena schema is specified,
these schemas are typically part of industrial standards that do not admit any modifica-
tion by a normalization process. Second, queries written against the original XML data
no longer work against the normalized XML data1. This is a serious problem, because
application developers typically write queries against the original XML data. The goal
of our work is to exploit the redundancy in the XML data in order to support efficient
storage of the data, efficient query processing over the data, and transparency to the user,
i.e., the user need not re-design the schema of the XML data orrewrite the queries. In
contrast to low-level compression methods and schema-based normalization methods,
we explore structural as well as value similarities among a set of semi-structured data
documents to create models that allow efficient storage and query processing. To our
advantage, commercial DBMSs are rolling out native XML support [11, 12], which pro-
vides a new option to managing data with high schema variability [5]. We leverage such
systems to build a hybrid model for semi-structured data.

Our Approach . In this paper, we propose a new approach calledEXTRICATE to man-
age data with high schema variability. Fig. 2 presents theEXTRICATE system on a high
level. TheEXTRICATE system consists of two main components: theEXTRICATE data
modeler and theEXTRICATE query processor. TheEXTRICATE data modeler takes as
input the original XML collection, “extricates” a shared XML document (amodel),
stores the original documents as differences from the shared XML document, and gen-

1 In theory, the queries on the original XML data could be transformed into queries on the
normalized XML data. Unfortunately, there is no known query transformation algorithm for
this purpose.

Optional
XML Schema Input

Query

Query
Result

 eXtricate
Query Processor

Original E-Catalog XML Data

E-Catalog View
Decomposed
E-Catalog XML Data

 eXtricate
Data Modeller

Fig. 2. Overview of our EXTRICATE sys-
tem.

XML doc
shared

diff
 eXtricate
Data Modeller

Fig. 3. A collection of XML documents are
decomposed into a shared XML tree and a
collection ofdiff scripts. The shaded portion
of the XML trees denote common informa-
tion.

erates a view of the decomposed data that has the same schema as the original data. The
EXTRICATE query processor takes as input user queries written againstthe original data
and transforms the query into a query processing plan for thedecomposed data.

For concreteness, consider managing the electronic product catalog of an on-line
retailer using a hybrid relational-XML DBMS. The product information can be stored
in a table with an XML column using the following schema:

ecatalog (productID INT ,categoryID INT ,info XML).

Each product is uniquely identified by itsproductID. ThecategoryID encodes prod-
uct category information like “Electronics > Plasma / LCD / DLP TV > Plasma
TV > Panasonic” as a numerical identifier. Theinfo field stores the detailed prod-
uct information in XML form. These XML data can be queried, using embedded XPath
expressions in SQL [11, 13] or using XQuery. As motivated by Ex. 1, it is safe to ar-
gue that products in the same category usually exhibit considerable structural and value
similarity. Conversely, products in different categoriesexhibit more differences both
structurally as well as in terms of values. For instance, MP3players have attributes
such asStorage Capacity, Supported Audio Formats, etc., that HDTVs typically do not.

Using EXTRICATE, the ecatalog table will be decomposed internally into two
tables, namely:

categoryInfo (categoryID INT ,sharedinfo XML)

productInfo (productID INT ,categoryID INT ,diff XML)

The categoryInfo table stores the XML tree shared by all products in a particular
category. TheproductInfo table encodes each of the original XML document in the
info column as thediff or edit transcript from the shared XML tree of the associated
category. Each XML document is therefore decomposed into a shared XML tree and its
diff from the shared XML tree. Since the shared XML tree is stored once for all the
XML documents in the category, significant storage savings can be obtained for highly
redundant XML data.

From the perspective of the user of the e-catalog database, nothing has changed,
because the e-catalog data is presented to the user as a view,which has the same
schema as the originalecatalog table. Applications and queries on theecatalog
table require no change either:EXTRICATE’s query processor will transform any query
against the originalecatalog table into queries against thecategoryInfo table,
and if necessary, theproductInfo table (some queries can be answered by accessing

categoryInfo only). The query transformation is carried out by a rule-based query
processor that is described in detail in Sect. 3.

Our Contributions . We summarize our contributions as follows:

– We propose a space-efficient and query-friendly model for storing semi-structured
data that leverages commercial DBMSs with native XML support. We show that
with the new model, we can dramatically reduce storage redundancy of XML data
and improve query performance at the same time.

– We propose a query transformation algorithm to automatically rewrite user queries
on the original data to queries on the data stored using our model without any user
intervention. In many cases, the transformed queries can beanswered much more
efficiently than the original ones since they access much less amount of data.

– We show that our approach is friendly toward schema evolution, which occurs fre-
quently in applications such as e-commerce data management.

Paper Organization. Sect. 2 presentsEXTRICATE’s data modeler. Query rewriting and
processing is discussed in Sect. 3. We discuss data maintenance issues related to schema
evolution in Sect. 5. Experimental results are presented inSect. 6. We review related
work in Sect. 6 and conclude in Sect. 7.

2 Data Modelling

Our EXTRICATE data modeler is inspired by the predictive compression paradigm,
where the data is represented losslessly using a model that predicts the data approx-
imately and the residue that is the difference between the predicted data and the true
data. In an analogous fashion,EXTRICATE extracts ashared XML document from a
set of XML documents and represents each of the original document using the shared
document and thediff script. The shared XML document represents a “model” that pre-
dicts the XML documents in the collection. Thediff script represents the “residue” that
is a set of differences between the document and the shared document. Since the shared
XML document is common to all the documents in the collection, we only need to
store it once. Hence the entire collection of XML documents is stored as a single shared
XML document and a collection of diff scripts, one diff script for each document in the
collection (see Fig. 3).

Continuing with the e-catalog example, recall that the product information has been
partitioned according to product categories and that the product information within the
same category have both structural and value similarities.The product information are
stored as XML documents and we will use a tree representationfor XML documents
in our discussion. Conceptually, theEXTRICATE data modeler first finds ashared XML
tree for a collection of XML trees. The shared XML tree is the maximal sub-tree com-
mon to all the XML trees in the collection. Thediff of each original XML tree from the
shared XML tree can then be computed using known tree diff algorithms [14–17].

Example 2 (A Data Modelling Example). Consider the XML documents (represented
as trees) of the two HDTV products shown in Fig. 1. The shared XML tree is shown in
Fig. 4(a) and the differences are shown in Fig. 4(b).

Observe that the shared XML tree (1) is a single connected tree, (2) contains values in
addition to structure. In practice, the shared tree may be further annotated with statistical
information (e.g., themin, max values of, say, thelistprice element).

1

2

Model

3

Display

4

Brand

5

ModeID

6

ScreenSize

7

AspectRatio

8

Resolution

9

Brightness

10

Contrast

16:9 1200 cd/m2 10000:1

(a) The shared XML tree.

diff

4 5 6 8 3

Panasonic TH-58PH10UK 58in 1366 x 768

PixelPitch

0.942nm

diff

4 5 6 8 3

Philips 42PFP5332D/37 42in 1024 x 768

ViewingAngle

160(H)/160(V)

(b) Thediff’s.

Fig. 4.The decomposed representation of the two HDTV XML documents in Fig. 1

Observe that eachdiff document represents a set of insertion operations onto the
shared XML tree. Each of the twodiff trees represents 4 insertions, as there are 4 child
nodes under the root node. The name of these child nodes are node identifiers (NIDs),
which identify the nodes or the location of insertion in the shared XML tree. These
NIDs on the shared XML tree may be either implicitly maintained by the DBMS or
explicitly annotated on the tree nodes.

It is clear that by inserting each sub-tree in thediff as the child of the node in the
shared XML tree with the specified NID, the original XML document can be recovered.

A direct benefit of our decomposition is storage efficiency. Information common to
all product documents within a category is “extricated” andstored once in the shared
XML document, instead of being redundantly stored in every document. However,
in contrast to XML compressors (such as XMill [6] and XGrind [7]) the goal of our
method is not low-level compression: our decomposition method operates at the data
model level with a focus on efficient query processing. In other words, the decompo-
sition must be done in a query-friendly way, that is, we need to ensure queries on the
original table can be mapped to queries on the decomposed tables and processed effi-
ciently thereafter.

2.1 Finding the Shared XML Tree

In this section we discuss the first step of the decompositionprocess: finding the (largest)
shared XML tree, given a set of XML documents having similar structures and values.

This problem is similar to themaximal matching problem [16] and is complemen-
tary to the problem of finding the smallest diff between two XML trees. Efficient algo-
rithms exists for ordered trees [16]. For unordered trees, the problem is NP-hard [14],

A

B B

C D

A

B B

C D

Fig. 5.A Shared XML document and thediff

but polynomial time approximate algorithms [14, 15] exist.However, our problem dif-
fers from the work mentioned above in that the the maximal matching need to be a
connected tree. The goal of the above-mentioned related work is to find the maximal
common fragments, i.e., a common forest among two XML trees in order to minimize
the edit distance between the two XML trees. In contrast, ourgoal is to find a single
rooted tree that is common to a collection of XML trees.

We discuss the case of finding shared XML documents for unordered trees, which is
more difficult than for ordered trees. One difficulty in finding a single shared tree among
a set of XML trees is that a set of unordered children nodes mayhave the same node
name. The difficulty can be illustrated by the two XML documents shown in Fig. 5.
The nodeB beneathA occurs twice in both documents. The largest shared document
is not unique for these two documents. One alternative will contain all nodes except for
nodeC, and the other all nodes except for nodeD. To find the largest shared document
among a set of documents, we must store all such alternativesat every step, which
makes the complexity of the entire procedure exponential.

In this work, we use a greedy approach. We find the shared document of two docu-
ments starting from their root nodes. Letn1 andn2 be the root nodes of two XML doc-
uments. Two nodes are said to match if they have the same node type, and either they
have same names (for element/attribute nodes) or they have the same values (for value
nodes). Ifn1 andn2 do not match, then the shared document is an empty document.
Otherwise, we recursively find matches for each of their child nodes. Special consider-
ation is given to the case where several child nodes have the same name and the child
nodes are unordered. AssumeC1(l) = {s11, · · · , s1m} andC2(l) = {s21, · · · , s2n} are
two sets of child nodes with the same name that we need to match. We find recursively
the shared XML sub-tree for every pair (s1i, s2j) of the instances. Out of them × n
shared XML trees, we pick the shared XML sub-treerpq with the largest size and add
rpq as the child node of the current shared XML treer. We remove all the shared trees
associated with eithers1p or s2q from the candidate setM so that they will not be cho-
sen anymore. Then, we find the next largest in the remaining(m− 1)(n− 1) candidate
shared XML sub-trees. We repeat this process until no sharedsub-trees can be found.

Algorithm 1 outlines the MATCHTREE procedure that finds a shared document be-
tween two XML documents. Based on the MATCHTREE procedure, Algorithm 2 finds
the shared document among a set of XML documents.

2.2 Finding the Differences

After the shared XML tree is found, the difference between each document in the orig-
inal collection and the shared XML tree can be found using existing tree diff algo-
rithms [14–17]. In addition to finding the differences, we optionally annotate the shared

Algorithm 1 MATCHTREE(n1,n2)
Input: n1, n2: root node of the two XML tree
Output: r: a shared subtree

1: if n1 matchesn2 then
2: r ← new node
3: copyn1 to r

4: let C1 = {child nodes ofn1}
5: let C2 = {child nodes ofn2}
6: letL = { node names common toC1 andC2}
7: for each node namel ∈ L do
8: let C1(l) = {nodes fromC1 with namel} = {s11, · · · , s1m}
9: let C2(l) = {nodes fromC2 with namel} = {s21, · · · , s2n}
10: for each(s1i, s2j) ∈ C1(l)× C2(l) do
11: rij ← MATCHTREE(s1i, s2j)
12: letM = {rij : ∀i, j}

13: whileM 6= ∅ do
14: rpq ← arg maxrij∈M SizeOf(rij)

15: addrpq as a child node ofr
16: removerpk andrkq fromM, ∀k
17: returnr

Algorithm 2 Finding the shared XML document in a set of XML documents
Input: D: a set of XML documents (represented by their root nodes)
Output: r: a shared XML document

1: AssumeD = {d1, d2, · · · , dn}
2: s← d1

3: for each documentd ∈ D do
4: s← MATCHTREE(s, d)

XML tree with statistics collected during the scan through each original document for
finding the differences.

Difference model. We model the differences between an original document and the
shared XML tree as a set of sub-tree insertions. In the most trivial case, a sub-tree can
just be a single value. Each insertion is represented using an XML fragment consisting
of a node specifying the node identifier (NID) that uniquely identifies the insertion point
in the shared XML tree. The subtree rooted at that node is the subtree to be inserted.
The fragments for all the insertions associated with a single original document are then
collected under root node<diff>, forming the XML representation for thediff (see
Fig. 4(b) for an example). A richer difference model may include deletions as well.
However, we do not discuss this option in this paper.

Optional annotations. We annotate the shared XML tree with two types of additional
information: node identifier (NID) annotation and value annotation. The NIDs are used
by the difference representation to specify insertion location. As discussed in the exam-
ple of Sect. 2, NIDs can be implicitly maintained by the DBMS or explicitly annotated
as attributes in the shared XML tree. In Fig. 4(a), the node labels 7 and 9 denote the
NIDs of the nodesAspectRatio, andBrightness respectively. These NID of
these nodes are used in thediff’s .

To facilitate efficient query processing, we may also optionally annotate nodes in
the shared XML tree with some simple statistics about the values associated with those
nodes. For example, consider theScreenSize element in Fig. 4(a). Each of the two
document has a different value forScreenSize. We can annotate theScreenSize
element in the shared XML tree by the minimum and the maximum value (in this case

Algorithm 3 PROCESSQUERY(S,D, p)
Input: S shared trees,D diff’s, p XPath
Output: R satisfying productIDs

1: R← ∅
2: for all each shared trees ∈ S do
3: let N be the set of NIDs of the maximal matching nodes
4: let p′ be the unmatched suffix of the XPathp

5: (N, p′)←MaxMatchXPath(s, p)
6: if p′ = ǫ then
7: /* p completely matched */
8: R← R ∪ fetchProductIDbyCat(catID(s))

9: else
10: for each diffd ∈ D s.t. catID(d)=catID(s) do
11: for each continuation nodec ∈ fetch(N, d) do
12: if MatchXPath (c, p′) then
13: R← R ∪ fetchProductID(d)

14: returnR

42in and58in) so that query predicates such as/productInfo/Display[ScreenSize
< 10] can be evaluated without accessing thediff’s. These value annotations are col-
lected while scanning the documents (for computing thediff) and added after thediff’s
are processed.

3 Query Processing

In this section, we show how queries against the original setof XML documents can be
decomposed into queries against a set of shared trees and queries against theirdiff’s. We
focus on filtering queries because these are the most common type of query on e-catalog
data. A filtering query consists of a filtering condition specified in XPath on the XML
column in the original table and fetches the tuples (or a projection thereof) that satisfy
the filtering condition.

Algorithm 3 outlines the process of how filtering queries over documents of varied
schemata are processed using sub-queries over the shared documents and thediff’s. The
key idea is to first process the XPath filtering conditionp on the shared treesS. For the
shared trees that completely satisfy the filtering condition, the associated set of diff’s
need not be checked, instead all the associated tuples can bereturned as satisfying the
query. For the shared trees that contains partial matches top, the associated diff’s need
to be consulted to complete the matching. The diff’s that complete the matching of the
remaining unmatched sub-pathp′ satisfy the query and the corresponding tuple can be
returned. Note that in practice Algorithm 3 is implemented by leveraging SQL/XML
queries over a hybrid relational-XML DBMS.

Example 3 (A single-constraint query). Suppose we want to find all products in the
e-catalog that are blue in color. It is straightforward to ask such a query against the
originalecatalog table using the following filtering query specified in the SQL/XML
query language,

SELECT productID
FROM ecatalog AS C
WHERE XMLExists(‘$t/productInfo[color ="Blue"]’

PASSING BY REF C.info AS "t").

 XPath:
/productInfo[color = "Blue"]

true-tuples:
< 101, 1, *, {},{} >

maybe-tuples:

<104,5,5,[color="Blue"],{}>

Combine results

return { 1, 2, 3 }

SELECT productID
FROM productInfo
WHERE categoryID=101

true-tuples:
< 101, 1, *, {},{1,2} >

SELECT diffinfo
FROM productInfo
WHERE categoryID=104

 XPath: /diff/5/color="Blue"

true-tuples:
< 104, 5, *, {},{3}>

productInfo (5)

listprice (7) screensize (8)

Blue (4)

productInfo (1)

color (2) listprice (3)
categoryID sharedinfo

101

104

categoryInfo table

categoryID diffinfo

productInfo table

productID

101

104

101

1

2

3

1054

diff

3

10

diff

8

29

7

200

5

Blue

color

Fig. 6. Evaluating single constraint product search
queries. The numbers in parenthesis beside the
node labels denote the NIDs of the nodes.

categoryID info

ecatalog table

productID

101

104

101

1

2

3

1054
10

productInfo

color listprice

Blue

Blue 200 29

color

productInfo

listprice screensize

 XPath:
/productInfo[color = "Blue"]

return { 1, 2, 3 }

Fig. 7. Evaluating single constraint
product search queries on the original
ecatalog table.

The query in Example 3 scans each row of theecatalog table and evaluates the
XMLExists predicate on the XML tree in theinfo field. If the predicate evaluates to
true, theproductID field of the row is returned. The SQL/XML functionXMLExists
returns true if a node matching the given XPath expression exists in the given XML
tree.

Fig. 6 illustrates the process of evaluating the sample query (Example 3) against the
two tables,categoryInfo andproductInfo, in the e-catalog application. First, we
evaluate the XPath expression againstcategoryInfo table. The result is a sequence
of tuples that represent temporary matches. These temporary tuples fall into two types:
true-tuples and maybe-tuples.true-tuples contain return nodes that satisfy the entire
XPath expression. Since the predicate has been satisfied, the last matched node and the
remaining XPath fields are empty.maybe-tuplescontain return nodes that may satisfy
the predicate when combined with thediff information.

For the true-tuples, all the documents in the category represented by the tuple satisfy
the query. We therefore retrieve their document IDs from thediff table. The maybe-
tuples, however, need to be further evaluated against thediff table in order to reject
or accept them. To do this, we use thecategoryID and the NID of the last matched
node of each maybe-tuple to filter out irrelevant rows and nodes in thediff table. The
remaining XPath expression of each maybe-tuple is then evaluated on the filtered node
set from the thediff column. The maybe-tuples whose remaining XPath expression
are satisfied by somediff are then returned as true-tuples.

Note that when the path expression contains the wildcard element ‘//’, the above
procedure may not work as described. To see this, let the pathexpression be in the form

of “/a/b//c/d”. If it is split into two path expressions at the position between “a” and “b”
or between “c” and “d”, then no change to the above procedure is necessary. There is,
however, the possibility that the query dividing position occurs “inside” the ‘//’ element.
Thus, any nodex under the path “/a/b” in a shared document will satisfy the prefix
query. As a result, multiple queries in the form of “/x//c/d” will be issued against the
diff table. In particular, if “/a/b” is empty, we will query thediff tables directly with the
path expression “//c/d/”. This represents the worst case, wherein the shared document
table has no filtering power, and we need to process all of thediff tables for the query.
In other words, we degenerate into the case of querying against the original table.

We focus on filtering queries, because they are arguably the most important type
of queries on semi-structured data such as the e-catalog, which consists of documents
of similar structures. In other applications, more complextypes of queries may call for
more sophisticated query transformation and processing techniques. As future work, we
will study how to extend our simple algorithm to handle more query types and how to
balance the load between the query transformation and the query execution processes.

Discussion: Query Performance. The query performance ofEXTRICATE is depen-
dent on the amount of redundancy in the XML documents. We briefly discuss this
relationship by comparing the processing steps for querying thecategoryInfo and
productInfo tables to those for just querying theecatalog table. For ease of ex-
position, we focus on single constraint queries, because, conceptually, multi-constraint
queries are processed as multiple single constraint queries with an intersection opera-
tion at the end to combine the results.

Consider the high-level query processing plan forcategoryInfo andproductInfo
in Fig. 6 and for the originalecatalog table in Fig. 7. The most expensive operator in
terms of running time is the XPath operator. The XPath operator is a logical operator
that retrieves nodes that satisfy a given XPath expression.In IBM’s DB2 two physical
operators [12, 11] can be used to implement the XPath operator during runtime: (1) the
XML navigation operator (XNav), which traverses a collection of XML trees in order
to find nodes that match the given XPath expression, and (2) the XML index scan oper-
ator (XIScan), which retrieves all matching nodes from an XML index. In both cases,
the running time of each physical operator is dependent on the following data char-
acteristics: (1) the number of rows in the XML column, and (2)the size of the XML
tree in each row. In our method, the data characteristics of the categoryInfo and
productInfo tables depends on the level of redundancy in the product information of
each category. In the following, we consider the worst case and the best case scenarios,
and show how we can reap the most benefits from our scheme.

Worst Case: no data redundancy. In the worst case, there is no data redundancy: the
shared XML document will be small, and all information stayswith thediff documents.
Most queries will have to go through thediff documents. Thus, our method will have no
advantage over the method that processes the originalecatalog table directly. In this
case, we should not apply our method at all.

Best Case: full data redundancy. In this extreme case, all the product information
within a category is the same. Thediff column of theproductInfo table is empty
and thesharedinfo column of thecategoryInfo table contains all the informa-
tion. However, the size of thecategoryInfo table is much smaller than the size of the
ecatalog table (note that the XML document size remains unchanged). In the process-
ing plan for our method, the right branch (see Fig. 6) is neverexecuted that is, no maybe-

tuples will be produced, because the XPath can always be evaluated with certainty using
the information in thecategoryInfo table. Since the input size (categoryInfo table
size) of the XPath operator in our method is significantly smaller than the input size (
ecatalog table size) of the original method, our method will be significantly more
efficient.

Most real life semi-structured data, including the e-catalog data used in our exam-
ple, is likely to fall somewhere between the best and the worst case. We do not have
control over data redundancy, however, the redundancy of the diff information within
each category can be tuned by the data decomposition. In thispaper, we assume that the
data schema designer is responsible for data partitioning.

In general, the performance of our method highly depends upon the data redundancy
level and the query workload. The higher the level of data redundancy level, the better
our method will perform. Also, the more queries in the workload that can be answered
by accessing the common documents only, the better our method will perform. As future
work, we are exploring how to solve two problems within the data modeler: (1) How to
measure the level of data redundancy when a data partition isgiven, (2) Given a query
workload and a set of XML documents, how to form the best data partition so that our
method will achieve the optimal performance. Note that if each original XML document
is completely different from each other, no partitioning algorithm can produce partitions
with high redundancy and our method is not suitable for such cases.

4 E-Catalog Maintenance

One of the challenges of managing data of varied schemata is maintaining the data
when new objects, possibly of a different schema, are added.In our scheme, we need to
address issues that arise when new data categories are addedor old data categories are
deleted. In this section, we show how to manage these tasks inour data model.

Deleting a category. Assume we want to remove an unwanted category whosecategoryID
is 102. Users will issue SQL delete statement on the originalecatalog view. OurEX-
TRICATE system will re-write the delete statement into corresponding delete statements
on the decomposed tables,categoryInfo andproductInfo.

Deleting individual documents. To delete an individual document, we simple remove
a row that corresponds to the document in theproductInfo table. Note that after many
documents in a document category are deleted, the shared XMLtree for that category
may no longer be optimal (for instance, the remaining set of documents in the category
may have more sharing). Hence a re-organization using theEXTRICATE data modeller
may be necessary.

Adding individual documents of new category. When adding a collection of products
belonging to a new category, we must identify the the shared document for the new
category. We use theEXTRICATE data modeller to obtain thediff’s.

Adding an individual document of an existing category. Since the category of that
document already exists, there must be at least one product in that category and there
must be a shared XML tree for that category. When inserting a new document of that
category, we compute a diff between the new document and the shared XML tree, and
we store the diff output into theproductInfo table. Because our difference model
only supports insertions at this point, when the new document requires deletions in
the shared document, we create new category for the new document. These documents

Source category electronics/televisions/HDTVs
No. of products 90
Size of original XML 296,267 bytes
No. of shared XML 26
Size of shared XML 30,537 bytes
Size of diff XML 210,244 bytes
Redundancy 1.23

Table 1.Analysis of the redundancy in real e-catalog data.

can be re-integrated with the original category during re-organization. Extending our
difference model to include deletions is part of our future work.

Adding a document with new product attributes. By new product attributes, we mean
that the product attributes are new to the documents in the same category that are cur-
rently in the database. Note that the new product attribute may be encoded as an XML
element or an XML attribute. Since the new product attributedoes not occur in any other
documents in the database, it will be stored as part of the diff in theproductInfo table.
No changes to the shared XML document is required. Note that XML (re-)validation
and migration issues are beyond the scope of this paper. Our simple strategy for han-
dling new attributes is therefore comparable to the vertical schema method in terms of
cost-efficiency.

5 Experiments

We implemented a prototype of our method and investigated two issues in our experi-
ments: (1) the amount of redundancy in real e-catalog data, and (2) the performance of
EXTRICATE under different conditions. TheEXTRICATE method exploits redundancy
in the data; therefore, analyzing and understanding the amount of redundancy in real
e-catalog data is essential. To investigate the performance of EXTRICATE, it is neces-
sary to generate synthetic data that simulates different levels of redundancy in order to
understand how our method performs under various conditions.

Redundancy in Real E-Catalog Data. We analyzed the product information of several
categories of products at the on-line store, www.bestbuy.com and present the analysis
on a representative subset of the data we collected.

In order to quantify the amount of redundancy in the data, we use the ratio of the
data set size (in bytes) between the original data set and thedecomposed data set,

redundancy =

Size in bytes of original dataset

Size in bytes of decomposed dataset
, (1)

where the decomposed dataset is the size of all the shared XMLdocument and the size
of all the diff’s produced by our method.

We use theEXTRICATE data modeler to decomposed the product information for
all the HDTV products that we downloaded from www.bestbuy.com and measured the
redundancy of the decomposed data with respect to the original data. The key statistics
are tabulated in Table 1. We retained the website’s categorization of the HDTV products
into the “flat panel”, “projection”, and “up to 39 inches” sub-categories, and further par-
titioned the products in each of these sub-categories by their manufacturer Our results

validate our assumption that e-catalog data contains significant amount of redundancy
that can be exploited byEXTRICATE.

Performance of eXtricate. We investigate the performance characteristics ofEXTRI-
CATE over data with different characteristics as well as over different types of queries.
Our goal is to understand how well our method performs on dataand queries with dif-
ferent characteristics, and not so much on how well it performs on a single, specific set
of real data and queries.

Data. We generated XML documents that are complete binary trees characterized
by depth. A complete XML tree of depthd, will have 2d−1 elements and2d−1 leaf
values. We simulate the amount of shared data between two XMLdocuments by spec-
ifying the depth of the tree that is shared between them. For example, two XML trees
of depth 6 with a shared depth of 4, will have common elements and structure up to a
depth of 4. The sub-trees hanging off depth 4 will be different. The XML documents
we used in our experiments have depth 6.

Each dataset consists of a number of XML documents from 4 categories. The
amount of redundancy in each dataset is determined by (1) thenumber of documents in
each category, and (2) the shared depth of the documents within each category.

Queries. We present our results for single constraint queries in thispaper. We mea-
sure the performance of the same query on the original dataset (denoted in the plots by
“query on original data”) and on the decomposed dataset. Forthe decomposed dataset,
we further measure the performance when the query requires both the shared docu-
ments and the diff’s to answer the query (denoted in the plotsby “query on shared +
diff”), and when the query only requires accessing the shared document to answer the
query (denoted in the plots by “query on shared”. We run each query 1000 times on a
multi-user machine running AIX unix and record the average elapsed time.

Performance vs Redundancy. We use the same approximate measure for redundancy
as shown in Eq. 1 and measure the running time of the 3 different query types on
different datasets with shared depth ranging from 2 to 5. Thenumber of documents
in each category, i.e., the number of documents sharing a single shared document, is
set to 1000. We plot the running time against the redundancy of the data on Fig. 8(a).
We observe thatEXTRICATE provides significant improvement in query performance
whether the diff’s are used or not. When the query can be answered just by looking at the
shared documents, the reduction in processing time is even more dramatic. Moreover,
the performance improvements are not sensitive to the size of the shared XML tree
among the documents in the same category.

Fig. 8(b) shows the same results in terms of speedup with respect to processing the
query on the original, non-decomposed dataset. Observe that (1) the speedup for queries
requiring access only to the shared document is much greaterthan the speedup for
queries requiring access to the diff documents, (2) the speedups are decreasing slightly
as the size of the shared tree increases. For queries requiring access only to the shared
tree, increasing the size of the shared tree would logicallylead to a smaller speedup and
this is reflected in our experiments. For queries that require both the shared document
and the diff’s to answer, the decrease in speedup is mostly due to the increased process-
ing time on the larger shared trees, and to a lesser extent on the number of sub-trees
under the “〈diff〉” element in each diff document. The number of sub-trees under each
“〈diff〉” element increases (even though each sub-tree is smaller) as the shared depth
increases. When processing an XPath expression on the diff documents, this increases

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

P
er

fo
rm

an
ce

 (
se

co
nd

s)

Data Redundancy

Performance vs Data Redundancy

query on original data
query on shared+diff

query on shared

(a) Running time on single constraint queries
over datasets with varying amount of shared
data.

 2

 4

 6

 8

 10

 12

 14

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

S
pe

ed
up

Data Redundancy

Speedup vs Data Redundancy

query on shared
query on shared+diff

(b) Speedup of running the single-constraint
queries on datasets with varying amount of
shared data.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000 1200 1400 1600

P
er

fo
rm

an
ce

 (
se

co
nd

s)

Category Size

Performance vs Category Size

query on original data
query on shared+diff

query on shared

(c) Running time for single-constraint
queries on datasets with varying number of
documents sharing a single shared sub-tree.

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000 1200 1400 1600

S
pe

ed
up

Category Size

Speedup vs Category Size

query on shared
query on shared+diff

(d) Speedup of running the single-constraint
queries on datasets with varying number of
documents sharing a single shared sub-tree.

Fig. 8.Performance ofEXTRICATE over different conditions.

the number of sub-trees on which to match the XPath expression. For example if the
shared depth is 5, the number of sub-trees in each diff document would be24.

Performance vs Category Size. Another important factor affecting the amount of re-
dundancy in the data is the number of documents sharing a single shared tree (this
number is the same as the category size). We set the shared depth to 4 and vary the
number of documents within a category. The same queries wererun and the elapsed
time plotted in Fig. 8(d). Observe that the processing time remain constant for queries
that only require access to the shared documents, because the table for shared docu-
ments is not affected by category size at all. When the category size is very small, the
performance ofEXTRICATE is almost comparable to running the query against the orig-
inal data; however, when the category size becomes larger than 40, the speedup of our
method becomes significant.

The speedups are plotted in Fig. 8(d). Our results match our intuition that as the
number of documents sharing each shared document increases, the speedup increases.

6 Related Work

Managing e-catalog data using various relational DBMS strategies has been explored
in [1, 3, 4, 2]. Thehorizontal schema approach stores all the product information in a
single table where the columns are the union of the attributesets across all products and
the rows represents the products. Thebinary schema [3, 4] approach creates one table
for each distinct attribute. Each table stores value-OID pairs. Thevertical schema ap-
proach uses only one table with three columns:OID , Attribute, andValue. Each prod-
uct is represented as a number of tuples in this table, one foreach attribute-value com-
bination. These approaches all have serious problems with data sparsity, schema evolu-
tion, usability, query processing complexity, difficulty in query optimization. Agrawal
et al. proposed creating a horizontal view on top of a vertical schema [1] to ease the
difficulty of writing queries on vertical schemata, but doesnot address the query perfor-
mance problems. A middle-ware solution calledSAL, Search Assistant Layer, has also
been proposed in [2] to optimize queries written against vertical schemas. However,
SAL is not able to leverage the full capability of the query optimizer, because it is not
integrated with the DBMS engine.

On the XML front, a method using DBMS with native XML support to manage
e-catalog data was proposed in [5]. The schema evolution problem is addressed using
XML. Query performance is dependent on the XQuery/XPath processing engine inside
the DBMS engine. Our paper builds upon their approach by decomposing the XML
documents for storing product information in order to reduce storage redundancy and
improve query performance.

Our decomposition-based storage model is also motivated bydata compression
techniques. While many XML compressors (such as XMill [6]) achieve higher com-
pression rate, their goal is solely to minimize storage space. Query processing require
decompression. In contrast, our goal is two pronged: reduceredundancy in storage and
provide efficient query support. XGrind [7] is a query-friendly XML compressor that
supports query processing in the compressed domain; however, XGrind is still a low
level compressor relying on traditional encoding techniques (e.g., Huffman code) to
encode strings in an XML document. OurEXTRICATE system does not perform string-
level encoding, but models the redundancy in a collection ofXML documents at a
logical level.

XML normalization theory [8–10] also models the redundancyof XML data at the
logical level. The fundamental difference betweenEXTRICATE and XML normaliza-
tion is that XML normalization is a design-time process and requires the schema and
the functional dependencies to be fully specified, whereasEXTRICATE makes no as-
sumptions on the schema or the functional dependencies and is completely data-centric.
Moreover XML normalization does not address transformation of queries to run on the
normalized schema.

The problem of finding the intersection and diff of two XML trees is also a well
studied problem. The survey article by Cobena et al. [17] provides a comprehensive
description of all the techniques. In this paper, our focus is not on algorithms for find
the intersection and diff, but on using these algorithms in anovel way to solve data
management problems in E-commerce.

7 Conclusion

The native XML support in DBMSs promises to offer database users a new level of
flexibility in managing semi-structured and unstructured data in relational DBMSs.
However, this advantage may come with a significant cost in data storage and query
processing if we do not use it wisely.

In this paper, we demonstrate how to combine the strengths ofrelational DBMSs
and the flexibility of the XML support by a case study on managing E-commerce data.
We argue that while the e-catalog data appears to be lacking aunified structure, they do
share common sub-structures and common values among different product descriptions,
and the degree of such sharing could be very high for productsin the same category. The
extreme approach of storing each product description as a complete XML document
without any schema constraint will thus result in huge overhead in terms of both storage
and query processing. Handling the common parts and the differences separately leads
to a natural approach: We only use the freedom when we really need it.

References

1. Agrawal, R., Somani, A., Xu, Y.: Storage and querying of e-commerce data. In: VLDB,
Morgan Kaufmann (2001)

2. Wang, M., Chang, Y., Padmanabhan, S.: Supporting efficient parametric search of e-
commerce data: A loosely-coupled solution. In: EDBT. (2002) 409–426

3. Copeland, G.P., Khoshafian, S.: A decomposition storage model. In: SIGMOD, ACM Press
(1985) 268–279

4. Khoshafian, S., Copeland, G.P., Jagodis, T., Boral, H., Valduriez, P.: A query processing
strategy for the decomposed storage model. In: ICDE, IEEE (1987) 636–643

5. Lim, L., Wang, M.: Managing e-commerce catalogs in a DBMS with native XML support.
In: ICEBE, IEEE (2005)

6. Liefke, H., Suciu, D.: XMill: An efficient compressor for xml data.In Chen, W., Naughton,
J.F., Bernstein, P.A., eds.: SIGMOD. (2000) 153–164

7. Tolani, P., Haritsa, J.R.: XGrind: A query-friendly XML compressor. In: ICDE. (2002)
8. Arenas, M., Libkin, L.: A normal form for XML documents. In: PODS. (2002) 85–96
9. Libkin, L.: Normalization theory for xml. In Barbosa, D., Bonifati, A., Bellahsene, Z., Hunt,

E., Unland, R., eds.: XSym. Volume 4704 of Lecture Notes in ComputerScience., Springer
(2007) 1–13

10. Arenas, M.: Normalization theory for xml. SIGMOD Rec.35 (2006) 57–64
11. Nicola, M., der Linden, B.V.: Native XML support in DB2 universal database. In: VLDB.

(2005) 1164–1174
12. Ozcan, F., Cochrane, R., Pirahesh, H., Kleewein, J., Beyer,K., Josifovski, V., Zhang, C.:

System RX: One part relational, one part XML. In: SIGMOD. (2005)
13. Funderburk, J.E., Malaika, S., Reinwald, B.: XML programmingwith SQL/XML and

XQuery. IBM Systems Journal41 (2002)
14. Zhang, K.: A constrained edit distance between unordered labeledtrees. Algorithmica15

(1996) 205–222
15. Wang, Y., DeWitt, D.J., yi Cai, J.: X-Diff: An effective change detection algorithm for XML

documents. In: ICDE. (2003) 519–530
16. Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change detection in hierar-

chically structured information. In: SIGMOD, ACM Press (1996) 493–504
17. Cobena, G., Abdessalem, T., Hinnach, Y.: A comparative studyof XML diff tools (2002)

http://www.deltaxml.com/pdf/is2004.pdf.

