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Expanding CNN-based Plant Phenotyping
Systems to Larger Environments
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1680 East-West Rd, Honolulu, HI, USA
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Abstract. Plant phenotyping systems strive to maintain high catego-
rization accuracy when expanding their scopes to larger environments.
In this paper, we discuss problems associated with expanding the plant
categorization scope. These problems are particularly complicated due to
the increase in the number of species and the inter-species similarity. In
our approach, we modify previously trained Convolutional Neural Net-
works (CNNs) and integrate domain-specific knowledge in the fine-tuning
process of these models to maintain high accuracy while expanding the
scope. This process is the key idea behind our CNN-based expanding ap-
proach resulting in plant-expert models. Experiments described in this
paper compare the accuracy of an expanded phenotyping system using
different plant-related datasets during the training of the CNN catego-
rization models. Although it takes much longer to train these models,
our approach achieves better performance compared to models trained
without the integration of domain-specific knowledge, especially when
the number of species increases significantly.

Keywords: Plant Phenotyping, Convolutional Neural Networks, Inte-
gration of Domain-Specific Knowledge.

1 Introduction

The categorization of species and plant phenotyping are challenging problems
relevant to both disciplines of Botany and Computer Science. Classifying plant
images at the species level, considering specific characteristics of their pheno-
type, is called fine-grained categorization. Despite the availability of various ap-
plications, categorizing plants in an environment with a large number of species
remains an unsolved problem. Furthermore, an automated system capable of
addressing the complexity of this problem and handle larger environments has
important implications, not only in preserving ecosystem biodiversity but also
in numerous agricultural activities.

In this paper, we extend CNN-based phenotyping systems ([5], [6] and [7])
and present a new approach to maintain their high accuracy when applied to
a larger environment. The proposed approach implements a novel scale-up pro-
cess that adapts the CNNs so that it can handle environments with a broader
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range of plant species. In this process, we replace the top classification layers to
accommodate a more significant number of plant species. However, due to the
lack of training data, pre-trained weights have to be used to achieve satisfactory
performance. Recently, Cui et al. [3], Xiangxi et al. [11], and Ngiam et al. [12]
addressed this problem by introducing domain-specific models, fine-tuning their
CNNs to other fine-grained categorization problems. Following their ideas, we
implement the integration of domain-specific knowledge for plant phenotyping
problems. Also called targeted fine-tuning, the pre-training process generates
plant-related knowledge from multiple datasets to create expert CNN models.
These fine-tuned CNNs take much longer to train but better performance is
achieved when the number of species is significantly increased.

The contributions of our research are the process to expand the scope (i.e.,
the number of species to be categorized) of CNN-based phenotyping systems,
the publication of a new plant species dataset, and the creation of plant-expert
CNNs used to fine-tune our categorization models. More specifically, this pa-
per describes modifications made to successfully deploy a plant categorization
system (previously designed to categorize 100 species) in a larger environment,
expanding its scope to 300 species without significant loss of performance.

We organized this paper as follows: Section 2 presents the related work by de-
scribing how most of the plant categorizing systems operate. In Section 3, we de-
scribe the adaptations made to expand the scope of the previously trained CNN
models. Section 4 details the integration of domain-specific knowledge, a system-
atic pre-training process developed to integrate previously learned datasets. And
Sections 5 and 6 present the experimental results and observations showing the
prediction accuracy of our expanded approach and compares them with other
commonly used training methods. Finally, Section 7 provides a conclusion and
describes future work.

2 Related Work

Nowadays, applications created for categorizing plants implement different CNN
models. Most of them are well-known CNN models adapted to work with plant
images. However, few of them present new approaches designed to address spe-
cific aspects of plant phenotyping, such as the challenges of expanding the cat-
egorization scope.

Implementing a simple CNN model, Barré et al. [1] present the application
called LeafNet. They used three datasets (Flavia, Foliage, and LeafSnap) to train
and test their CNN-based plant identification system. By comparing CNN mod-
els with hand-designed feature methods such as the LeafSnap [9] application,
Barré et al. show that learning features by using a CNN (even with a simple
architecture) provides a better representation of leaf images and consequently
better discrimination. However, their application does not inherit plant-related
knowledge from other datasets, which limits the learning process to the extrac-
tion of discriminative features out of only one plant dataset at the time.
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Adapting the CNN model called AlexNet [8] and using a dataset of 44 plant
species, Lee et al. [10] also focus on the classification of preprocessed leaf images.
They detect leaves in the images by using HSV (Hue, Saturation, and Lightness)
color space information to extract the foreground pixels. For the initial exper-
iments, they pre-trained a CNN using the ImageNet dataset and fine-tuned it
using the segmented samples. Initial results are not as expected, so they decided
to create a deconvolutional structure to visually verify what features the CNN
has learned. During this process, Lee et al. noticed that the trained model is
focusing almost exclusively on the contour and shape of leaves. Based on the
low performance, they conclude that leaf shape is not a good choice to identify
plants, which is not necessarily true. Morphological features of leaves have been
heavily and successfully used for plant species categorization. In this case, non-
satisfactory results may be a consequence of a poor pre-training process of the
classification model, making the CNN focus almost exclusively on the counter of
the leaves. Integrating domain-specific knowledge may assist with this problem.

Sun et al. [15] implement plant categorization models customized to 100 plant
species. They use images collected from the Beijing Forestry University campus,
available online in the BJFU100 dataset1. These images present a variety of back-
grounds, different illumination conditions, shadows, and it is not always possible
to identify a leaf of the plant. Knowing these challenges, Sun et al. implement a
modified version of the Residual Network (ResNet) [4] to classify these images.
In their model, a pre-trained ResNet works as a bottleneck structure between
an initial convolutional block and the last layers of the network. Like this, they
adapted the ResNet architecture to their needs, customizing this successful CNN
model and fine-tuning it with their dataset. Despite implementing a successful
customized CNN model, Sun et al. limit their work to 100 plant species. And its
scope expansion may be harder to perform due to the customized model.

Using the BJFU100 dataset, the work of Krause et al. [5] explores multi-scale
methods to improve the categorization process of plant species. They present
better results when compared with the work of Sun et al. by implementing a
CNN-based system called WTPlant. This system implements a scene parsing
method to locate different plant organs and delimit the most representative ar-
eas in the images for the categorization of plant species. Additionally, Krause
et al. present experiments using another dataset with 100 plant species called
UHManoa1002. As a result, the plant phenotyping system designed by Krause
et al. has a limited categorization scope. Because of that, our approach focuses
on expanding CNN-based systems like the WTPlant to deploy it in larger en-
vironments. Furthermore, the proposed approach has to face the challenge of
maintaining the high accuracy results that other systems reported when trained
over small environments (with 100 species or less).

1 https://pan.baidu.com/s/1jILsypS
2 https://github.com/jonaskrause/UHManoa100
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3 Expanding the Plant Categorization Scope

The accurate categorization of 100 plant species from multiple datasets suggests
the work of Krause et al. [5] as an effective method for classifying natural images
of plants. However, expanding its scope brings new problems: The first problem
is to correctly identify which species exist in the target environment and collect
representative images of the listed plants. This process requires the assistance
of a botany specialist to define the number of species and annotate the training
images. With the correctly annotated species, we collect images of plants in the
wild to create a new dataset and define the expanded scope. Considering that
this new dataset represents the flora biodiversity of a specific region of the globe,
classification models trained over these images compose a plant categorization
system with that particular scope.

The second problem is to include new species in the plant categorization
scope while maintaining the knowledge previously learned and, consequently,
minimizing the loss in performance. A simple solution to this problem would
be training new CNN models from scratch using the target dataset. However,
experiments performed by Krause et al. [5] using the ImageNet [13] pre-trained
weights showed how valuable the knowledge integration is for the fine-tuning
of these plant categorization models. Therefore, a solution that expands the
plant categorization scope for more than 100 species must take into account the
pre-training process of the classification models. To integrate previously learned
knowledge, we implement a modification of the classification models by replacing
the top layers of the CNNs with new extended ones. These new layers accom-
modate a more significant number of plant species but do not guarantee a high
categorization accuracy. To address it, we create expert models by training the
modified CNNs over domain-specific datasets and use their pre-trained weights to
fine-tune the classification models over the new dataset. The pre-trained weights
of these plant-expert CNN models are available online3 and can be used by other
researches to fine-tune their models. In this way, knowledge extracted from CNNs
pre-trained over plant-related datasets assist in the fine-tuning of the models over
new target datasets. And we expand the plant categorization scope by adapting
the classification models to inherit powerful discriminative features previously
learned during the training over multiple datasets.

Experiments performed using the proposed solution compare the accuracy
of the CNN classification models when pre-trained with different datasets like
the ImageNet, the UHManoa100 published by Krause et al., and the iNat682
(a plant dataset from iNaturalist4 with 682 species). We use them to pre-train
the models before the fine-tuning process over the new target dataset. Although
it takes much longer to train these CNNs, the resulting models with integrated
domain-specific knowledge categorize plants more accurately throughout all ex-
periments. For much larger scopes that encompass more than one environment
(e.g., different regions of the globe, continents, or countries), multiple systems

3 https://github.com/jonaskrause/Plant Flower-Expert CNN Models
4 https://www.inaturalist.org/
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can operate in parallel using other guidance methods (such as geolocation of
the testing image) to indicate which version to use. In this way, we can deploy
multiple CNN categorization models to cover an even larger environment and
categorize the entire flora of that specific region.

3.1 Creating a Dataset of Broader Range of Species

The first step to increasing the number of species analyzed by CNN-based phe-
notyping systems is to gather a representative dataset of the listed plants. So we
invited a botanist specialist to perform a sanity check on all of our images and
ensure that each one of them contains visible traits of the selected species. We
also eliminate the incorrectly labeled images as well as the ones with poor qual-
ity and low-resolution (smaller than 400x400 pixels). This process is necessary
due to the lack of datasets with annotated species available for the experiments
conducted in this study.

Following this initial process, we organize the new dataset as a collection of
300 plant species with 50 natural images per species, totalizing 15,000 correctly
annotated images. This new dataset, called UHManoa3005, comprises diverse
images with different sizes from 400x400 to 6000x4000 pixels, plants appearing in
varying angles, scales, and stages of life. Consequently, it becomes more difficult
to categorize this dataset as the appearance of plants changes considerably within
the same species. For example, the 50 images of the species Acacia koa in Figure
1 illustrate how diverse the within-species plant appearance can be. In addition,
similar to the UHManoa100, different plants may appear in the background or
even in front of the dominant plant. The annotation of the plant in the images
indicates the dominant species (Acacia koa) covering the most substantial areas
of the images. Also, as shown in the Figure, images in this new dataset contain
plants at various scales ranging from leaves and flowers to the entire tree.

3.2 Modifying CNN Models to Accommodate Expanded Scope

After constructing a new dataset containing the plants in the target environment,
we adapt the classification models to work with a larger number of species. In
this process, we remove the top classification layers of the CNNs initially trained
to categorize 100 plant species, saving the weights of each CNN model without
the top layers. For each model, pre-trained weights create a basic knowledge of
what the model learned in previous training processes (also called base models).
A new and larger classification layer added at the top of a base model creates
a new CNN with similar architecture but adapted to work with an extended
scope. Figure 2 shows this process by expanding the plant categorization scope
from 100 to 300 species. Thus, we can load knowledge learned from previous
experiments into the same models but with a larger classification layer at the
top. Retraining the modified models over the new images, we fine-tune the CNNs
to learn discriminative features between a more significant number of species
using the pre-trained weights as a starting point for this process.

5 https://github.com/jonaskrause/UHManoa300
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Fig. 1. All 50 images of the Acacia koa in the UHManoa300 dataset.

Fig. 2. Process of replacing the top classification layers of CNN models to expand the
plant categorization scope.
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The number of new species to be integrated into the scope determines the size
of the new classification layer at the top of the model. In this paper, we expand
the plant categorization scope from 100 to 300 species. For that, we exclude the
two dense layers at the top of the CNN models and replace them with new ones
that accommodate the expanded scope. The first layer has the same size as the
previously excluded one, but the second layer (the last one) is customized to the
exact number of classes in the new dataset (300 plant species). These two top
layers work together and are responsible for producing the output predictions
of the model. Thereby, modified CNN models have the same architecture as the
previously trained ones but are loaded with pre-trained weights and ready to
work with more classes (plant species).

The fine-tuning of modified models over the target dataset updates the pa-
rameter values for the entire CNN based on the pre-trained weights. Conse-
quently, well-trained base models lead to a better fine-tuning process of CNNs
over the target dataset. Implementing this adaptation of the classification mod-
els, we present a solution to expand the scope of CNN-based systems using
multiple pre-trained models. The integration of knowledge from the continu-
ous pre-training processes of the CNNs suggests the creation of domain-specific
models. These classification models require an intensive computational effort for
training but yield more accurate results.

4 Integration of Domain-Specific Knowledge

Due to the lack of training data for most of the fine-grained categorization prob-
lems, ImageNet pre-trained weights are frequently used to integrate knowledge
during the training process of CNN models. These weights comprise a base model
trained over a million images, and this knowledge is useful for most of the visual
classification problems. As previously described, Cui et al. [3], Xiangxi et al.
[11], and Ngiam et al. [12] recently introduced domain-specific models for fine-
tuning their CNNs to different fine-grained categorization problems. Exploring
these approaches, we expand the CNN-based plant categorization systems by
adapting the classification models and searching for the best pre-trained weights
to fine-tune the models over a new dataset with 300 plant species. Experiments
using this new target dataset (UHManoa300) compare the performance of the
plant categorization system with CNN models trained from scratch, with the
ImageNet pre-trained weights, and with the knowledge integration using two
different plant-related datasets (UHManoa100 and iNat682) with the ImageNet
pre-trained weights as a starting point.

4.1 Training with Random Initialization of CNN Parameters

Initial experiments start by extracting samples from the training images of the
UHManoa300 dataset and randomly dividing them into 80% for training and
20% for validation. We begin by training three CNN models (Inception-v3 [17],
Inc-ResNet-v2 [16], and Xception [2]) using the random initialization of the
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model’s weights. In this process, we initialize the training of each CNN model
with random parameter values (weights and biases) and, consequently, no pre-
trained knowledge. The training process runs for 100 epochs with hyperparame-
ters (such as the number of convolutional filters, their sizes, padding, and stride)
of each CNN set as suggested in the papers that presented the models. We use
the backpropagation algorithm to propagate the error backward throughout the
CNN and update its parameter values (weights). This process is performed for
each training sample while the validation set is used to calculate the model’s
accuracy at each epoch. During the training process, CNN models are not over-
fitting after 100 epochs. We observe this behavior by monitoring performance
on the validation set and stop the training at 100 epochs because we are limited
by computation. The final trained model is the one with the smallest validation
error after completing the training process.

4.2 Training with ImageNet Pre-trained Weights

We extend previous experiments by using the ImageNet [13] pre-trained weights
to initialize the training process of the CNN models. We use these pre-trained
weights as base models for the next experiments over the UHManoa300 dataset.
As suggested by previous results on datasets with 100 plant species (Krause et
al. [5]), CNN models implementing inception modules (such as the Inception-
v3, Inc-ResNet-v2, and Xception) take the most advantage of the ImageNet
pre-trained weights. These CNN models have millions of parameters and are
better fine-tuned over small datasets when using pre-trained weights as initial
parameter values.

4.3 Training with ImageNet and UHManoa100 Pre-trained Weights

We use ImageNet pre-trained weights as a starting point for the training of
the CNN models over different datasets to integrate domain-specific knowledge
from plant images. The first one is the UHManoa100 dataset, a collection of
plant samples from 100 species previously presented. The best performing CNN
model after 100 epochs of training creates a new base model with domain-specific
knowledge, enabling the extraction of the ImageNet+UHManoa100 pre-trained
weights. Consequently, these base models are an integration of previously learned
knowledge built over the ImageNet initial weights and what is learned during
the training process of these models over the UHManoa100 dataset.

As described previously, we remove the top layers of these models and save
their weights and biases (parameter values). In this way, knowledge learned dur-
ing previous experiments can be used during the fine-tuning process of models
adapted for the UHManoa300 dataset. It should be noted that the knowledge
integration of the ImageNet pre-trained weights trained over the UHManoa100
dataset creates a domain-specific model that may provide better initial weights
for fine-tuning models with new target datasets.
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4.4 Training with ImageNet and iNat682 Pre-trained Weights

The iNat682 dataset is a collection of plant images from iNaturalist community
with 682 species. We downloaded this dataset from the iNaturalist challenge
website6 for the classification of animals and plants. However, our training pro-
cess selects only those images from the Plantae category, excluding other groups
such as animals, insects, and fungus. The resulting training set is a highly un-
balanced collection of 158,463 images over 682 plant species (and these images
are not part of the UHManoa100 or UHManoa300 datasets). Ranging from 19
to 503, the number of images per class varies according to the endemic nature
of each species worldwide. Furthermore, these images vary in resolution, orien-
tation, and focus, making this dataset a very diverse collection of plant images.

In an attempt to create more robust domain-specific CNN models, experi-
ments using the ImageNet+iNat682 pre-trained weights integrate the general
knowledge from the ImageNet dataset and the knowledge from the iNat682
dataset to create plant-expert models. For this process, we initiate the train-
ing of the CNN over the iNat682 dataset with the ImageNet pre-trained weights
for 100 epochs. In such a way, the iNat682 dataset contributes to the inter-
mediate training process undertaken to create a powerful domain-specific CNN
model that learns useful plant-related features for the fine-grained categorization
of other plant datasets. We extract the learned knowledge by saving pre-trained
weights of the CNN models with the best validation performance, creating the
ImageNet+iNat682 pre-trained weights.

5 Experimental Results

Focusing on the UHManoa300 dataset, we implement a CNN-based approach to
expand the scope of plant categorization systems to a larger environment of 300
species. Due to the clean-up previously performed in this dataset (Section 3.1),
preprocessing these plant images creates highly representative species samples
for training and testing. For this balanced dataset, the testing set comprises
10% of the data and the rest is the training set. We perform the fine-tuning
process of the CNNs over the UHManoa300 dataset for 100 epochs. During this
process, we divide the training set of extracted samples into training (80%)
and validation (20%). It is important to reinforce that images selected for the
validation set have all their samples for validation only. In this way, we use
training and validation samples exclusively in their respective sets for fine-tuning
the models. We evaluate the trained CNNs using the testing set of images unseen
by the trained models, containing five different images of each plant species. As
a metric for performance evaluation, we use the prediction accuracy, e.g., the
percentage of images correctly categorized in the testing set. We consider an
image is correctly categorized when the Top-1 prediction matches the annotated
species of the plant.

6 https://www.kaggle.com/c/inaturalist-challenge-at-fgvc-2017
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Table 1 presents the Top-1 classification accuracy of CNN models pre-trained
on different integrated datasets and fine-tuned over the UHManoa300 dataset. As
shown in the Table, the CNNs’ performance is improved by pre-training them
multiple times to integrate domain-specific knowledge. This integration starts
with the commonly used ImageNet weights and trains models initially loaded
with these parameter values on different plant datasets. It includes pre-trained
weights from 100 plant species (ImageNet+UHManoa100) and expert models
trained with a larger domain-specific dataset (ImageNet+iNat682). The use of
pre-trained weights allows the CNN-based systems to improve their accuracy for
the categorization of 300 plant species. More specifically, this approach correctly
categorized 84% of the testing images when the Xception is pre-trained as a
plant-expert model and fine-tuned over the target dataset.

Table 1. Accuracy results with CNNs pre-trained on different dataset for classifying
plant species in the UHManoa300 dataset.

CNN model
Random ImageNet ImageNet+ ImageNet+

Initialization Weights UHManoa100 iNat682

Inception-v3 51.93% 75.67% 76.07% 78.80%
Inc-ResNet-v2 52.00% 76.73% 77.07% 82.33%
Xception 52.40% 81.20% 81.40% 84.00%

As shown in Table 1, CNNs fine-tuned for the UHManoa300 achieved more
accurate results when pre-trained as domain expert models. Initially, ImageNet
pre-trained weights bring a general knowledge with models trained to classify
1,000 common objects. The ImageNet pre-trained models are commonly em-
ployed in numerous computer vision problems, but they are limited to the lack
of domain-specific knowledge required for fine-grained categorization problems.
In the process of creating plant-expert models, we use domain-specific datasets
to train the CNNs before fine-tuning them over the target dataset. We collect
the ImageNet+UHManoa100 pre-trained weights from CNN models that yielded
the best performance over the UHManoa100 dataset. However, CNNs fine-tuned
with these pre-trained weights resulted in just slightly more accurate models than
those with no domain-specific knowledge integration (ImageNet). Although be-
ing a well-organized dataset with multi-scale samples of the original images, the
UHManoa100 lacks diversity and is limited to 100 plant species. Hence, knowl-
edge integration is not that evident since the CNN models inherited just a few
discriminating features from the UHManoa100 dataset.

In the process of creating plant-expert models, we use a dataset covering
much more variety of plant species to train the CNNs before fine-tuning them for
the target environment. The training process over this domain-specific dataset
helps the models to learn more discriminative features and better generalize for
objects from that domain. Thus, we use natural images of different species in
the iNat682 dataset to train plant-expert CNN models. These models produce
plant-related pre-trained weights that serve as initial parameter values for the
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fine-tuning process over the UHManoa300 dataset. Consequently, the knowledge
integration from an extensive dataset such as ImageNet and a domain-specific
dataset such as the iNat682 resulted in better pre-trained CNN models for the
plant categorization.

6 Observations and Discussions

The proposed approach described in this paper focuses on expanding the plant
categorization scope of CNN-based systems to 300 plant species. As the first
step, a botanist helped with the creation and organization of a new dataset
(UHManoa300), ensuring a collection of good quality natural images of cor-
rectly annotated plants. Subsequently, classification CNN models need to be
trained over this new dataset, and common methods such as retraining them
from scratch resulted in poor performance. These state-of-the-art CNN models
trained from scratch with randomly initialized parameters tend to overfit on
training data with few images per class, resulting in incorrect predictions for
test images. However, an adaptation on the top layers of the classification mod-
els accommodates a larger number of species and allows the use of pre-trained
weights, improving the models’ accuracy.

State-of-the-art CNN architectures implementing inception modules have
shown improved results when using the ImageNet pre-trained weights (Krause
et al. [5]). These base models trained to categorize the UHManoa100 dataset
achieved highly accurate results, serving as plant-related pre-trained weights
for the experiments with the UHManoa300 dataset. Furthermore, we integrate
domain-specific knowledge using a much larger dataset (iNat682) into the cat-
egorization CNNs to create plant-expert models. The integration of domain-
specific knowledge also helps to avoid the overfitting problem often encountered
when training large CNN models over small datasets. Presented in Table 1, ex-
perimental results show the improvement of the CNN-based system when the
classification models are pre-trained with domain-specific datasets. This accu-
racy gain is more evident when a large dataset, such as the iNat682, is used to
generate the base models. Training over a big plant-related dataset, base mod-
els become plant-expert CNNs and assist on the fine-tuning of the classification
models over the UHManoa300 dataset. As a result, the adaptation of previously
trained CNNs accommodates an extended categorization scope and allows the
CNN-based system to upgrade its models for target datasets with a larger num-
ber of classes.

Even with the ease of downloading ImageNet pre-trained weights7, the cre-
ation of plant-expert models demands the learning of thousands of plant images.
For instance, integrate domain-specific knowledge from the iNat682 dataset re-
quires a lot of additional computational effort. The ImageNet+iNat682 plant-
expert models required the full training of each CNN over 158,463 images before
the final fine-tuning process. As an example, for the experiments presented in

7 https://keras.io/applications/
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this paper, we used three GPUs (two GeForce RTX 2070 and one GeForce GTX
1080 ), and it took almost two months to completely train all CNN models.
Among those, the best performing model (Xception) took three weeks to be
fully trained and fine-tuned.

Experimental results presented in Table 1 show that CNN models improved
their predictions when fine-tuned using domain-specific pre-trained weights. The
results also show that the Xception [2] is the most effective CNN model for classi-
fying 300 plant species. Focusing on the predictions of this model, this fine-tuned
CNN can correctly categorize an average of 2.7% (81 testing images) more when
using the ImageNet+iNat682 pre-trained weights (compared to other pre-trained
weights). In particular, the Xception model using the ImageNet+iNat682 pre-
trained weights correctly categorize ten images that are not even listed in the
Top-5 predictions of models using other pre-trained weights. Figure 3 presents
some of these images showing possible discriminative features that this CNN
(Xception) has inherited from its respective plant-expert model. Visually re-
viewing these images, they all resembled the shape of small trees with volup-
tuous treetops. The iNat682 dataset has multiple annotated images of trees (not
including any images from the UHManoa300 dataset) that create transferable
knowledge related to these types of plants. Representative images of entire trees
are not common for some species in the target dataset, causing categorization
errors. As suggested by experiments performed in this paper, these errors can
be remediated by integrating plant domain-specific knowledge.

Expanding the plant categorization scope brings the challenges of gathering
a new target dataset and adapt the classification models to work with the new
scope. This paper addresses both of these challenges, but one problem is no-
ticeable in all plant species categorization system: the categorization of different
plant components such as leaves, flowers, fruits, barks, etc. As shown in Figure
4, some incorrectly categorized plants do not have their leaves completely visi-
ble, while the flowers of that species are evident in the images. In these cases,
CNNs trained specifically to classify flowers may successfully categorize the plant
species. Therefore, we designed our expandable CNN-based approach to be ca-
pable of adapting multiple categorization models, even if they focus on different
objectives – i.e., new expert CNN models can be created focusing on each one of
the plant’s components. In the literature, previously implemented solutions using
multiple CNN models to analyze different plant components ([5], [7], and [14])
suggest an improvement in accuracy when categorizing plant images. Therefore,
the addition of multiple expert CNN models may be a suitable alternative to bet-
ter handle natural images of plants. Future experiments will consider expanding
the flower categorization scope as well as integrating domain-specific knowledge
from flower-related datasets.

7 Conclusion

In this paper, we study the problem of expanding the categorization scope of
CNN-based plant phenotyping systems. Amongst the many challenges of this



Expanding CNN-based Plant Phenotyping Systems to Larger Environments 13

Fig. 3. Images correctly categorized by the expanded CNN-based approach using the
Xception model with ImageNet+iNat682 pre-trained weights.

problem, we address the particular challenges of gathering a new representa-
tive dataset for a larger environment, adapting the CNN classification layers
to accommodate the larger scope, and integrating domain-specific knowledge to
maintain a high categorization accuracy. The contributions of this paper include
the publication of a new dataset (UHManoa300) with 50 correctly annotated
images for each of the 300 plant species, the adaptation process implemented in
the top layers of the CNN classification models to accommodate an expanded
scope, and the integration of domain-specific knowledge to create plant-expert
models (also available online). The pre-trained weights of these expert models
can be used by other researchers as a starting point for the fine-tuning process
over their new datasets.

Among the challenges, the creation of plant-expert models by integrating
domain-specific knowledge is the most demanding one. We implement this inte-
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Fig. 4. Images incorrectly categorized by the expanded CNN-based approach.

gration process by repeatedly training the classification models over plant-related
datasets to maintain the high categorization accuracy over a more significant
number of species. By dedicating an enormous computational effort to train and
fine-tune the modified models, we successfully expand the plant categorization
scope to a broader environment while maintaining high accuracy.

In summary, the proposed approach provides a scalable solution for the prob-
lem of species categorization and expanding an existing plant phenotyping sys-
tem to a larger environment. The future work of this research includes developing
a unified approach to consolidate various plant phenotyping systems and inte-
grating the knowledge previously learned by them to create better trained CNN
expert models.
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