Modeling and Querying E-Commerce Data in Hybrid
Relational-XML DBMSs

Lipyeow Lim, Haixun Wang, and Min Wang

IBM T. J. Watson Research Center
{liplim,haixun,min} @us.ibm.com

Abstract. Data in many industrial application systems are often neither com-
pletely structured nor unstructured. Consequently semi-structuredatals
such as XML have become popular as a lowest common denominatormto ma
age such data. The problem is that although XML is adequate to reptasent
flexible portion of the data, it fails to exploit the highly structured portion of the
data. XML normalization theory could be used to factor out the structuoed p
tion of the data at the schema level, however, queries written againstigfireabr
schema no longer run on the normalized XML data. In this paper, weopeop

a new approach called eXtricate that stores XML documents in a spiicieref
decomposed way while supporting efficient processing on the origireties.
Our method exploits the fact that considerable amount of informationaisedh
among similar XML documents, and by regarding each document asstiog

of a shared framework and a small diff script, we can leverage thegthe of
both the relational and XML data models at the same time to handle such data ef
fectively. We prototyped our approach on top of DB2 9 pureXML (a s@@rcial
hybrid relational-XML DBMS). Our experiments validate the amount ofured
dancy in real e-catalog data and show the effectiveness of our method

1 Introduction

Real data in industrial application systems are complexstMiata do not fit neatly
into structured, semi-structured or unstructured dataeisodt is often the case that
industrial data have elements from each of these data mad&eEn example consider
managing product catalog data in E-Commerce systems. Coiahe-Commerce so-
lutions such as IBM’s Websphere Product Center (WPC) hadéitaally used a ver-
tical schema [1, 2] in a relational DBMSs to manage the highlyable product catalog
data. In addition to the vertical schema, the research caritynhas proposed several
strategies for managing data with schema variability usstefional DBMSs. These in-
clude variations on the horizontal, the vertical, and thealy schema [3, 4]. However,
the relational data model remains ill-suited for storind processing the highly flexible
semi-structured e-catalog data efficiently. The flexipitif the XML data model, on the
other hand, appears to be a good match for the required sditexifmlity and Lim et
al. [5] has proposed managing product catalog data using-¥ktbled DBMS. How-
ever, the flexibility of XML in modeling semi-structured datisually comes with a big
cost in terms of storage especially for XML documents thaetelot of information in
common.

Example 1. Consider the XML fragments for the specifications of two plasHDTV
product on themww. newegg. comwebsite. Not only do the two XML documents
share many common structural elements (eg. “AspectRafr¥solution”), they also
share many common values (eg. “16:9”, “1200 cd/m2”").

<Pr oduct | nf 0> <Pr oduct | nf 0>

<Model > <Model >
<Br and>Panasoni c</ Br and> <Br and>Phi | i ps</ Br and>
<Mbdel | D>TH- 58PHLO0UK</ Model | D> <Model | D>42PFP5332D/ 37</ Model | D>

</ Model > </ Model >

<Di spl ay> <Di spl ay>
<Scr eenSi ze>58i n</ Scr eenSi ze> <Scr eenSi ze>42i n</ Scr eenSi ze>
<Aspect Rati 0>16: 9</ Aspect Rat i 0> <Aspect Rati 0>16: 9</ Aspect Rat i 0>
<Resol uti on>1366 x 768</ Resol uti on> <Resol ution>1024 x 768</ Resol uti on>
<Bri ght ness>1200 cd/ n2</ Bri ght ness> <Bri ght ness>1200 cd/ n2</Bri ght ness>
<Cont rast >10000: 1</ Cont r ast > <Cont r ast >10000: 1</ Cont r ast >
<Pi xel Pi t ch>0. 942mx/ Pi xel Pi t ch> <Vi ewi ngAngl e>160(H) / 160(V) </ Vi ewi ngAngl e>

</ Di spl ay> </ Di spl ay>

</ Product | nf 0> </ Product | nf 0>
(a) Panasonic Plasma HDTV (b) Philips Plasma HDTV

Fig. 1. Two XML fragment of Plasma HDTV product info from on-line retaileewegg. com
Bold face denotes information that is unique to that XML document.

It is clear from Ex. 1 that XML descriptions of products in tkame or similar
category have many structural elements and values in comesuoiiting in storage in-
efficiency. If minimizing storage were our only goal, XML cpnession methods (such
as XMill [6] and XGrind [7]) could be used to eliminate mosttbé storage inefficiency
at the expense of less efficient query processing due to #tkfoedecompression. An-
other approach would be to apply XML normalization [8—10}oese XML documents
assuming a super-root. Unfortunately, applying XML norizetion poses two prob-
lems. First, XML normalization is a design-time procesg tieguires both the schema
and the functional dependencies of the XML data to be spdcifiemany real appli-
cations the functional dependencies are neither identif@@dspecified. In fact, some
applications do not even require a schema to be specified. Whehema is specified,
these schemas are typically part of industrial standamtsdih not admit any modifica-
tion by a normalization process. Second, queries writt@insg the original XML data
no longer work against the normalized XML dat#his is a serious problem, because
application developers typically write queries againstahiginal XML data. The goal
of our work is to exploit the redundancy in the XML data in artle support efficient
storage of the data, efficient query processing over the datitransparency to the user,
i.e., the user need not re-design the schema of the XML datawaite the queries. In
contrast to low-level compression methods and schemadbasenalization methods,
we explore structural as well as value similarities amongtaf semi-structured data
documents to create models that allow efficient storage aedygprocessing. To our
advantage, commercial DBMSs are rolling out native XML supfl 1, 12], which pro-
vides a new option to managing data with high schema vaitiafsl]. We leverage such
systems to build a hybrid model for semi-structured data.

Our Approach. In this paper, we propose a new approach catléadRrICATE to man-
age data with high schema variability. Fig. 2 present&tke&RICATE system on a high
level. TheEXTRICATE system consists of two main components: BXerRICATE data
modeler and th&eX TRICATE query processor. TheX TRICATE data modeler takes as
input the original XML collection, “extricates” a shared XMdocument (amodel),
stores the original documents as differences from the dh€él. document, and gen-

Y In theory, the queries on the original XML data could be transformed interigs on the
normalized XML data. Unfortunately, there is no known query transéion algorithm for
this purpose.

Original E-Catalog XML Data Optional
XML Schema Input
exlncate eXtricate
Query Processor \Data Modeller

: ------- oo |1 Fig. 3. A collection of XML documents are

e i decomposed into a shared XML tree and a
collection ofdiff scripts. The shaded portion
Fig. 2. Overview of oureXTRICATE sys- of the XML trees denote common informa-
tem. tion.

erates a view of the decomposed data that has the same sch#measginal data. The
EXTRICATE query processor takes as input user queries written aghaetiginal data
and transforms the query into a query processing plan fodélcemposed data.

For concreteness, consider managing the electronic pradtalog of an on-line
retailer using a hybrid relational-XML DBMS. The producfarmation can be stored
in a table with an XML column using the following schema:

ecat al og (product | DINT,cat egor yl DINT, i nf o XML).

Each product is uniquely identified by fts oduct | D. Thecat egor yI Dencodes prod-
uct category information likeg! ectronics > Plasma / LCD/ DLP TV > Pl asnma
TV > Panasoni ¢” as a numerical identifier. Thienf o field stores the detailed prod-
uct information in XML form. These XML data can be queriedngsembedded XPath
expressions in SQL [11, 13] or using XQuery. As motivated by E it is safe to ar-
gue that products in the same category usually exhibit denable structural and value
similarity. Conversely, products in different categoreedibit more differences both
structurally as well as in terms of values. For instance, NJR¥ers have attributes
such astorage Capacity, Supported Audio Formats, etc., that HDTVs typically do not.

Using EXTRICATE, the ecat al og table will be decomposed internally into two
tables, namely:
cat egoryl nfo(cat egoryl DINT,shar edi nf o xmL)

product I nf o (pr oduct | DINT, cat egor yl DINT, di ff XML)

Thecat egor yl nf o table stores the XML tree shared by all products in a pasdicul
category. Thepr oduct | nf o table encodes each of the original XML document in the
i nf o column as thaliff or edit transcript from the shared XML tree of the associated
category. Each XML document is therefore decomposed int@eesl XML tree and its

di ff from the shared XML tree. Since the shared XML tree is storexkdor all the
XML documents in the category, significant storage savirggshe obtained for highly
redundant XML data.

From the perspective of the user of the e-catalog databasiging has changed,
because the e-catalog data is presented to the user as awh&h, has the same
schema as the originalcat al og table. Applications and queries on theat al og
table require no change eith@XTRICATE'’s query processor will transform any query
against the originakcat al og table into queries against thet egor yI nf o table,
and if necessary, ther oduct | nf o table (some queries can be answered by accessing

cat egor yl nf o only). The query transformation is carried out by a ruledabguery
processor that is described in detail in Sect. 3.

Our Contributions . We summarize our contributions as follows:

— We propose a space-efficient and query-friendly model fmirgg semi-structured
data that leverages commercial DBMSs with native XML suppde show that
with the new model, we can dramatically reduce storage ralury of XML data
and improve query performance at the same time.

— We propose a query transformation algorithm to automayicalrite user queries
on the original data to queries on the data stored using odehwaithout any user
intervention. In many cases, the transformed queries camb&ered much more
efficiently than the original ones since they access muchdesunt of data.

— We show that our approach is friendly toward schema evaiutidhich occurs fre-
quently in applications such as e-commerce data management

Paper Organization. Sect. 2 presentsX TRICATE's data modeler. Query rewriting and
processing is discussed in Sect. 3. We discuss data maiceeissues related to schema
evolution in Sect. 5. Experimental results are presentegkeict. 6. We review related
work in Sect. 6 and conclude in Sect. 7.

2 Data Modelling

Our EXTRICATE data modeler is inspired by the predictive compressiondigina,
where the data is represented losslessly using a model thdic{s the data approx-
imately and the residue that is the difference between thdigted data and the true
data. In an analogous fashioB)X TRICATE extracts ashared XML document from a
set of XML documents and represents each of the original meot using the shared
document and theiff script. The shared XML document represents a “model” thet pr
dicts the XML documents in the collection. THHf script represents the “residue” that
is a set of differences between the document and the shaced@at. Since the shared
XML document is common to all the documents in the collegtime only need to
store it once. Hence the entire collection of XML documeststored as a single shared
XML document and a collection of diff scripts, one diff sdrfpr each document in the
collection (see Fig. 3).

Continuing with the e-catalog example, recall that the podbéhformation has been
partitioned according to product categories and that thdymt information within the
same category have both structural and value similarifies.product information are
stored as XML documents and we will use a tree representédiodML documents
in our discussion. Conceptually, tEX TRICATE data modeler first finds shared XML
tree for a collection of XML trees. The shared XML tree is thaximal sub-tree com-
mon to all the XML trees in the collection. Thiiff of each original XML tree from the
shared XML tree can then be computed using known tree diffrdatgns [14-17].

Example 2 (A Data Modelling Example). Consider the XML documents (represented
as trees) of the two HDTV products shown in Fig. 1. The sharst Xee is shown in
Fig. 4(a) and the differences are shown in Fig. 4(b).

Observe that the shared XML tree (1) is a single connected (23 contains values in
addition to structure. In practice, the shared tree may tibduannotated with statistical
information (e.g., theri n, max values of, say, thei st pri ce element).

tRatioResolution \Brightness \Contrast

1200 cd/m2 10000:1

16:9
(a) The shared XML tree.

l l

. Lo |

Panasonic ~ TH-58PH10UK 1366 x 768 Philips 42PFP5332D/37

X iewingAngle

1024 x 768

0.942nm 160(H)/160(V)

(b) Thediffs.

Fig. 4. The decomposed representation of the two HDTV XML documents in Fig. 1

Observe that eactliff document represents a set of insertion operations onto the
shared XML tree. Each of the twaiff trees represents 4 insertions, as there are 4 child
nodes under the root node. The name of these child nodes deadentifiers (NIDs),
which identify the nodes or the location of insertion in theed XML tree. These
NIDs on the shared XML tree may be either implicitly maintdnby the DBMS or
explicitly annotated on the tree nodes.

It is clear that by inserting each sub-tree in th# as the child of the node in the
shared XML tree with the specified NID, the original XML docent can be recovered.

A direct benefit of our decomposition is storage efficiennjoimation common to
all product documents within a category is “extricated” atored once in the shared
XML document, instead of being redundantly stored in evergumnent. However,
in contrast to XML compressors (such as XMill [6] and XGrind)[the goal of our
method is not low-level compression: our decompositionhmeétoperates at the data
model level with a focus on efficient query processing. Ireotivords, the decompo-
sition must be done in a query-friendly way, that is, we needrtsure queries on the
original table can be mapped to queries on the decomposkss tahd processed effi-
ciently thereafter.

2.1 Finding the Shared XML Tree

In this section we discuss the first step of the decompogitiocess: finding the (largest)
shared XML tree, given a set of XML documents having simitanctures and values.
This problem is similar to thenaximal matching problem [16] and is complemen-

tary to the problem of finding the smallest diff between two Xiees. Efficient algo-
rithms exists for ordered trees [16]. For unordered trdesptoblem is NP-hard [14],

Fig. 5. A Shared XML document and thaff

but polynomial time approximate algorithms [14, 15] exidtwever, our problem dif-
fers from the work mentioned above in that the the maximalchiag need to be a
connected tree. The goal of the above-mentioned relateld iwdo find the maximal
common fragments, i.e., a common forest among two XML traegder to minimize
the edit distance between the two XML trees. In contrast,gmal is to find a single
rooted tree that is common to a collection of XML trees.

We discuss the case of finding shared XML documents for umeddeees, which is
more difficult than for ordered trees. One difficulty in findia single shared tree among
a set of XML trees is that a set of unordered children nodes Imaag the same node
name. The difficulty can be illustrated by the two XML docurtseshown in Fig. 5.
The nodeB beneathA occurs twice in both documents. The largest shared document
is not unique for these two documents. One alternative wiikain all nodes except for
nodeC, and the other all nodes except for nddeTo find the largest shared document
among a set of documents, we must store all such alternaivesery step, which
makes the complexity of the entire procedure exponential.

In this work, we use a greedy approach. We find the shared detiuofi two docu-
ments starting from their root nodes. et andn, be the root nodes of two XML doc-
uments. Two nodes are said to match if they have the same ypéegeand either they
have same names (for element/attribute nodes) or they haw@ame values (for value
nodes). Ifn; andn, do not match, then the shared document is an empty document.
Otherwise, we recursively find matches for each of theirdcchddes. Special consider-
ation is given to the case where several child nodes haveathe same and the child
nodes are unordered. Assutigl) = {s11,- -+, S1m} @ndCa(l) = {s21,- - , S2n, } Are
two sets of child nodes with the same name that we need to matekind recursively
the shared XML sub-tree for every pair{, so;) of the instances. Out of the: x n
shared XML trees, we pick the shared XML sub-trge with the largest size and add
rpq @S the child node of the current shared XML tre&Ve remove all the shared trees
associated with either, or s,, from the candidate se¥ so that they will not be cho-
sen anymore. Then, we find the next largest in the remaipiing 1)(n — 1) candidate
shared XML sub-trees. We repeat this process until no steedrees can be found.

Algorithm 1 outlines the MTCHTREE procedure that finds a shared document be-
tween two XML documents. Based on theAMcHTREE procedure, Algorithm 2 finds
the shared document among a set of XML documents.

2.2 Finding the Differences
After the shared XML tree is found, the difference betweerhedocument in the orig-

inal collection and the shared XML tree can be found usingting tree diff algo-
rithms [14—17]. In addition to finding the differences, weiopally annotate the shared

Algorithm 1 MATCHTREE(n1,ns2)

Input: n1, no: root node of the two XML tree
Output: r: a shared subtree

1: if n1 matchesw, then

2. r < newnode

3. copynitor

4: letCy, = {child nodes ofn, }

5: letC, = {child nodes ofn2 }

6: letL = { node names common & andC- }
g: for each node namee £ do

letC1 (1) = {nodes fronC; with namel} = {s11, -, S1m}
9. letCs(l) = {nodes fromCs with namel} = {s21,- - , 2n}
10: for each(s1s, s25) € C1(l) x C2(l) do
11: ri; « MATCHTREE(s1;, 52;)

12: letM = {rij : Vi,5}
13: while M # 6 do

14 Tpg <~ ArgmaXy, ;e m SizeOf(r;;)
15: addr,, as a child node of

16: remover, andry, from M, Vk

17: returnr

Algorithm 2 Finding the shared XML document in a set of XML documents
Input: D: a set of XML documents (represented by their root nodes)
Output: r: a shared XML document
1: AssumeD = {d1,d2, - ,dn}
2: S «— d1
3: for each documeni € D do
. s «— MATCHTREE(s, d)

XML tree with statistics collected during the scan througlteoriginal document for
finding the differences.

Difference model We model the differences between an original document had t
shared XML tree as a set of sub-tree insertions. In the miesdltcase, a sub-tree can
just be a single value. Each insertion is represented usingML fragment consisting
of a node specifying the node identifier (NID) that uniquelgnitifies the insertion point
in the shared XML tree. The subtree rooted at that node isuhtee to be inserted.
The fragments for all the insertions associated with a singhinal document are then
collected under root nodedi f f >, forming the XML representation for theiff (see
Fig. 4(b) for an example). A richer difference model may g deletions as well.
However, we do not discuss this option in this paper.

Optional annotations. We annotate the shared XML tree with two types of additional
information: node identifier (NID) annotation and value atation. The NIDs are used
by the difference representation to specify insertiontioca As discussed in the exam-
ple of Sect. 2, NIDs can be implicitly maintained by the DBMS=&plicitly annotated
as attributes in the shared XML tree. In Fig. 4(a), the notkelm7 and 9 denote the
NIDs of the nodesAspect Rati 0, andBri ght ness respectively. These NID of
these nodes are used in tié’s .

To facilitate efficient query processing, we may also omliynannotate nodes in
the shared XML tree with some simple statistics about theesbssociated with those
nodes. For example, consider ther eenSi ze element in Fig. 4(a). Each of the two
document has a different value fécr eenSi ze. We can annotate th&cr eenSi ze
element in the shared XML tree by the minimum and the maximahey(in this case

Algorithm 3 PROCESRQUERY(S, D, p)
Input: S shared treesD diff’s, p XPath
Output: R satisfying productlDs

1. R0
2: forall each sharedtreec S do

3. let N be the set of NIDs of the maximal matching nodes
4: letp’ be the unmatched suffix of the XPath

5. (N,p’) — MaxMatchXPath(s, p)

6: if p’ =€ then

7. * p completely matched */

8: R — R U fetchProductiDbyCdtatlD(s))

9: else

10: for each diffd € D s.t. catiD@)=catID(s) do
11: for each continuation node € fetch(N, d) do
12: if MatchXPath ¢, p’) then

13: R « R U fetchProductild)

14: returnR

42i nand58i n) so that query predicates such @s oduct I nf o/ Di spl ay[Scr eenSi ze
< 10] can be evaluated without accessing tfifs. These value annotations are col-
lected while scanning the documents (for computingdifi and added after thaiff's
are processed.

3 Query Processing

In this section, we show how queries against the originabsE¥ML documents can be
decomposed into queries against a set of shared trees anescpgainst theidiff's. We
focus on filtering queries because these are the most conypewntquery on e-catalog
data. A filtering query consists of a filtering condition sified in XPath on the XML
column in the original table and fetches the tuples (or agqmt@jn thereof) that satisfy
the filtering condition.

Algorithm 3 outlines the process of how filtering queriesrodecuments of varied
schemata are processed using sub-queries over the shatedelds and thdiff's. The
key idea is to first process the XPath filtering conditipon the shared trees. For the
shared trees that completely satisfy the filtering condjtibe associated set of diff’s
need not be checked, instead all the associated tuples aatupeed as satisfying the
query. For the shared trees that contains partial matcheshe associated diff’s need
to be consulted to complete the matching. The diff's thatglete the matching of the
remaining unmatched sub-pathsatisfy the query and the corresponding tuple can be
returned. Note that in practice Algorithm 3 is implementgdéveraging SQL/XML
queries over a hybrid relational-XML DBMS.

Example 3 (A single-constraint query). Suppose we want to find all products in the
e-catalog that are blue in color. It is straightforward t& asch a query against the
originalecat al og table using the following filtering query specified in the SRML
query language,

SELECT product| D

FROM ecatalog AS C

WHERE XM_Exi sts(‘ $t/product|nfo[color ="Blue"]’
PASSI NG BY REF C.info AS "t").

categoryinfo table pmn/u:ﬂ\nm @

categorylD | sharedinfo woor) Napre @
stprice

101 *— | istprice (3)

productinfo (5)
104 *~— Blue (4)
listprice (7) screensize (8)
dift
productinfo table |
productiD categorylD diffinfo 3
1 101 *— |
2 101 10
3 104 |)
XPath 4 105 diff
Iproductinfo[color = "Blue’] //\
8
I 7

SELECT diffinfo
FROM productinfo

<101,1,% {412} >

reun(t2 %)

Fig. 6. Evaluating single constraint product searcffrig. 7. Evaluating single constraint
queries. The numbers in parenthesis beside tRoduct search queries on the original
node labels denote the NIDs of the nodes. ecat al og table.

The query in Example 3 scans each row of ¢hat al og table and evaluates the
XMLExi st s predicate on the XML tree in thienf o field. If the predicate evaluates to
true, thepr oduct | Dfield of the row is returned. The SQL/XML functiofM_Exi st s
returns true if a node matching the given XPath expressigstsin the given XML
tree.

Fig. 6 illustrates the process of evaluating the sampleygiiEetample 3) against the
two tablescat egor yI nf o andpr oduct I nf o, in the e-catalog application. First, we
evaluate the XPath expression agaistegor yI nf o table. The result is a sequence
of tuples that represent temporary matches. These tenypozles fall into two types:
true-tuples and maybe-tuplesue-tuples contain return nodes that satisfy the entire
XPath expression. Since the predicate has been satisféeldsthmatched node and the
remaining XPath fields are emptypaybe-tuplescontain return nodes that may satisfy
the predicate when combined with ttiéf information.

For the true-tuples, all the documents in the category sgmted by the tuple satisfy
the query. We therefore retrieve their document IDs fromdifetable. The maybe-
tuples, however, need to be further evaluated againstiifh¢éable in order to reject
or accept them. To do this, we use & egor yl D and the NID of the last matched
node of each maybe-tuple to filter out irrelevant rows andesad thediff table. The
remaining XPath expression of each maybe-tuple is themated on the filtered node
set from the theli ff column. The maybe-tuples whose remaining XPath expression
are satisfied by somd# f f are then returned as true-tuples.

Note that when the path expression contains the wildcamiesi¢ ‘//’, the above
procedure may not work as described. To see this, let thesp@tiession be in the form

of “/a/bl/c/d”. If it is split into two path expressions alposition between “a” and “b”
or between “c” and “d”, then no change to the above procedunecessary. There is,
however, the possibility that the query dividing positiarcors “inside” the *//’ element.
Thus, any node: under the path “/a/b” in a shared document will satisfy thefigr
query. As a result, multiple queries in the form of/lc/d” will be issued against the
diff table. In particular, if “/a/b” is empty, we will query thiff tables directly with the
path expression “//c/d/”. This represents the worst caserein the shared document
table has no filtering power, and we need to process all ofiiffieables for the query.
In other words, we degenerate into the case of querying sigihie original table.

We focus on filtering queries, because they are arguably e important type
of queries on semi-structured data such as the e-cataldaghwbnsists of documents
of similar structures. In other applications, more compiges of queries may call for
more sophisticated query transformation and processatmptgues. As future work, we
will study how to extend our simple algorithm to handle mouery types and how to
balance the load between the query transformation and &y gdecution processes.

Discussion: Query Performance. The query performance &XTRICATE is depen-
dent on the amount of redundancy in the XML documents. Weflppriiscuss this
relationship by comparing the processing steps for qugriltie cat egor yl nf o and
pr oduct I nf o tables to those for just querying tleeat al og table. For ease of ex-
position, we focus on single constraint queries, becaus&eaptually, multi-constraint
queries are processed as multiple single constraint quesith an intersection opera-
tion at the end to combine the results.

Consider the high-level query processing plarcfaregor yI nf o andpr oduct I nf o
in Fig. 6 and for the originadcat al og table in Fig. 7. The most expensive operator in
terms of running time is the XPath operator. The XPath opeiiata logical operator
that retrieves nodes that satisfy a given XPath expresbidBM’s DB2 two physical
operators [12, 11] can be used to implement the XPath opeatating runtime: (1) the
XML navigation operator (XNav), which traverses a colleotiof XML trees in order
to find nodes that match the given XPath expression, and é2¥KhL index scan oper-
ator (XIScan), which retrieves all matching nodes from anlXiMdex. In both cases,
the running time of each physical operator is dependent erfdaliowing data char-
acteristics: (1) the number of rows in the XML column, and) size of the XML
tree in each row. In our method, the data characteristich®t#t egor yl nf o and
pr oduct I nf o tables depends on the level of redundancy in the produatiEtion of
each category. In the following, we consider the worst casktlae best case scenarios,
and show how we can reap the most benefits from our scheme.

Worst Case: no data redundancy In the worst case, there is no data redundancy: the
shared XML document will be small, and all information stayith thediff documents.
Most queries will have to go through tléf documents. Thus, our method will have no
advantage over the method that processes the origirzalal og table directly. In this
case, we should not apply our method at all.

Best Case: full data redundancy In this extreme case, all the product information
within a category is the same. Théef f column of thepr oduct I nf o table is empty
and theshar edi nf o column of thecat egor yl nf o table contains all the informa-
tion. However, the size of theat egor yI nf o table is much smaller than the size of the
ecat al og table (note that the XML document size remains unchangedhe process-
ing plan for our method, the right branch (see Fig. 6) is nexecuted that is, no maybe-

tuples will be produced, because the XPath can always beateal with certainty using
the information in theat egor yI nf o table. Since the input size4t egor yI nf o table
size) of the XPath operator in our method is significantly kenahan the input size (
ecat al og table size) of the original method, our method will be sigmifitly more
efficient.

Most real life semi-structured data, including the e-cajadata used in our exam-
ple, is likely to fall somewhere between the best and the tnease. We do not have
control over data redundancy, however, the redundancyeddithinformation within
each category can be tuned by the data decomposition. Ipaper, we assume that the
data schema designer is responsible for data partitioning.

In general, the performance of our method highly depends thmdata redundancy
level and the query workload. The higher the level of dataineldncy level, the better
our method will perform. Also, the more queries in the wodddhat can be answered
by accessing the common documents only, the better our ehetifigperform. As future
work, we are exploring how to solve two problems within théadaodeler: (1) How to
measure the level of data redundancy when a data partitigimgs, (2) Given a query
workload and a set of XML documents, how to form the best datétjpn so that our
method will achieve the optimal performance. Note thatdfeariginal XML document
is completely different from each other, no partitioningaithm can produce partitions
with high redundancy and our method is not suitable for siades.

4 E-Catalog Maintenance

One of the challenges of managing data of varied schemataiistaming the data
when new objects, possibly of a different schema, are addedir scheme, we need to
address issues that arise when new data categories are@dulddlata categories are
deleted. In this section, we show how to manage these tasks ithata model.

Deleting a category Assume we want to remove an unwanted category whasegor yl D
is 102. Users will issue SQL delete statement on the origioal al og view. OureX-
TRICATE system will re-write the delete statement into correspogdielete statements
on the decomposed tablest egor yI nf o andpr oduct I nf o.

Deleting individual documents To delete an individual document, we simple remove
arow that corresponds to the document ingheduct | nf o table. Note that after many
documents in a document category are deleted, the sharedtidlfor that category
may no longer be optimal (for instance, the remaining sebefichents in the category
may have more sharing). Hence a re-organization usingXRICATE data modeller
may be necessary.

Adding individual documents of new category When adding a collection of products
belonging to a new category, we must identify the the shawitient for the new
category. We use theX TRICATE data modeller to obtain thaiff's.

Adding an individual document of an existing category Since the category of that
document already exists, there must be at least one praultichi category and there
must be a shared XML tree for that category. When insertingradeeument of that
category, we compute a diff between the new document anchtred XML tree, and
we store the diff output into thpr oduct I nf o table. Because our difference model
only supports insertions at this point, when the new documequires deletions in
the shared document, we create new category for the new doduithese documents

(7))

Source category |electronics/televisions/HDTV
No. of products 90

Size of original XML|296,267 bytes

No. of shared XML |26

Size of shared XML |30,537 bytes

Size of diff XML 210,244 bytes

Redundancy 1.23

Table 1. Analysis of the redundancy in real e-catalog data.

can be re-integrated with the original category during ngaaization. Extending our
difference model to include deletions is part of our futuiarky

Adding a document with new product attributes. By new product attributes, we mean
that the product attributes are new to the documents in time sategory that are cur-
rently in the database. Note that the new product attribute lbe encoded as an XML
element or an XML attribute. Since the new product attriloltes not occur in any other
documents in the database, it will be stored as part of thiéndHe pr oduct | nf o table.
No changes to the shared XML document is required. Note théit Xe-)validation
and migration issues are beyond the scope of this paper.i@pftesstrategy for han-
dling new attributes is therefore comparable to the vdrichema method in terms of
cost-efficiency.

5 Experiments

We implemented a prototype of our method and investigatedigaues in our experi-
ments: (1) the amount of redundancy in real e-catalog dath(2) the performance of
EXTRICATE under different conditions. ThEXTRICATE method exploits redundancy
in the data; therefore, analyzing and understanding theuatraf redundancy in real
e-catalog data is essential. To investigate the performaheX TRICATE, it is neces-
sary to generate synthetic data that simulates differgetdeof redundancy in order to
understand how our method performs under various condition

Redundancy in Real E-Catalog DataWe analyzed the product information of several
categories of products at the on-line store, www.bestbuy.and present the analysis
on a representative subset of the data we collected.

In order to quantify the amount of redundancy in the data, sethe ratio of the
data set size (in bytes) between the original data set andettemposed data set,

Size in bytes of original dataset

@)

redundancy = Size in bytes of decomposed dataset’
where the decomposed dataset is the size of all the shareddgliment and the size
of all the diff's produced by our method.

We use theeXTRICATE data modeler to decomposed the product information for
all the HDTV products that we downloaded from www.bestbomcand measured the
redundancy of the decomposed data with respect to the atigata. The key statistics
are tabulated in Table 1. We retained the website’s categforn of the HDTV products
into the “flat panel”, “projection”, and “up to 39 inches” s@htegories, and further par-
titioned the products in each of these sub-categories by renufacturer Our results

validate our assumption that e-catalog data containsf&ignt amount of redundancy
that can be exploited byX TRICATE.

Performance of eXtricate We investigate the performance characteristiceXfRi-
CATE over data with different characteristics as well as ovededit types of queries.
Our goal is to understand how well our method performs on dathqueries with dif-
ferent characteristics, and not so much on how well it perfoon a single, specific set
of real data and queries.

Data. We generated XML documents that are complete binary treasacterized
by depth. A complete XML tree of depify, will have 2¢—1 elements an@¢~! leaf
values. We simulate the amount of shared data between two &déuments by spec-
ifying the depth of the tree that is shared between them. xamele, two XML trees
of depth 6 with a shared depth of 4, will have common elememdss&ructure up to a
depth of 4. The sub-trees hanging off depth 4 will be différdime XML documents
we used in our experiments have depth 6.

Each dataset consists of a number of XML documents from 4goggs. The
amount of redundancy in each dataset is determined by (hutmber of documents in
each category, and (2) the shared depth of the documents wébh category.

Queries. We present our results for single constraint queries inghjger. We mea-
sure the performance of the same query on the original dq#esgoted in the plots by
“query on original data”) and on the decomposed datasettHeotlecomposed dataset,
we further measure the performance when the query requottsthe shared docu-
ments and the diff's to answer the query (denoted in the fllpt&uery on shared +
diff”), and when the query only requires accessing the shdoezument to answer the
query (denoted in the plots by “query on shared”. We run eangl000 times on a
multi-user machine running AlX unix and record the averdgesed time.

Performance vs RedundancyWe use the same approximate measure for redundancy
as shown in Eq. 1 and measure the running time of the 3 diffeyeary types on
different datasets with shared depth ranging from 2 to 5. Atmaber of documents

in each category, i.e., the number of documents sharingghesghared document, is
set to 1000. We plot the running time against the redundahtiyeodata on Fig. 8(a).

We observe thatX TRICATE provides significant improvement in query performance
whether the diff’s are used or not. When the query can be aesljest by looking at the
shared documents, the reduction in processing time is ewea dramatic. Moreover,

the performance improvements are not sensitive to the ditleeoshared XML tree
among the documents in the same category.

Fig. 8(b) shows the same results in terms of speedup witlece$p processing the
query on the original, non-decomposed dataset. Observliitae speedup for queries
requiring access only to the shared document is much grd@erthe speedup for
queries requiring access to the diff documents, (2) thedsgeeare decreasing slightly
as the size of the shared tree increases. For queries regjascess only to the shared
tree, increasing the size of the shared tree would logitedlgi to a smaller speedup and
this is reflected in our experiments. For queries that regoiath the shared document
and the diff’s to answer, the decrease in speedup is mostlyaiihne increased process-
ing time on the larger shared trees, and to a lesser exterteonumber of sub-trees
under the {diff)” element in each diff document. The number of sub-trees uedeh
“(diff)” element increases (even though each sub-tree is smafiéheashared depth
increases. When processing an XPath expression on the difhents, this increases

Performance vs Data Redundancy Speedup vs Data Redundancy

1.4 14
query on original data —+— query on shared —+—
query on shared+diff --—-x--- query on shared+diff ----x---
_ 12 ¢ query on shared - i 12 - 4
@
e af]
S 10
& o8} 1 S
3 T sl
§ 06Ff s
g o &
£ 6
% 04 et x
a T
0.2t] A
- " . * e e enememmemeneoemrecat st ememememeememar e x
0 2
1 105 11 115 12 125 13 135 14 1 105 11 115 12 125 13 135 14
Data Redundancy Data Redundancy

(a) Running time on single constraint queriegb) Speedup of running the single-constraint
over datasets with varying amount of sharedueries on datasets with varying amount of

data. shared data.
Performance vs Category Size Speedup vs Category Size
0.9 T —— T 12 T T T
query on original data —— query on shared ——
0.8 query on shared+diff -—--x-—- i

query on shared - 10 -

Performance (seconds)

0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
Category Size Category Size

(c) Running time for single-constraint(d) Speedup of running the single-constraint
queries on datasets with varying humber ofjueries on datasets with varying number of
documents sharing a single shared sub-treedocuments sharing a single shared sub-tree.

Fig. 8. Performance oEX TRICATE over different conditions.

the number of sub-trees on which to match the XPath expmesBar example if the
shared depth is 5, the number of sub-trees in each diff dostweuld be2?.

Performance vs Category SizeAnother important factor affecting the amount of re-
dundancy in the data is the number of documents sharing deséigired tree (this
number is the same as the category size). We set the shardtdepand vary the
number of documents within a category. The same queries mearand the elapsed
time plotted in Fig. 8(d). Observe that the processing tiereain constant for queries
that only require access to the shared documents, becarseblle for shared docu-
ments is not affected by category size at all. When the cagegipe is very small, the
performance oEX TRICATE is almost comparable to running the query against the orig-
inal data; however, when the category size becomes largar48, the speedup of our
method becomes significant.

The speedups are plotted in Fig. 8(d). Our results matchrduition that as the
number of documents sharing each shared document incrélasapeedup increases.

6 Related Work

Managing e-catalog data using various relational DBMStegias has been explored
in [1, 3,4, 2]. Thehorizontal schema approach stores all the product information in a
single table where the columns are the union of the attribeteacross all products and
the rows represents the products. THheary schema [3, 4] approach creates one table
for each distinct attribute. Each table stores valu pairs. Thevertical schema ap-
proach uses only one table with three columigD, Attribute, and Value. Each prod-
uct is represented as a number of tuples in this table, onesafdr attribute-value com-
bination. These approaches all have serious problems waithgparsity, schema evolu-
tion, usability, query processing complexity, difficulty gquery optimization. Agrawal
et al. proposed creating a horizontal view on top of a ver§chema [1] to ease the
difficulty of writing queries on vertical schemata, but does address the query perfor-
mance problems. A middle-ware solution call®tl, Search Assistant Layer, has also
been proposed in [2] to optimize queries written againsticedrschemas. However,
SAL is not able to leverage the full capability of the queryioyzer, because it is not
integrated with the DBMS engine.

On the XML front, a method using DBMS with native XML suppod manage
e-catalog data was proposed in [5]. The schema evolutidnigmois addressed using
XML. Query performance is dependent on the XQuery/XPatlcgssing engine inside
the DBMS engine. Our paper builds upon their approach by meocsing the XML
documents for storing product information in order to reglstorage redundancy and
improve query performance.

Our decomposition-based storage model is also motivatedalty compression
techniques. While many XML compressors (such as XMill [6]hiage higher com-
pression rate, their goal is solely to minimize storage sp@uiery processing require
decompression. In contrast, our goal is two pronged: redeahendancy in storage and
provide efficient query support. XGrind [7] is a query-frityp XML compressor that
supports query processing in the compressed domain; howégeind is still a low
level compressor relying on traditional encoding techage.g., Huffman code) to
encode strings in an XML document. CeEX TRICATE system does not perform string-
level encoding, but models the redundancy in a collectioiXigl. documents at a
logical level.

XML normalization theory [8—10] also models the redundaotXML data at the
logical level. The fundamental difference betweeXTRICATE and XML normaliza-
tion is that XML normalization is a design-time process aequires the schema and
the functional dependencies to be fully specified, whe®$&sRICATE makes no as-
sumptions on the schema or the functional dependencies aodipletely data-centric.
Moreover XML normalization does not address transfornmatibqueries to run on the
normalized schema.

The problem of finding the intersection and diff of two XML é&=is also a well
studied problem. The survey article by Cobena et al. [17¥ipdes a comprehensive
description of all the techniques. In this paper, our focusat on algorithms for find
the intersection and diff, but on using these algorithms imogel way to solve data
management problems in E-commerce.

7 Conclusion

The native XML support in DBMSs promises to offer databasersisa new level of
flexibility in managing semi-structured and unstructuredadin relational DBMSs.
However, this advantage may come with a significant cost ta debrage and query
processing if we do not use it wisely.

In this paper, we demonstrate how to combine the strengthslational DBMSs
and the flexibility of the XML support by a case study on mangdt-commerce data.
We argue that while the e-catalog data appears to be lackingiad structure, they do
share common sub-structures and common values amongediffoduct descriptions,
and the degree of such sharing could be very high for produtit® same category. The
extreme approach of storing each product description asrgplete XML document
without any schema constraint will thus result in huge ogarchin terms of both storage
and query processing. Handling the common parts and therelif€es separately leads
to a natural approach: We only use the freedom when we ready it.

References

1. Agrawal, R., Somani, A., Xu, Y.: Storage and querying of e-cemum data. In: VLDB,
Morgan Kaufmann (2001)
2. Wang, M., Chang, Y., Padmanabhan, S.: Supporting efficiergnpetric search of e-
commerce data: A loosely-coupled solution. In: EDBT. (2002) 40842
3. Copeland, G.P., Khoshafian, S.: A decomposition storage mode&IGMOD, ACM Press
(1985) 268-279
4. Khoshafian, S., Copeland, G.P., Jagodis, T., Boral, H., MaduP.: A query processing
strategy for the decomposed storage model. In: ICDE, IEEE (1987643
5. Lim, L., Wang, M.: Managing e-commerce catalogs in a DBMS with eaX¥IL support.
In: ICEBE, IEEE (2005)
6. Liefke, H., Suciu, D.: XMill: An efficient compressor for xml dati;ms Chen, W., Naughton,
J.F., Bernstein, P.A., eds.: SIGMOD. (2000) 153-164
. Tolani, P., Haritsa, J.R.: XGrind: A query-friendly XML compressin: ICDE. (2002)
. Arenas, M., Libkin, L.: A normal form for XML documents. In: B3. (2002) 85-96
. Libkin, L.: Normalization theory for xml. In Barbosa, D., Bonifati,,/Bellahsene, Z., Hunt,
E., Unland, R., eds.: XSym. Volume 4704 of Lecture Notes in Comtegnce., Springer
(2007) 1-13
10. Arenas, M.: Normalization theory for xml. SIGMOD R&& (2006) 57-64
11. Nicola, M., der Linden, B.V.: Native XML support in DB2 univeigiatabase. In: VLDB.
(2005) 1164-1174
12. Ozcan, F.,, Cochrane, R., Pirahesh, H., Kleewein, J., B&ygedosifovski, V., Zhang, C.:
System RX: One part relational, one part XML. In: SIGMOD. (2005)
13. Funderburk, J.E., Malaika, S., Reinwald, B.: XML programmimith SQL/XML and
XQuery. IBM Systems Journdll (2002)
14. Zhang, K.: A constrained edit distance between unordered latrelesl Algorithmical5
(1996) 205-222
15. Wang, VY., DeWitt, D.J., yi Cai, J.: X-Diff: An effective changetdction algorithm for XML
documents. In: ICDE. (2003) 519-530
16. Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, BanGe detection in hierar-
chically structured information. In: SIGMOD, ACM Press (1996) 4934-5
17. Cobena, G., Abdessalem, T., Hinnach, Y.: A comparative sbfic§ML diff tools (2002)
http://ww. del t axm . com pdf /i s2004. pdf.

© 00~

