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Abstract 

Automatic identification of plant species from natural images is a challenging 

problem with many practical applications in multiple disciplines. An accurate and 

automated system for plant species identification has important implications in 

addressing botanical taxonomy gaps, identifying new species, controlling the balance 

of ecosystems, and estimating yield and resource requirements in agriculture. 

However, identifying plants from uncontrolled natural images is a challenging 

problem due to the complexity of natural images, a large number of plant species, 

inter-species similarity, and the large-scale variance in appearance. In this work, we 

present a system called WTPlant, specifically designed for identifying plants in 

natural images. By assembling a collection of Convolutional Neural Networks with 

stacked/residual blocks and a preprocessing stage for multiscale analysis, WTPlant 

presents itself as a highly discriminative deep learning approach for this image 

classification problem. 

1 Introduction 

Knowledge of plant species is essential to protect the biodiversity of any flora. 

Traditionally, botanists analyze different characteristics of plants as identification factors. 

But identifying the plant species accurately based only on visual characteristics requires 

considerable expertise [1], which is almost impossible for the general public and 

challenging even for specialists. Therefore, an automated system to identify plants has 

important implications for the society at large not only in the preservation of ecosystem 

biodiversity including public education, but also in agricultural activities such as automatic 

crop analysis, species variability analysis, analysis phylogenetic relationships, 

identification of pests and diseases, and identification of invasive species. The 

improvement in these agricultural efforts can, in turn, lead to better crop control and 

management, higher yielding food production, and possibly a reduction in pesticide use. 

Approaches using computer vision techniques for automated plant identification from 

controlled images have shown promising results [2, 3, 4, 5, 6]. Nevertheless, a realworld 

plant identification application needs to handle natural images, which is a big challenge for 
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automated computer vision systems. Analysis of unconstrained natural images can be 

extremely difficult due to factors related to complex background, illumination, occlusions, 

shadows, and a rich local covariance structure that is usually present in these images. 

While human visual sysem deals with those factors with ease, an equivalent computational 

model for plant identification from natural images is still an open problem.  

In the past decades, Machine Learning (ML) methods have shown promising results in 

various computer vision tasks including plant identification. Most of the previous efforts 

for identifying plants used hand-designed features of leaves and flowers [1, 2, 7, 8, 9] and 

are restricted to fairly controlled images with clean backgrounds. However, identifying 

plant species based on morphological characteristics extracted from well-controlled images 

is quite different from handling the noisy natural images that are found in real-world 

problems. More recently, Deep Learning (DL) approaches [3, 4, 5, 6, 10, 11, 12, 13] have 

been introduced to analyze plant images driven by the success of the Convolutional Neural 

Networks (CNNs). The use of deep convolutional approaches has been a growing trend in 

computer vision, demonstrating impressive results in various tasks using natural images.  

In this work, we present a DL-based plant identification system called WTPlant that 

uses a novel framework consisting of multiple preprocessing stages and multiple CNN 

pipelines. In contrast to existing plant identification methods that use handdesigned 

features, simple CNN architectures, and pre-trained models, WTPlant uses a collection of 

CNNs to classify leaves and flowers separately, and then combine their predictions to 

achieve more accurate identification results.  

In summary, WTPlant consists of multiple pipelines and stages of different CNN 

components designed to extract deep multi-scale discriminatory features. These pipelines 

segment the query image, preprocess the regions of interest into samples of different sizes 

and classify them using deep CNNs. The separation between the processing of leaves and 

flowers allows the networks to learn filters specifically for each task in order to analyze the 

different types of input better. The results from each pipeline are then combined to obtain 

more accurate predictions in a process reminiscent of ensemble techniques. This version of 

WTPlant is trained to classify 100 different plant species found on the campus of the 

University of Hawai’i (UH) at Manoa. Preliminary experiments show that the initial 

segmentation process helps guide the extraction of representative samples and, 

consequently, enables CNNs to better recognize plants at different scales in natural images.  

Section II of this paper presents the related work by describing two of the most famous 

methods for each of previously studied feature extracting approaches. In Section III, 

WTPlant system is described in greater detail by explaining each pipeline, its structure, the 

novel preprocessing stage for multi-scale analysis, and the implemented CNN 

architectures. Section IV presents the experimental results showing the prediction accuracy 

of our system and comparing it with other commonly used methods. In the end, Section V 

concludes the presentation of this system and describe future work. 

2 Related Work 

Wäldchen and Mäder [1] systemically analyzed previous studies on producing an 

automated plant identification system. They list 120 papers that used only hand-designed 

features, showing the relationship between each extracted feature and the identification 

factor analyzed in the plants. Most of the reported approaches rely on shape identification 

factors to correctly classify leaf images. This is mainly due to the fact that sample images 

were created by placing each leaf on a flat background and taking individual pictures. This 
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approach has been used for the last few decades and yielded good applications such as the 

LeafSnap [2]. Other reviewed papers focused on flower images classification, redirecting 

the feature extraction from morphological features to textural ones. Approaches that rely 

only on flower images to identify species are not very common due to the short flowering 

period of the plants. This is a strong indicator that a system combining individual leaf and 

flower analyses may result in a more robust method. Despite this observation, most of 120 

reviewed approaches require very specific leaf pictures to work properly, which makes 

them unsuitable for identifying plants in natural images.  

2.1 Hand-Designed Feature Approaches 

Two of the most famous plant identification applications that use hand-designed features 

are LeafSnap [2] and Folia [8], where the former uses images of leaves on a plain 

background while the latter works by segmenting leaves from natural images and then 

extracting hand-designed features.  

LeafSnap is probably the most well-known mobile app for leaf image classification. It 

all started in 2003 with computer science professors from Columbia University and the 

University of Maryland1. Yet, faced with the difficulty of analyzing natural images, they 

introduced the idea of taking pictures of a single leaf in a solid light-colored background to 

facilitate shape discrimination. Presented by Kumar et al. [2] in a more recent paper, 

LeafSnap is described as the first framework created to classify plants using automated 

computer vision methods. The description of this end-to-end application details the process 

of classifying leaf images among 185 tree species. This system relies mainly on hand-

designed features for this classification, but other computer vision techniques were also 

applied. An interesting characteristic of this application is that it saves GPS coordinates 

and timestamp of each photo taken, hoping to be able to map the biodiversity of a region 

over space and time. While LeafSnap can be used in the field, a limitation is that it requires 

a single leaf specimen to be photographed against a plain background such as a sheet of 

plain paper and hence LeafSnap is still not a general solution to identifying plant species 

from natural images.  

Folia is another plant identification application that uses hand-designed features to 

segment and classify leaves in natural images. Cerutti et al. [8] presented this application 

that collects the same leaf features that botanists use to classify tree species. They include 

leaf size, global shape, venation, basal and apical shapes, type of margins, number of lobes 

and others. Although natural images with natural backgrounds were used, authors selected 

only non-compound simple leaf images with several lobes, centered and vertically-

oriented. With 50 plant species studied, they reported good classification performance 

when compared with other non-DL methods. Even with these restrictions, Folia may be the 

application that best targets a leaf in natural images and some of its approaches have 

inspired the implementation of the WTPlant system. Nonetheless, segmenting plants from 

natural images is by itself a big challenge, and for this, state-of-the-art methods such as DL 

networks are yielding satisfactory results. 

2.2 Deep Learning Approaches 

In recent years, Convolutional Neural Network (CNN), a type of DL model, has been 

successfully used for image analysis and segmentation tasks. Several different CNN 

                                                           
1 ssec.si.edu/stemvisions-blog/leafsnap-turns-students-hands-botanists 
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architectures have been used to address the plant identification problem and two of them 

are discussed below. Most of them are adaptations of standard CNNs to work with plant 

images; few have presented new approaches designed to address specific aspects of the 

plant identification problem.  

Pl@ntNet2 is a world-scale participatory platform and information system dedicated to 

the monitoring of biodiversity through image-based plant identification approaches [14]. In 

2015, its classification method was migrated from handdesigned features classifiers to DL 

ones. This project started in 2010 and has evolved during the last few years with iterative 

developments based on multimedia information retrieval, data aggregation, and integration 

by a growing community of volunteers [15, 16]. Nevertheless, a huge improvement on the 

plant recognition performance was only observed when CNNs were introduced in their 

classification process [11]. Using an existing CNN architecture called GoogLeNet [17], 

Pl@ntNet fine-tunes its pre-trained network periodically. The main advantage of this 

application is that it collects thousands of images from different datasets of European, 

Indian Ocean, South America, and North Africa floras, and classify plants in natural 

images among 10K species. Pl@ntNet continues expanding to cover North American 

species. However, it uses only one predefined CNN as its classification engine and hence 

is somewhat limited in its capability. In contrast, our system employs a novel combination 

of multiple CNNs to increase classification accuracy and robustness.  

One of the few papers that addressed the classification of entire plants and trees in 

natural images is presented by Sun et al. [10]. Their work uses high-resolution images of 

100 plant species with individual bushes and trees collected from the Beijing Forestry 

University campus. The collection, called BJFU100 dataset, is available online3. In their 

images, it is more evident how challenging the classification of plants in natural images 

can be: The images come in a variety of backgrounds with different illumination, different 

focal points, different shadows – it is not always possible to clearly identify a leaf of the 

analyzed plant. In the light of these challenges, a modified version of the Residual 

Network (ResNet) [18] architecture was proposed to classify these images. ResNets were 

developed to extract even deeper discriminative features by adding the previous input layer 

along with the extracted features. Sun et al. used a DL architecture where a pre-trained 

ResNet is used as a bottleneck between an initial convolutional block and the last layers of 

the DL network. A key weakness of their approach is the somewhat simplistic 

preprocessing stage: the original images of 3120x4208 pixel resolution are drastically 

downscaled to fit their first convolutional block that expects a 224x224 input area. Such 

aggressive downscaling results in a significant loss of relevant information that negatively 

impacts the classification accuracy. Our approach avoids such drastic downscaling by 

segmenting and tiling the most relevant regions of the input image. 

3 WTPlant System 

WTPlant (What’s That Plant?) is based on deep learning approaches (more specifically, a 

collection of CNNs) carefully designed to address the problem of identifying plants in 

natural images. Imposed challenges consist of segmenting the plant to be analyzed from a 

complex background, dealing with the scale problem, and developing a suitable 

architecture deep enough to extract discriminative features among similar species. 

Respectively, this system addresses these issues by using stacked convolutional blocks for 

                                                           
2 identify.plantnet-project.org 
3 pan.baidu.com/s/1jILsypS 
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the segmentation process, a novel preprocessing stage for multi-scale analyses, and 

residual blocks to extract deeper and more discriminative features. By designing two 

classification pipelines, one for leaves and one for flowers, WTPlant is able to more 

accurately classify plants during their flowering season by exploiting both the visual 

characteristics of the flowers and of the foliage.  

This collection of CNNs brings state-of-the-art DL architectures working together with 

a common goal: correctly classify plants by analyzing their leaves and flowers. The 

accuracy of the method is measured by counting the correctly classified top-1 and top-5 

species versus the incorrect ones during the testing stages. The initial scope is limited to 

plants present in Hawai’i. Two main datasets were collected for this task, the UH Manoa 

Campus plant dataset provided by the Botany Department of the University of Hawai’i and 

a larger one scraped from the bing.com search engine website.  

Fig. 1 presents a diagram of the WTPlant system and details the workflow while testing 

a new image. The workflow begins by sending a copy of the test image to the pipeline for 

leaves and the pipeline for flowers. Both pipelines start by segmenting the image, but in 

the flower pipeline, two additional pre-segmentation algorithms are used to augment the 

main segmentation process. The largest segmented areas for leaves and flowers are then 

preprocessed to create multiscale representative samples. These samples are then classified 

by CNNs individually trained for each classification problem. In the final stage, the 

prediction confidence values from each pipeline are aggregated (somewhat similar to 

ensemble methods) to output the final plant species prediction. 

 

 
 

Figure 1: Block diagram of the WTPlant system [19]. 

3.1 Segmentation of Leaves and Flowers 

One of the key problems in computer vision is called scene parsing, or recognizing and 

segmenting objects in an image. Using a CNN architecture with stacked convolutional 

blocks, Zhou et al. [20] developed a cascade segmentation module for the scene parsing 

problem (henceforth referred to as MIT Scene Parsing). They trained a three-level stacked 

CNN using a dataset called ADE20K4 to segment common background objects (sky, road, 

building, etc.), foreground objects (car, people, plant, flower, etc.) and object parts (car 

wheels, people’s head and torso, etc.). The MIT Scene Parsing module is trained to 

segment 150 different objects from a scene, including plants. MIT Scene Parsing is 

                                                           
4 groups.csail.mit.edu/vision/datasets/ADE20K 
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distributed under the MIT License 5  with an open source initiative. Due to the highly 

accurate results reported on the segmentation of plants and the usage of stacked 

convolutional blocks in their process, this method was selected as the segmentation 

method of choice for the WTPlant system.  

To better segment flowers in the images, WTPlant also uses two additional algorithms, 

the Watershed Transform [21] and the GrabCut [22], as a pre-segmentation step to the MIT 

Scene Parsing. The pre-segmentation is needed due to the fact that some plant images have 

very small flower areas that are not captured by the MIT Scene Parsing initially. Therefore, 

by roughly separating background from the foreground using the two algorithms, small 

flowers become more evident for the scene parsing [19]. Preliminary experiments support 

this approach and showed that these algorithms improve the flower segmentation process 

significantly. 

3.2 Preprocessing 

After the segmentation process is performed by the MIT Scene Parsing, Regions of Interest 

(RoI) delimitating the leaf and flower areas are collected from the input image. If more 

than one RoI is detected, only the RoI with the largest area is chosen to representing the 

plant in the image. Identifying multiple plants in an image is part of our future work. If any 

RoI is collected, meaning that a leaf, a flower, or both a leaf and a flower are detected in 

the image, the RoI is assumed to contain the most representative information of the plant 

and is used by the classifiers (individually trained to identify leaves and flowers) to 

determine the correct plant species. If no RoI is identified during the segmentation, the test 

image is considered as “No Plant Image”. After the RoI (variable size) has been identified, 

a preprocessing step is implemented to extract fixed size sample images from this RoI to 

be input into the CNN architectures (which usually only receive images with a fixed size). 

Our preprocessing step searches for the most representative square areas within the RoI 

and extracts multiposition and multi-scale representative fixed size samples.  

Some of the reviewed approaches [10, 12, 23] suggest that simply downscaling the 

entire image is a good practice. However, CNN architectures generally take small images 

as input and a drastic rescale of a natural image to lower resolutions will inevitably result 

in loss of valuable information. Therefore, a preprocessing approach is needed to properly 

handle the segmented RoI. Our proposed method is aligned with the reviewed approaches 

[3, 4, 5] that divided their analyzed regions into smaller samples. The size of these samples 

is generally the same size as the CNNs input images. This version of the WTPlant uses a 

224x224 area for the sample extraction, which is the best configuration reported for the 

ResNet [18]. Since residual blocks are responsible to extract the discriminative features 

and a correct classification is the main objective, this system follows the specific 

configurations that this CNN architecture requires.  

Extracting samples with multi-scale properties and using them to train the CNNs gives 

the WTPlant system a better scale generalization capability when compared with 

commonly used preprocessing methods such as resizing and random cropping [19]. To 

provide this scale analysis capability, different sized samples are systematically collected 

from various locations of a RoI. The collected samples represent different areas of the 

plant at multiple scales. In this way, from one natural image of a plant, numerous 

representative images are produced. This preprocessing step is responsible for collecting 

                                                           
5 opensource.org/licenses/MIT 
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square-sized images for the training of CNNs and testing samples during the classification 

process.  

As an example, Fig. 2 shows an image of the Adansonia digitata (Bombacaceae) and 

six of the samples to be extracted after the segmentation process. The green boundaries 

delimit the plants detected in the image. However, as previously described, only the largest 

area is considered for the extraction of representative samples. In this paper, WTPlant is set 

to extract ten different square samples from the largest RoI, one centered on the segmented 

area (1 in red), four samples dislocated one-third to the right, left, top and bottom 

(respectively 2, 3, 4, and 5 in orange), and five multi-scale samples covering an extended 

area (6 in yellow) to the borders of the image. Samples 1 through 5 are extracted with size 

224x224 pixels and other larger areas are extracted and reduced to match this size, creating 

representative samples at various scales. The same approach is implemented if one or more 

flower areas are detected during the segmentation stage, resulting in ten different flower 

samples as well. This preprocessing technique is important to improve the robustness of 

the method addressing the problem of large-scale variance. 

 

 
 

Figure 2: Example of the preprocessing stage for the extraction of multi-location and 

multi-scale representative samples. 

3.3 Classification Architectures and Predictions Analysis 

The classification engines in this version of the WTPlant are two ResNets [18], one for 

leaves and another for flowers. Training two independent CNNs allows these networks to 

learn specific filters for each task, producing a good individual analysis of leaves and 

flowers [19]. After experimenting with various depths of the networks, the most accurate 

CNN architectures were integrated into the proposed system. In addition, by training both 

networks with multi-scale samples extracted from the RoI from the segmentation process, 

these CNNs were able to learn discriminative features of leaves and flowers at various 
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scales. After the CNN classification engines output the prediction confidence values for 

each one of the preprocessed samples, the prediction confidence values of the leaf samples 

are combined with values for the flower samples by summing their confidence results to 

make the final prediction of the plant species. This strategy also enables our system to 

work with flowering and non-flowering plant species, such as ferns, mosses, and 

liverworts as well.  

A demonstration of this novel system was recently presented by Krause et al. [19], in 

which the first version of the WTPlant was developed using AlexNet [24] CNN 

architectures as classification engines. In this paper, the presented system was upgraded 

with deeper and more complex networks. Experiments with different CNN models 

(AlexNet and ResNet) with a various number of hidden layers were performed to select the 

best CNN architecture for each (leaf and flower) analysis. As a result, the classification 

accuracy increased considerably, as presented in the next section.  

4 Results and Discussion 

Previous experiments [19] showed that WTPlant was able to detect the presence of 99.3% 

of plants in ~17,000 natural images in the first stage. The high accuracy on the 

segmentation of plant images is due to the performance of the MIT Scene Parsing module 

[20] using stacked convolutional blocks and a cascade segmentation approach (which is 

not the focus of our work). Flower detection accuracy had an average of 72.7%, which 

improved to 77.5% after augmenting with the two pre-segmentation methods [21, 22]. 

Using a combination of datasets described in Section III, 100 plant species were selected 

and 45 images per species were included in the training set. 

While AlexNets [24] were used in the previous experiments [19], the new version of 

WTPlant employs ResNet architectures [18] which yielded more accurate predictions in 

both Top-1 and Top-5 results. In particular, the improvement is significant for Top-1 

results reducing the error rate by 19%. Table I (Top-1 results) and Table II (Top-5 results) 

present a comparison with other approaches commonly used to train CNNs, such as image 

resizing and random cropping. WTPlant and random cropping used ten times (x10) more 

training samples than the resizing approach. But only WTPlant creates multi-location and 

multi-scale samples for leaves and flowers simultaneously, which gives a great advantage 

over other training approaches. Presented results were obtained by measuring the 

classification accuracy of 278 unseen images (testing set) from the 100 species. 

All the CNNs were trained using the same learning rate over 100 epochs. The final 

column of these tables describes the accuracy of the WTPlant as a whole, combining the 

leaf and flower pipelines by summing their prediction confidence. In bold are the best 

results for leaf and flower, where CNN architectures with 18 layers (ResNet18) for leaf 

and 34 layers (ResNet34) for flower pipeline outperformed other architectures. Even 

having deeper layers, ResNet50 did not show better results when compared with smaller 

residual architectures. These bigger networks generally require more training epochs and 

data to perform well. However, all presented experiments support the idea proposed by the 

WTPlant system on training CNNs with guided multi-scale samples. In all cases, this 

guided training process outperformed the commonly used ones and resulted in more 

generalized networks. 

Due to the modular capability of the WTPlant system, different CNN architectures (in 

this case the ResNet18 for leaves and the ResNet34 for flowers) can be used together to 

predict the final plant species. Consequently, the WTPlant performance was further 
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improved correctly identifying 69.09% for the top-1 and 86.69% for the top-5 plant 

species when using ResNet18 to analyze leaves and ResNet34 to analyze flowers. This 

result suggests that (1) modularizing the DL model and training each module separately is 

a viable approach, and (2) preprocessing to extract multi-scale representative samples 

guided by a segmentation process can help in the training of CNNs. 

 

CNN Resize Crop Leaf Flower WTPlant 

ResNet18 39.21% 43.89% 62.59% 51.16% 68.35% 
ResNet34 40.29% 44.60% 58.27% 58.14% 64.75% 
ResNet50 28.42% 43.53% 56.47% 44.54% 60.07% 

Table 1: Top-1 results. 

 

CNN Resize Crop Leaf Flower WTPlant 

ResNet18 69.42% 70.14% 85.25% 82.17% 85.97% 
ResNet34 68.35% 71.94% 80.94% 83.72% 83.81% 

ResNet50 58.99% 69.71% 81.29% 81.51% 

81.51% 

% 

82.01% 

Table 2: Top-5 results. 

5 Conclusion 

WTPlant is a new deep learning system specifically designed to identify plants in natural 

images. In this paper, we present an upgraded version of this system and describe how to 

deal with the main issues posed by this challenging classification problem. Using state-of-

the-art Deep Learning models such as Convolutional Neural Networks, a systematic 

workflow is presented to analyze leaves and flowers samples collected through the 

segmentation and preprocessing stages. As shown in Fig. 1, WTPlant has two main 

pipelines carefully designed for plant identification based on leaves and flowers 

respectively. For the problem of large-scale variance present in natural image analysis, a 

preprocessing stage is implemented to generate representative samples of different scales. 

These samples are used to train the classification engines and to test new images, allowing 

CNNs to analyze plants at different distances. Focusing on the correct identification of 

leaves, 18-layer residual CNN (ResNet18) presented the most accurate results, while 34-

layer residual CNN (ResNet34) outperformed the other tested architectures. ResNet50 may 

yield better results if trained with more data and for longer periods. The modularity of the 

WTPlant creates a broader analysis of the plant as a whole, where independent CNN 

architectures work in different regions of the image and combine their predictions to 

produce more accurate results. Our experiments support the idea that a collection of CNNs 

specifically designed to work together may overcome the limitations of commonly used 

methods and monolithic, non-modular DL architectures.  

For future research, new DL models and architectures will be trained and incorporated 

into the system to improve the accuracy and robustness of predictions. New pipelines to 

analyze different plant organs (e.g. fruit, bark, and seedlings) can also be incorporated 

easily thanks to the modularity of the system. Data augmentation techniques such as 

variation of hue, brightness, contrast, and saturation will be implemented for the final 

version of the WTPlant system. The incorporation of new DL networks, as well as the 

addition of new plant species and training images, allow this system to be constantly 
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upgraded and improved. Ultimately, our vision is for WTPlant to be the most accurate 

automated plant identification system that is used to benefit society in the areas of 

conservation, botany, education, and agriculture. 
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