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ABSTRACT
Remote monitoring of patients’ biometric data streams of-
fers the possibility to physicians to extend and improve their
services to chronically ill patients who are away from medical
institutions. This emerging technology is a promising way to
address important aspects of the cost issues that most health
care systems are experiencing. In order to fulfill its poten-
tial, several challenges need to be overcome. First, the data
collected needs to be filtered and annotated intelligently to
help physicians cope with and navigate the large amount of
patient sensor data received as a result of large scale remote
health monitoring deployments. Secondly, efficient stream
persistence and query mechanisms for these data need to be
designed to satisfy health care regulations and help physi-
cians track patient health histories accurately and efficiently.
In this paper, we concentrate on the second challenge. We
leverage emerging hybrid relational-XML database manage-
ment systems to design a storage sub-system for remote
health monitoring. We evaluate this approach by perform-
ing series of performance tests to assess the ability of the
proposed system to handle the huge amount of biometric
data streams requiring persistence.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems
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1. INTRODUCTION
Cost problems in health care are making the headlines in

many countries. In the United States, it has been reported
that more than 1.9 trillion dollars were spent on health care
in 2004 [5]. More than 75 % of this amount was spent to
treat patients with chronic conditions including cancer, dia-
betes and congestive heart failure [20]. These alarming fig-
ures, coupled with the fact that the American society is ag-
ing rapidly (in part because of the aging of the baby boomer
generation), are clear indicators that the United States are
in the midst of a serious health care crisis. Similar indicators
are also present in many other industrialized nations.

In order to face these problems, several alternate ways
of improving the delivery of health care services are being
investigated. Of particular interest to us is the concept of
remote health monitoring, in which medical care is ubiqui-
tously provided to patients with chronic diseases. A well-
designed remote health monitoring system could not only
reduce the number of patient visits to hospitals by moni-
toring them continuously while performing their daily ac-
tivities, but could also reduce the incidence of diseases by
being more proactive and by detecting early symptoms of
chronic diseases. Early detection of symptoms often enables
early and complete recovery from these illnesses. In addi-
tion, it yields significant cost savings since health care costs
are known to rise drastically while the condition of patients
is deteriorating [18].

As shown in Figure 1, a remote health monitoring sys-
tem is typically built in a three-tier architecture [11]. The
first tier is the sensor network, consisting of inexpensive bio-
metric sensors reporting various kinds of biometric readings
taken on the patients. Typical sensors are rather simple:
e.g., blood pressure cuffs, pulse-oximeters, weight scales and
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glucometers. However, with the recent progress in sensor
technologies, we have seen the emergence of devices that
generate more complex events at higher rates: e.g., multi-
channel Electrocardiogram (ECG/EKG) sensors able to pro-
duce event rates in the order of hundreds of kbps. In addi-
tion, the advances in low power wireless technologies have
enabled many sensor manufacturers to equip their products
with short range wireless radios (e.g., Bluetooth, ZigBee)
for the transmission of data to external components.

Events transmitted out of the sensor tier are received by
the second tier of the system, the data hub tier. At this
layer, a personal device belonging to the patient is typically
used to package the received sensor data and translate it
from a sensor device specific format into a common format
that is well understood by the rest of the system. This tier
resides either on a static machine (e.g., the patient’s per-
sonal computer), or on some mobile device (e.g., a high end
cellular phone belonging to the patient). In either case, it is
important to keep in mind that there is at least one active
hub in the system for each patient. Hence, the number of
data streams ingested by the system is directly proportional
to the size of the patient population.

The data hub tier is also responsible for the transmission
of the formatted data to the last tier, the server tier, where
analysis of the data takes place. The need to analyze raw
sensor readings is dictated by the volume of data collected
for medical professionals. To illustrate this point, consider a
hypothetical large scale deployment of remote health mon-
itoring kits observing patients with diabetes in the United
States. Simple mathematics taking into account the ratio
of the total number of diabetics to the total number of en-
docrinologists in the United States reveals that more than
20,000 biometric readings might be directed to one doctor
on a daily basis. Clearly, these readings need to be filtered
or preprocessed for the physicians. What is needed is an
infrastructure that is able to extract medically important
events from the huge amount of data readings.

Several analysis applications might be instantiated on the
server tier, based on the current condition of the patient.
For example, a type I diabetes monitoring application might
be in place to pay particular attention to glucometer read-
ings and alert physicians or even Emergency Response teams
when blood glucose levels are abnormal. A congestive heart
failure application might also be in place to correlate sharp
patient weight increases with blood pressure and arrhyth-
mia features extracted from ECG sensor readings to monitor
the well-being of patients diagnosed with congestive heart
failure. In more general cases, a generic application might
be deployed for users interested in monitoring their general
well-being. In such cases, basic biometric readings such as
blood pressure, pulse, temperature, might be collected and
analyzed at the server tier by generic well-being programs
tuned to look for symptoms of common chronic diseases.

Another important function of the server tier is the persis-
tence of the collected data. This function is a requirement on
the system, mainly for two reasons. The first one is related
to regulations in health care. Indeed, an increasing number
of storage regulations are being imposed by governments on
medical institutions [12]. In the United States, the Health
Insurance Portability and Accountability Act (HIPAA) has
issued strict guidelines in enforcing medical institutions to
store patient medical records for many years (up to 21 years)
[12]. The second reason is simply due to the fact that medi-

Figure 1: The three tier approach to remote health

monitoring.

cal professionals might need to access detailed patient med-
ical record histories, may it be for pure research purposes
or simply for historical analysis in order to provide better
services.

Designing a stream storage component at the server tier
is typically done leveraging relational database management
systems. However, these approaches tend to be difficult to
extend as new data sources appear in the system. With the
emergence of hybrid relational-XML database systems, more
effective approaches become possible. Indeed, with XML be-
coming the standard for data retrieval and exchange, many
commercial RDBMSs now support XML data in its native
form. The XML support adds an extensibility dimension to
traditional relational DBMS that we intend to leverage in
the design of the server tier.

In this work, we evaluate the extent to which hybrid relational-
XML DBMS technologies can be used to store and query
large volumes of a remote health monitoring data. We start
with a review of the related work discussing known ap-
proaches to design the server tier. We then propose a system
architecture for the storage component of the server tier.
Our approach leverages a hybrid relational-XML database
system. We evaluate its performance by a series of experi-
ments and end the paper with a summary on the capabilities
of the proposed system and a discussion on future work.

2. RELATED WORK
Work related to this paper falls into two main categories:

remote health monitoring systems and streaming database
systems. In this section, we review the state of the art in
these areas.

The concept of remote health monitoring has been around
for several years. In fact, several proprietary commercial
systems are available on the market. Honeywell, Health
Hero Network, American Telecare, and AMD Telemedicine
are notable companies providing closed, proprietary remote
health monitoring system offerings. In the research litera-
ture, several systems have also been proposed. Most of them
are also proprietary and not open to new data sources. One
notable exception is the work by Blount et. al. in [11] where

190



they presented an open platform for remote health monitor-
ing. However, the system focuses on the collection of discrete
events. It does not support continuous data streams (e.g.,
ECG data).

The problem of persisting and querying remote health
monitoring data streams has received little attention in the
scientific community. Bar-Or et. al. are one of the rare
research team investigating this issue in the BioStream sys-
tem, as reported in [8]. However, [8] does not propose an
approach, nor does it mention anything about the openness
and extensibility of BioStream.

The stream database system is a relatively new concept
describing a new class of data management systems designed
to handle streaming data. The focus of these systems is
more on the ability to make long standing queries on in-
coming streams, than on the ability to persist efficiently
incoming streams. There are several projects such as Au-
rora [6] and Borealis [7] that are attempting to build such
stream database systems with goal to allow applications to
manipulate and query stream data from a database centric
perspective. Queries for data still follow the models used
in traditional relational database systems. To be specific,
data streams are queried over the relational data attributes
and time windows. The approach discussed in this paper
takes these concepts to the next level by exploiting the ex-
tensibility of the schemas supported by hybrid relational-
XML database systems to build extensible persistency mech-
anisms.

3. SYSTEM REQUIREMENTS
In this section, we enumerate the key requirements to a

storage system for the persistence and query of patient bio-
metric data.

• Event rate scalability:
While the event rates of the biometric data streams
from an individual patient may not be very high, the
aggregation of streams across the patient population
produces very large event rates that might stress the
system significantly. Assuming a patient population
of ten thousand with an average data rate per patient
of 100 kbps1, the system would need to handle rates
in the order of 1 Gbps. From a storage perspective,
it is imperative to ensure that the underlying storage
system can cope with such high rates.

• Long-term storage of streams:
The need to persist the sensor readings is dictated by
several factors. Historical analysis of streams requires
some form of persistence of streams. For example, an
analysis algorithm tracking patient weight gains needs
to keep the history of the weight of the patients. An-
other algorithm tracking the effect of a drug on a pa-
tient needs past biometric data to evaluate the effect
of the drug. The physicians may also bring persis-
tence requirements to the system. Indeed, a physician
might simply be interested in accessing historical data
about her/his patients to make better assessments on
their health. Finally, health care regulations are also
bringing stream persistence requirements. The man-
agement of this large volume of data will require sub-

1ECG data sources alone operate in this range.

stantial investments from medical institutions. How-
ever, these investments should be offset by the overall
savings created by the wide spread adoption of remote
health monitoring technologies.

• Extensibility:
The open nature of the health care environment dic-
tates the need for an extensible storage system. The
heterogeneity of existing biometric sensors and the dy-
namism at which new devices are appearing in the
market forces us to design an extensible platform, open
to new data types generated by new devices.

• Unbalanced read/write ratios:
While the rates at which data enter the storage system
might be high, we do not expect this to be the case for
the rates at which data are queried by the end users,
may it be humans (e.g., physicians) or machines (e.g.,
analysis component performing historical queries for
data). The main assumption is that out of all the
data captured by the system, only a small fraction is
of interest to the end users.

• Expressiveness of the stream query language:
The end users need to access data of interest through
a query language for streaming data. The key require-
ment on the query language is its expressiveness: users
should be able to query not only the data attributes
in the original biometric streams, but also higher level
attributes that are extracted by processing the data
streams as they enter the system.

4. SYSTEM ARCHITECTURE
The system requirements outlined in the previous section

have been used to architect the storage subsystem of the
server tier. As shown in Figure 2, this architecture consists
of two major components: a pre-processing subsystem and a
hybrid relational-XML DBMS. In the following, we describe
each of these components in details.

4.1 The Pre-processing Subsystem
The pre-processing subsystem is an extensible framework

where event streams are annotated. Along with the frame-
work comes an extensible data model for the representation
of the streams. This data model is instantiated by an exten-
sible type system. When a new data source is registered with
the framework, a type for this new data source is created by
the developers, by extending the system type system. For
instance, the registration of ECG streams requires an exten-
sion of the type system to define an ECG type. While we do
not restrict the way a developer is extending the type sys-
tem at this point, we foresee the emergence of a vocabulary
for biometric streams that will be compatible with standard
data models of the future. For example, HL7[2] defines an
XML representation for biometric streams, including ECG.
These representations define XML elements and attributes
that are semantically relevant to medical professionals. Ac-
cordingly, we would expect that developers may want to
leverage these elements and attributes in their type systems
and applications.

As streaming data enters the system, it is first de-multiplexed
by type. The output of this operation gets packaged into
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stream segments called chunks. A chunk is an atomic ele-
ment describing the highest level granularity at which anal-
ysis algorithms may operate. In our model, we expect hubs
at the second tier of the architecture to generate stream seg-
ments while the Type Demux element shown in Figure 2 is
responsible for de-multiplexing stream segments based on
their types and also for creating chunks that are object rep-
resentations of these segments. Accordingly, arbitrary sets
of chunks with size defined by the developer may traverse a
set of pre-defined annotators associated with its type. These
annotators generate annotation metadata encapsulated in
the attributes defined by the stream type.

Our framework architecture is open. It allows any an-
notator to be plugged according to a well defined API. It is
architected on top of the Unstructured Information Manage-
ment Architecture (UIMA) [16]. UIMA is an open source
platform for the development of unstructured information
analysis applications. Although mainly used for text ana-
lytics, UIMA is designed to support different modalities. In
fact, Belinski et. al. have demonstrated that UIMA can be
used for the mining and correlation of presence data [9]. In
this paper, we aim at leveraging UIMA as a platform for the
development of our pre-processing subsystem using similar
approach as in [9].

The output of each chain of annotators is consumed by
a special component called the consumer. The consumer
extracts all the annotations that have been computed by
the corresponding chain of annotators. It represents these
annotations in an XML format before passing them together
with the related chunks to a hybrid relational-XML DBMS.

The consumer also transmits annotated chunks to a stream
analysis framework where further analysis of the data takes
places. This framework is also UIMA based. It allows de-
velopers to write analysis components able to perform arbi-
trarily complex operations. For example, the identification
of medically significant events could be encapsulated in a
chain of analysis components. These analysis components
may also access the hybrid relational-XML DBMS for his-
torical data. The design of this part of the system is beyond
the scope of this paper.

Figure 2: System architecture

4.2 Hybrid Relational-XML DBMS
We use a hybrid relational-XML DBMS, IBM’s DB2 V9

PureXML [19, 23, 22], in our system to store and query
annotated chunks.

In a hybrid relational-XML DBMS, XML is supported
as a basic data type. Users are allowed to create a table
with one or more XML type columns. A collection of XML
documents can therefore be defined as a column in a table.
For example, a user can create a table ECGMessage to store
ECG data encoded in the HL7 XML format as follows:

CREATE TABLE ECGMessage(id integer,
sender VARCHAR(27),
msg XML);

Inserting an XML document into a table involves several
operations. The document must first be parsed. XML pars-
ing is known to be CPU expensive [21] and might affect
the ability of the system to sustain high input rates. How-
ever, we will see in the Section 5 that parsing optimizations
made on this DBMS allow it to support large number of
input streams. After the XML parsing step, the document
is placed into the native XML storage of the DBMS before
being indexed.

INSERT INTO ECGMessage(1, ‘ECGLABX’,
XMLParse( Document ‘<?xml version=‘1.0’>

<AnnotatedECG>
<id root="728989ec-b8bc-49cd-9a5a-30be5ade1db5"/>
<effectiveTime>

<low value="20021126084800.000" inclusive="true"/>
<high value="20021126084810.000" inclusive="false"/>

</effectiveTime>
...

<AnnotatedECG>’));

The validation of the document against an XML schema
is an optional step that can be enabled for insert opera-
tions. Users can query relational columns and XML columns
together by issuing SQL/XML queries [17, 14, 15]. For
example, The following query returns the identifiers of all
ECG message whose effective time covers the time point
“20021101000000.000”:
SELECT id
FROM ECGMessage AS E
WHERE XMLExists(‘$t/AnnotatedECG/effectiveTime/[

low/@value < 20021101000000.000 and high/@value >
20021101000000.000 ]’
PASSING BY REF E.msg AS "t")

In this query, XMLExists is an SQL/XML boolean function
that evaluates an XPath [4] expression on an XML value.
If XPath returns a nonempty sequence of nodes, then XM-
LExists is true, otherwise, it is false.

In addition to the XMLExists function, another SQL/XML
function, XMLTable can be used to transform XML data
into a more relational format. The XMLTable function cre-
ates a virtual relational table using information from XML
data specified using XPath. For example, the previous query
can also be written using the XMLTable function as follows,
SELECT E.id, X.effTimeLow, X.effTimeHi
FROM ECGMessage AS E,

XMLTable(’$t/AnnotatedECG/effectiveTime/’
PASSING BY REF E.msg AS "t",
COLUMNS
effTimeLow DOUBLE PATH ‘low/@value’,
effTimeHi DOUBLE PATH ‘high/@value’) AS X

WHERE X.effTimeLow < 20021101000000.000
AND X.effTimeHi > 20021101000000.000;

In this case, the XMLTable function creates, for each row in
the ECGMessage, for each instance of /AnnotatedECG/effectiveTime/,
a row in the virtual table X(effTimeLow, effTimeHi) with
values extracted from the XML via the specified XPath.
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4.3 Storing Data Streams
The pre-processing subsystem transforms the streaming

data into chunks and associated annotations. These chunks
and annotations are then persisted in a hybrid relational-
XML DBMS. For extensibility, the annotations associated

Figure 3: Schema for storing the annotations in

XML.

with each chunk are stored as an XML document. A visual
representation of the XML schema for the annotations used
in our ECG example is shown in Figure 3. The XML doc-
ument for our example consists of a list of QRS and RInterval

elements under the root Annotations element. Schema type
inheritance and substitution groups are used for extensibil-
ity in the example, but the choice construct can be used as
well. Adding a new annotation type can be achieved simply
by creating a new complex type for the new annotation and
associating the new complex type with the annotation sub-
stitution group. The ability to easily add new annotation
types to the schema is especially important to the biomet-
ric streams domain, because it allows diagnostic techniques
from new medical research to be incorporated into the an-
notations.

After the annotations for each chunk has been computed,
the data chunk and its associated annotations are then per-
sisted in a table within the DBMS together with other im-
portant metadata such as timestamps, patient identifiers
etc. In our running example on ECG streams, each ECG
chunk and its associated annotations are stored in a table
as shown in Figure 4. Each row in the table persists data
associated with an ECG chunk. The ECGChunk column stores
the actual chunk of ECG signals either in binary format or in
the HL7 XML format for ECG signals. The Features column
stores the annotations in XML format.

4.4 Querying Data Streams
External applications can access streaming data by formu-

lating queries against the chunks stored in the DBMS. Either
XPath or the XQuery language can be used in addition to
SQL to make complex queries on the streams. These queries
can be formulated using both relational columns and XML
data elements. Using ECG data as an example, we illustrate
the power of this approach by presenting a set of interesting
queries that medical professionals can use to retrieve ECG
segments of interest.

PatientID ECGChunkChannelID StartTime EndTime Features

100137 1 20070304100100 20070304100110

<Annotations>
  <QRS>
    <start>0.15</start>
    <end>0.2</end>
    <duration>0.08</duration>
    <maxp>0.9</maxp>
    <maxv>1.54</maxv>
  </QRS>
  ....
</Annotations>

Figure 4: An example of how ECG segments

from the ECG streams are persisted in a hybrid

relational-XML database.

Example 1. Suppose we would like to find all patients
whose ECG has a certain characteristic, say, QRS duration
greater than 0.04, between March 1 2007 and March 2 2007.
We can write the query as follows.
SELECT distinct PatientID
FROM ECGTABLE
WHERE StartTime > 200703010000 AND EndTime < 200703020000

AND XMLExists(‘$t/Annotations/QRS[duration > 0.04]’
PASSING BY REF E.features as ‘‘t’’)

In Example 1, the time window is specified on the rela-
tional columns StartTime and EndTime. The constraint on the
annotations is specified using the SQL/XML function XM-
LExists. The semantics of the query is to check each row in
the ECGTABLE. If the chunk falls within the time window
and if the annotations contains at least one QRS element
whose duration is greater than 0.04, then the patientID of
that chunk is returned.

Example 2. Suppose we would like to find all patients
who have at least N occurrences of the ‘QRS duration >
0.04’ condition in at least one of their ECG signals between
March 1 2007 and March 2 2007. The query can be formu-
lated in SQL/XML as follows.

SELECT E.patientID, E.channelID, SUM( X.CNT )

FROM ECGTABLE E,
XMLTable( ‘$t/Annotations’ PASSING BY REF E.FEATURES
AS ‘‘t’’
COLUMNS
CNT INTEGER PATH ‘fn:count(QRS[duration>0.04])’ ) X

WHERE StartTime > 200703010000 AND EndTime < 200703020000

GROUP BY E.patientID, E.channelID

HAVING SUM( X.CNT ) > N

Example 2 is significantly more complex than Example 1.
The intuition for expressing this query is to count the num-
ber of occurrences of the ‘QRS duration > 0.04’ condition
for each chunk and then to sum the number of occurrences
for each patient for each ECG channel. A final filtering on
whether the sum exceeds N will yield the required results.
The approach we have taken is to first extract the number of
occurrences of the required condition using the XMLTable
function and construct a table with the patientID, chan-
nelID, and the occurrence count. Next, we group the rows
of this “table” by patientID and channelID, and sum all the
occurrence counts within each group. The final step is to
find the groups of which the sum of the occurrence counts
satisfy the required threshold using the HAVING clause.

Example 3. Suppose we would like to find all patients
whose average QRS duration exceed a certain threshold or
whose QRS duration variance exceeds a certain threshold.
The query can be expressed as follows.
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SELECT E.patientid, E.channelid, AVG( X.DUR ), VARIANCE( X.DUR )

FROM ECGTABLE E,
XMLTable(‘$t/Annotations/QRS’ PASSING BY REF
E.FEATURES AS ‘‘t"
COLUMNS
DUR DOUBLE PATH ‘duration’) X

WHERE StartTime > 200703010000 AND EndTime < 200703020000

GROUP BY E.patientid, E.channelid

HAVING AVG( X.DUR ) > 0.05 OR VARIANCE( X.DUR ) > 0.00007

Example 3 demonstrates how to perform queries involving
statistical operators on the annotations. The first step is to
extract via the XMLTable function the relevant annotation
data (in this case, the QRS duration) into a relational table.
The next step is to group the data into patientID and chan-
nelID, so that we can apply the statistical operators AVG and
VARIANCE on each group. The final step is to filter the groups
based on the statistical computations in the HAVING clause.

As our examples illustrates, very complex analytical queries
can be formulated on the data streams stored in the hybrid
relational-XML DBMS. Moreover, no addition query pro-
cessing code need to be developed for answering these com-
plex queries, because we leverage the DBMS query engine
to process these queries.

5. PERFORMANCE EVALUATION
The performance of the architecture described above is

largely dependent on the ability to cope with large stream
event rates at the hybrid relational-XML DBMS. While the
combination of the proposed pre-processing subsystem with
a hybrid relational-XML DBMS addresses our functional re-
quirements, it remains to be seen whether this approach also
meets our performance requirements. Because of the unbal-
anced read/write ratio at the hybrid relational-XML DBMS,
it is clear that the real system bottleneck is the insert rate
at which streams can be stored in the database. In this sec-
tion, we address this question with both a theoretical and
an experimental evaluation of this rate.

Figure 5: Manual annotation of a real ECG signal

5.1 Experimental Set-up
To illustrate the capabilities of the system, we focused

on the persistence of ECG data streams. Figure 5 shows
the common annotations that are extracted by most ECG
analysis systems. These features define a language that is

typically used by medical professionals to characterize ECG
signals and make medical assessments.

For our tests, we focused on the detection of the QRS
interval and the detection of the precise location for the
peak in the R wave. The time coordinates of these peaks
are often used to measure accurately patients heart rates.

The detection of the QRS interval is done by applying the
well known Pan-Tompkins algorithm [24, 1] to ECG signals.
This algorithm is a low complexity technique applying sim-
ple digital filters to the data. The following equations sum-
marizes its operations: Let x[n] represent a discrete time
signal representing a regularly sampled ECG signal. The
first step of the algorithm differentiates x[n] with simple Fi-
nite Impulse Response (FIR) filters:

x(1)[n] = x[n] − x[n − 2] (1)

x(2)[n] = x[n] − 2x[n − 2] + x[n − 4] (2)

The next steps magnifies and combines the first and second
order derivatives of x[n] according to the following equa-
tions:

ysm
0 =

1

4
[‖x(1)[n]‖ + 2‖x(1)[n − 1]‖ + ‖x(1)[n − 2]‖] (3)

ysm
1 =

1

4
[‖x(2)[n]‖ + 2‖x(2)[n − 1]‖ + ‖x(2)[n − 2]‖] (4)

y2[n] = 1.3ysm
0 [n] + 1.1ysm

1 [n] (5)

The algorithm ends with a non-linear step where the output
of the previous step is integrated before being compared with
a threshold according to the following equation:

yq[n] = 1[(y2[n] > γ) ∧ (
8

X

i=1

1[y2[n + i] > γ] > 6)] (6)

where 1(.) is the indicator function, and ∧ is the logical
AND operator. The output yq[n] of the filter represented by
Equation 6 is a mask representing the position of the QRS
intervals in the input signal x. Figure 6 shows the output
of this algorithm after the processing of a real ECG sample,
obtained from the Physionet database [3].
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Figure 6: Annotated ECG Signal
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5.2 Theoretical Predictions
In order to make predictions on the insert rate of the stor-

age component of the system, we model it with simple queu-
ing models. To build these models, we treat this component
as a black box because we have very limited access to its
internals. Consequently, our theoretical model is built from
end to end characteristics of the system.

We start by modeling the arrival process at the system
with a Poisson process. While this decision allows us to
leverage well understood mathematical constructs, it is also
supported in parts by several key observations on the way
streams are generated and sent to the system. As explained
in Section 1, remote health monitoring systems are often
characterized by a very large number of data hubs at the
second tier. These hubs are directing streams of biomet-
ric readings towards the storage system, at the server tier.
Since there is no coordination among the hubs during the
transmission, it is quite reasonable to assume that each hub
is operating independently. It is reasonable to assume that
patients are not coordinating among themselves the trans-
mission of data to the server tier. Hence, the traffic aggre-
gated across hubs that is received at the server tier is likely to
exhibit characteristics of a Poisson distribution [13]. How-
ever, this model has its limits. Indeed, Poisson processes
are stationary but the traffic directed towards our system
may only be piecewise stationary. Typical users might be
more likely to send biometric readings during certain peri-
ods of the day. For example, users might be more likely
to issue weight and blood pressure readings in the morning
and before bed time and less likely to do so in the middle
of the afternoon. Nevertheless, we stick with the Poisson
assumption and attempt to build a simple model that can
reasonably approximate the arrival traffic.

To formalize this model, let N be the total number of hubs
in the system and λi, ci be respectively the arrival rate from
the ith hub in chunks per second and the average chunk size
from the ith hub, 1 ≤ i ≤ N . Let ri be the average data
rate at which hub i is producing data in samples per second.
Finally, Let λtotal be the rate of the aggregate process in
chunks per second, as seen at the server. We have:

λtotal =
N

X

i=1

λi =
N

X

i=1

ri/ci (7)

Clearly, if all hubs are transmitting similar chunks with the
same average size c, at the same average rate r, λtotal = r

c
.

Let µ denote the average number of chunks processed by
the system in a second. µ is also called the average service
rate. In the most general case, µ is related to the number
of chunks queued in the system. To simplify our model, we
assume for the rest of this work that µ is not state depen-
dent. Let ρ = λtotal

µ
denote the utilization of the system.

When ρ ≥ 1, the system is unstable because the arrival rate
exceeds the service rate and the DBMS cannot cope with all
the requests.

We measure the performance of the system with the av-
erage delay encountered by any chunk while being served in
the system. This delay contains both a waiting time corre-
sponding to the average queuing delay a chunk waits to be
served, and the processing time, equal to the average time it
takes to process a chunk. In this setting, the average delay
encountered by any chunk entering the system is given by
the Pollaczek-Khinchin (P-K) formula [10]. Let T̄ represent

the average delay experienced by chunks in the system, then
the P-K formula states that:

T̄ =

1
µ

(1 − ρ)
[1 −

ρ

2
(1 − µ2σ2

µ)] (8)

where σ2
µ is the variance of the service time.

Equation 8 models the average delay from measurements
of the arrival rate, and the first and second moments of the
service rate.

While the arrival rate can be estimated from the number
of patients and the rates of the data sources, the statistics of
the service rate depend completely on the hybrid relational-
XML DBMS. We estimate these statistics from end to end
delays experienced when a special test input traffic is used.
This input tries to reduce the queue waiting time by sending
periodic requests to the system at a rate much lower than
the actual service rate. In essence, this input attempts to
minimize the probability of having chunks in the waiting
queue. From the resulting average end to end delay T0 and
its variance σT0

, we approximate the variance of the service
rate σµ using the delta method2.

Figure 7 plots T̄ in milliseconds as a function of the arrival
rate λtotal for a fixed chunk size. It compares the theoreti-
cal prediction with the experimental measurements. It also
shows that despite its simplicity, this theoretical model ap-
proximates well the behavior of the DBMS. This theoretical
prediction for T̄ allows us to approximately provision our
system without having to run a full set of experiments. In-
deed, given a value for the maximum tolerable delays, Equa-
tion 8 can be used to determine an upper bound for λtotal

from which an upper bound on the maximum number of pa-
tients that the system can handle can also be derived. The
region of the curve after the knee is to be avoided. It corre-
sponds to unstable operating points where ρ = λtotal

µ
≥ 1.

In practice, it is recommend to stay as far as possible away
from this knee.
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Figure 7: Validation of the theoretical model

2The delta method states that σ2
f(x) ≈ (f (1)(mx))2σ2

x, if f
is twice differentiable. mx is simply the mean of x. In our
case, since the end to end delay is exactly the inverse of the
service rate when there are no jobs waiting in the queue,
f(x) = 1

x
and σ2

µ ≈ (−1
T2

0

)2σ2
T0
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average delay of the DBMS

5.3 Experimental Evaluation
We have performed a series of experimental tests to eval-

uate the performance of the DBMS. An IBM IntelliStation
Z Pro 6223-64Y machine was used to host the hybrid XML-
relational DBMS. This machine is a dual processor box, each
running at 3.6 GHz CPU. It also has 4GB of RAM.

We wrote a simulator in Java, controlled by a set of Perl
scripts to simulate ECG streams. This simulator takes two
parameters as inputs: the chunk size and the number of
streams that it generates. Each stream is served by a sepa-
rate thread responsible for the insertion of ECG chunks at
rates equal to the real event rate of our ECG signals. These
threads essentially mimic different hubs pumping ECG data
into the system.

Figure 8 shows a summary of the performance that we
obtained on this testbed. The X axis shows the number of
streams that were directed to the storage subsystem. The Y
axis shows the average delay that was observed. There are
3 graphs on Figure 8, each one corresponding to a different
chunk size. We observe that the system stays in the stabil-
ity region in all the graphs, when the number of streams is
below 500. After this point, the average delay grows expo-
nentially, as predicted by the M/G/1 model. In addition, we
notice that the system is quite sensitive to the chunk size.
Moderate chunk size values yield better performance than
large chunk size values.

To measure the effect of the chunk size on the perfor-
mance of the system, we have performed another set of ex-
periments. Figure 9 shows a summary of these tests. To
obtain these plots, we have fixed the number of streams and
have varied the chunk size to see the effect on the average
end to end delay. We have also used Equation 8, to pre-
dict the average delay. There are two key observations that
can be made from these plots. First, as the chunk size in-
creases, the average delay increases linearly, as seen on both
the experimental and theoretical curves. However, for large
numbers of streams, as the chunk size increases, the sys-
tem reaches a point after which, the average delay grows
exponentially. Second, our theoretical model predicts the
behavior of the system reasonably well when the system is

stable. It predicts lower bounds on the end to end delays.
The differences between our theoretical predictions and the
experimental observations occur when the system becomes
unstable. To better model this behavior in the unstability
region, we believe that we need a more complex model for
the service rate that would take into account the state of the
system (i.e., the number of chunks waiting to be served).
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6. CONCLUSIONS
We have presented an architecture centered around a hy-

brid relational-XML DBMS to persist and query biometric
streams collected by health monitoring systems. The pro-
posed architecture is extensible. With native support for
XML, the system can be extended to support any type of
sensor event streams. An open pre-processing framework is
also designed to automate the annotation of streams as they
enter the system. External applications access stream data
by making semantically rich queries to the hybrid relational-
XML DBMS.

We have built theoretical models predicting the perfor-
mance of the storage system and have performed a series of
tests to measure the ability of the system to handle large
data insertion rates. From these tests, we conclude that
this system can sustain large number of continuous data
streams (approximately 500 multi-channel ECG streams on
our testbed).

In the future, we plan on incorporating more parameters
in our theoretical model to better predict the behavior of the
DBMS. For instance, parameters representing the structure
of XML documents (e.g., average tag to data ratio) could
help build better models for the average service rate of the
system.

In addition, we plan on incorporating this architecture
into the server tier of a complete remote health monitoring
system. We also plan on developing real remote health mon-
itoring applications on this platform and test the reaction
of the entire system under real workloads.
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