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ABSTRACT
Discovering links between different data items in a single data source
or across different data sources is a challenging problem faced by
many information systems today. In particular, the recent Linking
Open Data (LOD) community project has highlighted the paramount
importance of establishing semantic links among web data sources.
Currently, LOD sources provide billions of RDF triples, but only
millions of links between data sources. Many of these data sources
are published using tools that operate over relational data stored
in a standard RDBMS. In this paper, we present a framework for
discovery of semantic links from relational data. Our framework
is based on declarative specification of linkage requirements by a
user. We illustrate the use of our framework using several link dis-
covery algorithms on a real world scenario. Our framework allows
data publishers to easily find and publish high-quality links to other
data sources, and therefore could significantly enhance the value of
the data in the next generation of web.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

Keywords
Semantic link discovery, record matching, linked data, data man-
agement

1. INTRODUCTION
From small research groups to large organizations, there has been

tremendous effort in the last few years in publishing data online so
that it is accessible to users. These efforts have been widely suc-
cessful across a number of domains and have resulted in a prolif-
eration of online sources. In the field of biology, there were1078
major molecular databases at the beginning of 2008,110 more than
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a year earlier. In the field of medicine almost every major hospital
now has its own database of patient visits and clinical trials. In the
Linking Open Data (LOD) community project at W3C, the number
of published RDF triples has grown from 500 million in May 2007
to over 4.7 billion triples in May 2009 [6].

While publishing data is now easier than ever, attempts to estab-
lish semantic relationships between different published data sources
has been less successful. So, from a user’s perspective, online
sources resembleislands of data(or data silos), where each is-
land may contain only part of the data necessary to satisfy his or
her information needs. Penetrating these silos to both understand
their contents and understand potential semantic connections is a
daunting task. Consider a biologist interested in a specific gene. It
is not enough for the biologist to search for the gene, even using a
robust search that accommodates for aliases and errors in the repre-
sentation of data which are very common in web repositories. Both
errors and aliases are domain specific so the biologist may have to
try severalapproximate searchmethods to find one best for her do-
main. Furthermore, she may also want to find information about
proteins or genetic disorders that are known to be related to this
gene. Again, the search for this semantically related information
must be tolerant of aliasing and errors, and yet must be tailored to
the specific semantic relationships the user wishes to find.

What users need is automated support for creating referential
links between data that reside in different sources and that are se-
mantically related. Such links would provide a biologist with the
ability to start from a gene and directly navigate to its protein and
related genetic diseases, even through sources with no direct con-
nection and which may use different naming conventions and dif-
ferent representations for information. Of course, discovering such
links requires the use of both approximate matching (to overcome
syntactic representational differences and errors) and semantic match-
ing (to find specific semantic relationships). These two types of
matching must be used in concert to accommodate for the tremen-
dous heterogeneity found in web repositories.

In spite of their importance, research in discovering such seman-
tic links has mainly focused on a more restricted version of the
problem, namely, onentity resolution, i.e., the identification of en-
tities in disparate sources that represent the samereal-world entity.
Yet, the general problem investigated here considers links between
entities that are not necessarily identical, although they are seman-
tically related (e.g., genes related with their corresponding proteins,
medical treatments related with their corresponding clinical trials,
etc.) The importance of discovering such links is also highlighted
by the recent efforts of the LOD project, where a number of tools
and frameworks have been developed that allow the generation and
publication of linked data from relational databases. Examples of



such frameworks include D2RQ [7], Triplify [2] and OpenLink’s
Virtuoso1. Although these frameworks simplify the process of pub-
lishing linked data, the number of links between existing LOD data
sources is two orders of magnitude less than the number of base
data triples. The majority of the links are either a result of exist-
ing links in the relational data (e.g., links between two data items
that are both derived from a Wikipedia page, both having the same
URL), the result of (manual or automated) semantic annotation [9],
or a laborious implementation of a semi-automatic and domain-
specific linkage algorithm.

For typical users, this means they must experiment with a myr-
iad of different link discovery methods to find one that suits their
needs. In this paper, we seek to develop a generic and extensible
framework for integrating link discovery methods. Our goal is to
facilitate experimentation and help users find and combine the link
discovery methods that will work best for their application domain.
To ease experimentation, we use a declarative framework that per-
mits the interleaving of standard data manipulation operators with
link discovery.

Our framework permits the discovery of links within and be-
tween relational sources. We introduceLinQL, an extension of
SQL that integrates querying with link discovery methods. Our im-
plementation includes a variety of native link discovery methods
and is extensible to additional methods, written in SQL or as user-
defined functions (UDF). This permits users to interleave declar-
ative queries with interesting combinations of link discovery re-
quests. The link discovery methods may be syntactic (approximate
match or similarity functions), semantic (using ontologies or dic-
tionaries to find specific semantic relationships), or a combination
of both.

Our first contribution is to show that by integratingad hocquery-
ing and a rich collection of link discovery methods, our framework
supports rapid prototyping, testing and comparison of link discov-
ery methods. A common way to use our framework would be to
declaratively specify a portion of the data of interest (over which
accuracy can be assessed) and to invoke one or more link discovery
methods. The results can be evaluated by a user or automated tech-
nique, and the specification of the link method interactively refined
to produce better results.

Often, link discovery algorithms are implemented using program-
ming languages like Java or C by third-party developers, and are au-
tomatically invoked with arguments defined through the declarative
specification. For data publishers these programs act asblack-boxes
that sit outside the data publishing framework and whose modifica-
tion requires the help of these developers. Our second contribution
addresses these shortcomings by leveraging nativeSQL implemen-
tations for a number of link discovery algorithms [12, 13]. Our
approach has several advantages including the ability to (a) eas-
ily implement this framework on existing relational data sources
with minimum effort and without any need for externally written
program code; (b) take advantage of the underlying DBMS opti-
mizations in the query engine while evaluating theSQL implemen-
tations of the link finding algorithms; and (c) use specific efficiency
and functionality enhancements to improve the efficiency of these
algorithms.

Our third contribution is to show how our declarative invocation
of link methods permits users to tune link methods and their per-
formance. The native support for methods permits customization
where domain knowledge is available. We give examples where
domain knowledge can be specified in the database and used to
greatly enhance the performance of the discovery process.

1http://www.openlinksw.com/virtuoso/

Our final contribution is the implementation of our framework
along with several link discovery algorithms on a commercial database
engine. We describe a case study of how our framework can be used
to discover links over real clinical trial data draw from a number of
disparate web sources.

The rest of the paper is organized as follows. Section 2 intro-
duces our running example, while Section 3 describes how links be-
tween data sources can be specified declaratively. Section 4 presents
the algorithms for translating the link specifications intoSQL queries.
Our experimental study is described in Section 5. Section 6 high-
lights related work and we conclude in Section 7.

2. MOTIVATING EXAMPLE
Through out the paper (and in our case study in Section 5), we

use an example from the health care domain drawn from a set of
real-world data sources. One of our sources is a clinical trials
database which includes the sample relation in Figure 1(a). For
each trial, theCT relation stores its identifiertrial , the condition
considered, the suggestedintervention, as well as thelocation,city,
and relatedpublication. Another source stores patient electronic
medical records (EMR) and includes a patient visit relationPV
(Figure 1(b)), which stores for each patient visit its identifiervisitid,
the diagnosis, recommendedprescription, and thelocation of the
visit. Finally, we consider a web source extracted from DBpedia
(or Wikipedia) which stores information about drugs and diseases
and includes theDBPD andDBPG relations (Figure 1(c) and (d))
that store thenameof diseases and drugs in DBpedia, respectively.

We now describe briefly some types of links data publishers may
like to discover between these sources. For theCT andPV rela-
tions, we note that thecondition column in theCT relation is se-
mantically related and can be linked to thediagnosis column in the
PV relation. Such links may be useful to clinicians since they as-
sociate a patient’s condition with related clinical trials, and might
be used to suggest alternative drugs or interventions. In Figure 1,
patient visit “VID770” with diagnosis “Thalassaemia” in thePV
relation should be linked to the trial “NCT00579111” with condi-
tion “Hematologic Diseases” since “Thalassaemia” is a different
representation of “Thalassemia” and according to the NCI medi-
cal thesaurus “Thalassemia”is a type of“Hematologic Diseases”.
As this example illustrates, a clinician may be interested in not only
same-asrelationships, but also hyponym relationships such astype-
of. Similarly, note that theintervention column in theCT relation
can be linked to theprescription column in thePV relation. Such
links can provide evidence for the relevance and effectiveness of a
drug for a particular condition. For example, both patient visits in
Figure 1(b) should link to trial “NCT00336362” (Figure 1(a)) based
on the fact that “hydroxycarbamide”, “Hydroxyura” and “Hydrox-
yurea” all refer to the same drug.

Additional links are possible if one considers the existence of
links between the locations of patients and the presence of clinical
trials in these locations. As an example, “Westchester Med. Ctr”
from visit “VID777” could link to “Columbia University” based
on the geographical information that both locations are in the New
York state. Another interesting link discovery scenario arises when
a user who is interested in a particular trial, wants to find other
related trials based on certain criteria, e.g., the similarity of the title
and authors of the trials’ corresponding publications. Obviously, to
be effective, links should be tolerant of errors and differences in the
data, such as typos or abbreviation differences.

Data publishers often build online web-accessible views of their
data. In such settings, they often want to provide links between
their data and those in other online web sources. As an example,
a web source of clinical trials requires links to other web sources



trial cond inter loc city pub
NCT00336362 Beta-Thalassemia Hydroxyurea Columbia University New York 14988152
NCT00579111 Hematologic Diseases Campath Texas Children’s Hospital Austin 3058228

(a) Clinical trials (CT)

visitid diag prescr location
VID770 Thalassaemia Hydroxyura Texas Hospital
VID777 PCV Hydroxycarbamide Westchester Med. Ctr

(b) Patient visit (PV)

name
Thalassemia
Blood_Disorders

(c) DBpedia Disease (DBPD)

name
Alemtuzumab
Hydroxyurea

(d) DBpedia Drug (DBPG)

Figure 1: Sample relations

linkspec_stmt:= CREATE LINKSPEC linkspec_name
AS link_method opt_args opt_limit;

link_method:= native_link | link_clause_expr | UDF;

native_link:= synonym| hyponym | stringMatch;

link_clause_expr:= link_clause AND link_clause_expr
| link_clause OR link_clause_expr
| link_clause;

link_clause:= LINK source WITH target
USING link_terminal opt_limit;

link_terminal:= native_link | UDF | linkspec_name

opt_limit:= LINKLIMIT number;

Figure 2: The LinQL grammar

related to the trials like, say, the DBpedia or YAGO sources. In our
sample relations, the above example translates into finding links be-
tween thecondand inter columns ofCT and thenamecolumn of
theDBPDandDBPGrelations, respectively. The online trials data
source can link the condition “Hematologic Diseases” to DBpedia
resource (or Wikipedia page) on “Blood_Disorders”, and link the
intervention “Campath” to DBpedia resource “Alemtuzumab” us-
ing the semantic knowledge that “Campath” is the brand name for
the chemical name “Alemtuzumab”.

3. THE LINQL LANGUAGE
In this section, we introduce theLinQL declarative link specifi-

cation language. We discuss the characteristics of the link finding
primitives required by a flexible framework that is capable of ef-
fective link discovery in many real world scenarios, and show how
LinQL supports such primitives. Although the linkage specification
elements we discuss below are expressible in a number of different
languages and notations (e.g., RDF/XML, N3, NTriples), in our
framework (and implementation) we chose anSQL-like syntax.

A link specification, or linkspecfor short, defines the conditions
that two given values must satisfy before a link can be established
between them. In more detail, a linkspec is defined using the gram-
mar of Figure 2 (the full grammar is omitted due to space con-
straints). As shown in the figure, aCREATE LINKSPEC statement de-
fines a new linkspec and accepts as parameters the name of the
linkspec and the names of the relation columns whose values need
to be linked. To create the links, our framework provides several
native (or built-in) methods including synonym, hyponym, and a
variety of string similarity functions (see more details on the native
methods in the following sections). Such native methods can be
used as such or they can be customized by setting their parameters.

3.1 Examples

EXAMPLE 1. A common string similarity measure that has been

shown to have good accuracy and efficiency is the weighted-Jaccard
measure [13]. A user can create a link specification using this mea-
sure by setting the parameters used in the similarity computation.
For example, she may set the threshold parameter to0.5, the length
of the q-gram to2, and the maximum string length to50, creating
the following link specification

CREATE LINKSPEC myJaccard1
AS weightedJaccard (0.5, 2, 50).

Now this link specification can be used as a join predicate in
queries by any user. Notice that this specification does not indicate
processing constraints.

A link specification can also be defined in terms oflink clause
expressions. Link clause expressions are boolean combinations of
link clauses, where each link clause is semantically a boolean con-
dition on two columns and is specified using either (a) a native
method; (b) a user-defined function (UDF); or (c) a previously de-
fined linkspec.

EXAMPLE 2. Consider a setting in which a link between two
values is established if a semantic relationship (e.g., synonym or
hyponym) exists between these values in an ontology. This scenario
commonly occurs in a number of domains, including healthcare,
where sources are free to use their own local vocabularies (e.g.,
diagnosis and drug names) as long as these vocabularies can even-
tually be matched through a commonly accepted ontology (e.g., the
NCI thesaurus). Assume that the ontology is stored in tableont

with concept IDs in columncid and the terms in columnterm.
The following linkspec illustrates the power of link clauses by

creating a link between two values if their corresponding values
in an ontology are synonyms of each other. In the linkspec, the
weightedJaccard native linkspec is used to match individual values
to corresponding values in the ontology, while the synonym native
linkspec is used to test for the synonymy of the ontology terms.

CREATE LINKSPEC mixmatch
AS LINK src WITH tgt

USING synonym(ont,cid,term) LINKLIMIT 10
AND
LINK src WITH ont.term
USING myJaccard1 LINKLIMIT 10
AND
LINK ont.term WITH tgt
USING myJaccard2 LINKLIMIT 10;

Clearly, the links between values are not necessarily one-to-one
and, in general, a value from one relation can be linked to more
than one values from a second relation. For example, it is common
for drugs to have more than one name. Therefore, while a drug
appears as“aspirin” in one relation it might appear as“acetylsal-
icylic acid” or “ASA” in another. When multiple such links are
possible, users often want to limit the number of such links and
only considerk results, or thetop-k where ordering is possible.
TheLINKLIMIT essentially specifies the value of thisk parameter.



EXAMPLE 3. In the previous example, while defining the mix-
match linkspec,LINKLIMIT is set equal to 10, for all three link
clauses. Hence, only the top 10 links are considered in each method.

The previous examples consider thelocalversion of theLINKLIMIT
construct which is associated with a particular clause. TheLinQL
grammar also includes aglobal LINKLIMIT construct which is as-
sociated with the wholeCREATE LINKSPEC statement which can be
thought of as a post-processing filter of the links returned by the
linkspec methods used in the statement.

We conclude the presentation ofLinQL by introducing Boolean
valued user-defined functions (UDFs). The primary difference be-
tween using a UDF versus a native linkspec method is that the
UDF allows only simple substitution-based rewriting of the query,
whereas the native linkspec uses a non-trivial rewriting of the query
into SQL (see next section on the translation ofLinQL to SQL).
The ability to use UDFs in link specification is provided for ex-
tensibility to non-SQL-based linking functions. Of course, native
implementations have numerous advantages. Using native imple-
mentations, the query optimizer can optimize the processing of link
specifications yielding very efficient execution times. Furthermore,
declarative implementations of the methods within a relational en-
gine permit great extensibility as described in the following section.

EXAMPLE 4. Suppose a user writes a UDF that implements his
own similarity function. This UDF,myLinkUDF(thr, delC, insC,

subC) returns true only if the edit similarity the values on which
it is applied is above the threshold valuethr (wheredelC, insC
and subC are the costs of delete, insert and substitute operations,
respectively). Then, the following linkspec can use that UDF as
follows

CREATE LINKSPEC myLink
AS myLinkUDF(0.5, 1, 1, 1).

In the previous paragraphs, we looked at how linkspecs are de-
fined. We now show how linkspecs are used inside queries.

EXAMPLE 5. Suppose we want to find the tuples in the PV re-
lation for which there is a link with the condition in the CT relation,
using the native weightedJaccard linkspec with default parameter
values. Then, the following query can be used.

SELECT PV.*, CT.*
FROM visit PV, trial CT
WHERE PV.visitid = 1234 AND

CT.city=’New York’ AND
PV.diag = CT.cond
LINK PV.diag WITH CT.cond
USING weightedJaccard LINKLIMIT 10

Notice that the linkspec here is essentially defined inline. For
more complex linkspecs, or for situations where the same linkspec
is used multiple times by one or more users, the query can refer to
a previously defined linkspec in a similar fashion. This is a way
for a DBA to provide a set of specifications for methods using the
best parameter settings for different domains, making these meth-
ods more accessible to less expert users who may not know how to
set the parameters. For example, in the query above we can use the
mixmatch linkspec instead of the weightedJaccard, as follows:

SELECT PV.*, CT.*
FROM visit PV, trial CT
WHERE PV.visitid = 1234 AND

CT.city=’New York’ AND
PV.diag = CT.cond
LINK PV.diag WITH CT.cond
USING mixmatch LINKLIMIT 10

3.2 Native Link Methods
In what follows, we present the currently supported native meth-

ods, including our reasons for including them in the initial imple-
mentation.

3.2.1 Approximate String Matching Specification
String data is prone to several types of inconsistencies and errors

including typos, spelling mistakes, use of abbreviations or differ-
ent conventions. Therefore, finding similar strings, or approximate
string matching (or apprioxmate join), is an important feature of an
(online) link discovery framework. Approximate string matching is
performed based on a similarity functionsim() that quantifies the
amount ofcloseness(as opposed todistance) between two strings.
A similarity thresholdθ is set by the user to specify that there is
a link from the base record to the target record if their similarity
score, returned by functionsim(), is aboveθ. The right value
of the threshold depends on the characteristics of the dataset, the
similarity function, and the application. The user can find the opti-
mal value of the threshold for each application by trying different
thresholds and manually evaluating the results.

There exists a variety of similarity functions for string data in
the literature. The performance of a similarity function usually de-
pends on the characteristics of data, such as length of the strings,
and the type errors and inconsistencies present in the data. As
stated earlier, in our framework we are interested in algorithms
that are fully expressible inSQL (the benefits of which are well-
known [12]). There are additional benefits of this choice for our
application. Specifically, the use ofSQL as an implementation lan-
guage for our methods permits on-the-fly calculations of the simi-
larity scores that can be enhanced dynamically to increase the func-
tionality of the matching algorithm by relying on characteristics of
the domain of the source and target relations.

A popular class of string similarity functions is based on tok-
enization of the strings into q-grams, i.e., substrings of lengthq of
the strings. By using q-gram tokens, we can treat strings as sets of
tokens and use a set similarity measure as the measure of similarity
between the two strings. Furthermore, q-gram generation, storage
and set similarity computation can all be done inSQL. This makes
the following class of functions suitable for our framework.
•Size of theintersectionof the two sets of q-grams, i.e., the number
of common q-grams in the two strings.
• Jaccard similarityof the two sets of q-grams which is the size of
the intersection set over the size of the union, i.e., the percentage of
common q-gram tokens between the two strings.
• Weighted version of the above measures. The weight of each q-
gram is associated with itscommonalityin the base (or target or
both) data sources. The higher the weight of a q-gram, the more
important the q-gram is. For example, when matching diagnosis
across medical sources, q-grams for commonly occurring strings
like “Disorder” or “Cancer” should have low weights so that the
value of the similarity function for the strings “Coagulation Disor-
der” and “Phonation Disorder” is small, compared to that for the
strings “Coagulation Disorder” and “Coagulation Disease”.

There are several other string similarity measures including but
not limited to Edit-Similarity, Jaro, Jaro-Winkler, SoftTFIDF, Gen-
eralized Edit similarity, and methods derived from relevance score
functions for documents in information retrieval, namely Cosine
with tf-idf, Okapi-BM25, Language Modeling and Hidden Markov
Models. Some of these functions can be implemented inSQL and
some others can only be implemented using a UDF. However, we
focus only on the above q-gram based measures based on their bet-
ter accuracy and efficiency and also their flexibility for functional-
ity and efficiency enhancements, as discussed below.



Token Weight Assignment: To assign weights to q-gram to-
kens, we use an approach inspired by the Inverse Document Fre-
quency (IDF) metric in information retrieval. IDF weights reflect
the commonality of tokens in documents with tokens that occur
more frequently in the documents having less weight. So, by ana-
lyzing (offline) the q-gram token frequency, we assign less weight
to common tokens like “Disorder” or “Cancer” in a medical source.
As a functionality enhancement, we also let the user manually spec-
ify in a user-defined table the weights of some tokens. These weights
override the automatically assigned (IDF-based) weights for these
tokens. Manual weight-assignment is useful in applications where
the user has prior knowledge about the importance of some tokens.
For example, when matching diagnosis across sources, the user
knows that often the use of numbers plays a more important role
in the diagnosis than the name of the disease itself. So, by assign-
ing a very low (or negative) weight to numbers, wrong matches
between highly similar strings like “Type 1 Diabetes” and “Type
2 Diabetes” can be avoided. Similarly, when matching conditions
(e.g., “Diabetes”, “Cancer”) from an online source such as WebMD
to their corresponding entries in, say, Wikipedia, the conditions in
Wikipedia might include the term “(disease)” to disambiguate the
disease from other terms with the same name (e.g., “Cancer” has
close to seven entries in Wikipedia, in addition to the one for the
disease, including one for astrology and one for the constellation).
Knowing this, the user can adjust the weight of the otherwise com-
mon token “disease” to increase the likelihood of a correct link.

Scalability Although, we do not address explicitly the efficiency
of the string matching implementation, our similarity predicates
can be used along with several existing scalable indexing and hash-
ing techniques. Examples of such techniques include the indexing
algorithms of [3], theWeighted Enumeration(WTENUM) signature
generation algorithm [1] andLocality Sensitive Hashing[14].

3.2.2 Semantic Matching Specification
Link discovery between values often requires the use of domain

knowledge. In a number of domains, there are existing, commonly
accepted, semantic knowledge bases that can be used to this end.
In domains where such semantic knowledge is not available, users
often manually define and maintain their own knowledge bases.

A common type of such semantic knowledge is an ontology. In
the health care domain, well-known ontologies such as the NCI
thesaurus are widely used and encapsulate a number of diverse
relationship types between their recorded medical terms, includ-
ing, synonymy, hyponymy/hypernymy, etc. Such relationship types
can be conveniently represented in the relational model and (re-
cursive)SQL queries can be used to test whether two values are
associated with a relationship of a certain type [15]. Therefore,
semantic knowledge in the form of ontologies can be seamlessly
incorporated in our framework and used for the discovery of links.
So, while considering links between two sources, semantic knowl-
edge can be used to link a diagnosis on “Pineoblastoma” to one
on “PNET of the Pineal Gland”, since the two terms are synonyms
of each other. Similarly, a diagnosis on “Brain Neoplasm” can be
potentially linked with both of the previous diagnoses, since the
latter term is a hypernym of the former terms. No level of sophis-
tication in string matching can result in links such as the ones de-
scribed earlier and therefore semantic matching complements the
string matching techniques described in the previous section.

4. FROM LINQL TO SQL
In what follows, we describe the algorithm for translating aLinQL

query to anSQL query, and then describe the algorithm for imple-
menting each native link specification. Finally, we outline a number

input : LinQL queryL

output: SQL queryQ

lce ← extract link clause expr. fromL;1
Qbase ← L − lce;2
Q ← L INK CLAUSEEXPR2SQL(Qbase, lce );3
return Q;4

Figure 3: The LINQL2SQL Algorithm

input : An SQL base queryQbase, a link clause expressionlce
output: SQL queryQ

if lce 6= ∅ then1
l ← next link clause inlce;2
Q ← L INK CLAUSE2SQL(Qbase, l);3
if operator = ANDthen4

Q ← L INK CLAUSEEXPR2SQL(Q, lce − l );5
else if operator = ORthen6

Q ← Q + ‘UNION’ +7
L INK CLAUSEEXPR2SQL(Qbase, lce − l );

return Q;8

Figure 4: The LINKCLAUSEEXPR2SQL Algorithm

of efficient strategies to combine some of the specifications.
Algorithm LINQL2SQL translates aLinQL query to aSQL query

by first splitting the former query into the base query (which is in
SQL) and the link clause expression. The latter is translated into
SQL by LINK CLAUSEEXPR2SQL by iterating through the boolean
combination of link clauses and generating a separateSQL query
for each clause. Then, the boolean combination of link clauses is
translated into a set of intersections/unions between the generated
SQL queries.

L INK CLAUSE2SQL parses a link clause to determine what type
of link terminal is used. If the link terminal is a UDF, we sim-
ply add an invocation of the UDF in the where clause of theSQL
base query. If the link terminal is a native link, we rewrite theSQL
base query using the rewrite rules associated with that particular
native link. If the link terminal is a reference to a named linkspec,
we retrieve the associated linkspec statement and parse the asso-
ciated link method. The link method can be a UDF, native link
or link clause expression. UDFs and native links are translated as
described previously. Link clause expressions are translated by a
recursive call to the LINK CLAUSEEXPR2SQL sub-routine. The
recursion stops when either a UDF or a native link is encountered.

The main translation logic is in the rewriting rules associated
with the native links. A native link’s rewriting rules are specified
in two parts: view definitions and link conditions. For example,
the rewriting rules for theweightedJaccardnative link ontab1.col1
andtab2.col2consists of the view definitions fortab1col1weights,
tab1col1sumweights, tab1col1tokenweights, tab2col2tokens, scores,
scores2, and the link conditionsscores.tid1=col1 AND scores.tid2=col2
AND s.tid1=s2.tid1 AND scores2.mx=s.score.

The use of the view definition syntax is purely for readability. In
practice, theSQL queries associated with the view definitions are
inlined into the actual query itself (resulting in a possibly hard to
read query). The WITH statement supported by some DBMS (e.g.
IBM DB2) is another means for inlining some of the view defini-
tions. Depending on the application, one may choose to material-
ize all or part of these views usinglink indexstatements in order
to speed up the query time. We present theSQL queries based on
view definitions in this section and discuss briefly the cost of ma-
terializing these views in the experimental results. The rest of this
section describes the rewriting rules used to implement some of our
native link methods.



input : A SQL base queryQbase, a link clausel
output: SQL queryQ

Q ← Qbase ;1
if link_terminal(l) = UDF then2

add UDF invocation to where clause inQ;3
else if link_terminal(l) = native_linkthen4

rewriteQ using native_link’s rewriting rules;5
else if link_terminal(l) = link_spec_namethen6

get link_method from associated link_spec_stmt ;7
if link_method = UDFthen8

add UDF invocation to where clause inQ;9
else if link_method = native_linkthen10

rewriteQ using native_link’s rewriting rules;11
else if link_method = link_clause_exprthen12

lce ← get associated link_clause_expr;13
Q ← L INK CLAUSEEXPR2SQL(Qbase, lce);14

return Q;15

Figure 5: The LINKCLAUSE2SQL Algorithm

4.1 Approximate Matching Implementation
The rewriting of the approximate string matching native link

specification intoSQL consists of three steps, namely, (a) the cre-
ation of tables containing the tokenization of the strings into q-
grams or word tokens; (b) the gathering of statistics and calculation
of token weights from the token tables; and (c) the calculation of
link scores based on the weights. In more detail:
Step 1: This step can be done fully inSQL using standard string
functions present in almost every DBMS. Assume a tableintegers

exists that stores integers 1 toN (maximum allowable length of a
string). The main idea is to use basic string functionsSUBSTR and
LENGTH along with the sequence of integers in tableintegers to
create substrings of lengthq from the string columncol1 in table
table1. The followingSQL code shows this idea forq = 3:

SELECT tid, SUBSTR(col1,integers.i,3) as token
FROM integers INNER JOIN table1

ON integers.i <= LENGTH(col1) + 2

In practice, the stringcol1 is used along withUPPER() (orLOWER())
functions to make the search case insensitive. Also, the string is
padded withq − 1 occurrences of a special character not in any
word (e.g. ‘$’) at the beginning and end using theCONCAT() func-
tion. Similarly the spaces in the string are replaced byq − 1 spe-
cial characters. In case of tokenization using word tokens a similar
SQL-based approach can be used. At the end of this process, the
token generation queries are declared as views, or are materialized
in tables liketable1_col1_tokens andtable2_col2_tokens.
Steps 2 and 3: These steps are partly native-link specific and are
more easily presentable through an example. In what follows, we
use the weighted Jaccard specification as an example.

EXAMPLE 6 (WEIGHTEDJACCARD NATIVE LINKSPEC). Consider
the followingLinQL specification:

SELECT PV.visitid, CT.trial
FROM visit AS PV, trial AS CT
WHERE PV.visitid = 1234 AND CT.city=’NEW YORK’ AND

PV.diag = CT.cond
LINK PV.diag WITH CT.cond
USING weightedJaccard

This specification is translated into the following SQL queries.
Initially, two queries calculate the IDF weights for the tokens and
the auxiliary views/tables needed for the final score calculation:

CREATE VIEW visit_diagnosis_weights AS
SELECT token, LOG(size - df + 0.5) - LOG(df+0.5) as weight
FROM ( SELECT token, count(*) as df

FROM (SELECT * FROM visit_diagnosis_tokens
GROUP BY tid, token) f

GROUP BY token ) D,
( SELECT count(*) as size
FROM visit_diagnosis_tokens ) S

CREATE VIEW visit_diagnosis_sumweights AS
SELECT tid, B.token, weight
FROM visit_diagnosis_tokenweights idf,

(SELECT DISTINCT tid, token
FROM visit_diagnosis_tokens B) B

WHERE B.token = idf.token

CREATE VIEW visit_diagnosis_tokenweights AS
SELECT tid, sum(weight) as sumw
FROM visit_diagnosis_weights
GROUP BY tid

Then, the next query returns the links along with their final scores:

WITH scores(tid1, tid2, score) AS (
SELECT tid1, tid2,

(SI.sinter/(BSUMW.sumw+QSUMW.sumw-SI.sinter))
AS score

FROM (SELECT BTW.tid AS tid1,QT.tid AS tid2,
SUM(BTW.weight) AS sinter

FROM (SELECT * FROM visit_diagnosis_weights
WHERE id = 1234) AS BTW,
trials_condition_tokens AS QT

WHERE BTW.token = QT.token
GROUP BY BTW.tid, QT.tid) AS SI,
(SELECT *
FROM visit_diagnosis_sumweights
WHERE id = 1234 ) AS BSUMW,
(SELECT Q.tid, SUM(BTW.weight) AS sumw
FROM trials_condition_tokens Q,

visit_diagnosis_tokenweights AS BTW
WHERE Q.token = BTW.token
GROUP BY Q.tid ) AS QSUMW

WHERE BSUMW.tid=SI.tid1 and SI.tid2 = QSUMW.tid )
SELECT PV.visitid, CT.trial
FROM scores AS s, visit AS v, trials AS t,
WHERE PV.visitid = 1234 AND CT.city=’NEW YORK’ AND

s.tid1=PV.visitid AND s.tid2=t.trial

4.2 Semantic Matching Implementation
Assume that the synonym and hyponym data are stored in two ta-

blessynonym andhyponym with columnssrc andtgt. The column
src containsconcept IDsof the terms, and the columntgt contains
the terms. This is a common approach in storing semantic knowl-
edge, used in NCI thesaurus and Wordnet’s synsets for example.
Alternatively, this data could be stored in a tablethesaurus with
an additional columnrel that stores the type of the relationship, or
it could even be stored in XML. In the case of XML,synonym and
hyponym can be views defined in a hybrid XML relational DBMS
such as DB2. For brevity, we limit our discussion in this paper to
semantic knowledge stored as relational data, although our frame-
work is easily extensible to other formats. We show the details of
the SQL implementation of the synonym and hyponym native link
specifications in the following two examples.

EXAMPLE 7 (SYNONYM NATIVE L INKSPEC). Consider the
following query written usingLinQL.

SELECT PV.visitid, CT.trial
FROM visit AS PV, trial AS CT
WHERE PV.visitid = 1234 AND CT.city=’NEW YORK’ AND

PV.diag = CT.cond
LINK PV.diag WITH CT.cond
USING synonym

This query is rewritten to:

SELECT DISTINCT PV.visitid, CT.trial
FROM trials AS CT, visit AS PV, synonym AS syn
WHERE PV.visitid = 1234 AND CT.city=’NEW YORK’ AND

(src in (SELECT src



FROM synonym s
WHERE s.tgt = CT.cond))

AND PV.diag = syn.tgt
UNION
SELECT PV.visitid, CT.trial
FROM trials AS CT, visit AS PV
WHERE PV.visitid = 1234 AND CT.city=’NEW YORK’ AND

CT.cond = PV.diag

EXAMPLE 8 (HYPONYM NATIVE L INKSPEC). Consider the
following query written usingLinQL.

SELECT PV.visitid, CT.trial
FROM visit AS PV, trial AS CT
WHERE PV.visitid = 1234 AND CT.city =’NEW YORK’ AND

PV.diag = CT.cond
LINK PV.diag WITH CT.cond
USING hyponym

This query is rewritten to:

WITH traversed(src, tgt, depth) AS (
(SELECT src,tgt,1
FROM hyponym AS ths
UNION ALL
(SELECT ch.src, pr.tgt, pr.depth+1
FROM hyponym AS ch, traversed AS pr
WHERE pr.src=ch.tgt AND

pr.depth<2 AND ch.src!=‘root_node’))
SELECT distinct PV.visitid, CT.trial
FROM trials AS CT, visit AS PV, hyponym AS ths
WHERE PV.id = 1234 AND CT.city =’NEW YORK’ AND

(src in (SELECT distinct src
FROM traversed tr
WHERE tr.tgt = CT.cond)) AND

PV.diag = ths.tgt

Note that the hyponym depth is by default set to 2, which could
be customized to any other value.

5. CASE STUDY
The main goal of this section is twofold. First, we illustrate the

flexibility of our framework by applying it in a variety of linkage
scenarios. Second, we use these scenarios to justify our choices
in terms of functionality for the various components in our frame-
work. We build our scenarios around an online database of clinical
trials published on ClinicalTrials.gov. This database is a registry
of federally and privately supported clinical trials conducted in re-
search centers all around the world. It contains detailed information
about the trials, including information about the conditions associ-
ated with the trials, their eligibility criteria and locations.

5.1 Datasets
The clinical trials database used in our experiments contains ap-

proximately 61,920 trials. Originally, the database was in XML
format. Using the functionality of DB2 as a hybrid relational-XML
DBMS, we stored all the data in relational tables. Other datasets
that we used in our experiments for linkage include a database of
patient visits or Electronic Medical Records (EMR) and DBpedia
(Wikipedia) entries about diseases and drugs. We also used the
National Cancer Institute (NCI)’s thesaurus as a source of seman-
tic information about medical terms. Detailed statistics on these
datasets is shown in Table 1.

Due to privacy issues associated with EMR records, our patient
visits database is synthetic, generated using a data generator that
resembles real EMR records in a hospital. The diagnosis and pre-
scription values are randomly picked by the data generator from
NCI terms. The data generator also creates an additional column
with a small random string error in the diagnosis field. The error
injected in the string resembles real errors and typos occurring in
string databases, e.g., replacing a character with an adjacent char-
acter on a keyboard, or swapping two characters or word tokens.

Dataset Entity Count
Clinical Trial 61,920
Trials Condition 14,055
(CT) Intervention 42,333

Drug (Intervention) 21,396
Publications 45,138

Patient Visit 10,000
Visits Diagnosis (clean) 9,151
(PV) Diagnosis (dirty) 9,319

Prescription (drug) 8,290
Therapy 5,114

DBpedia Disease 5,486
(Wikipedia) drug 2,235

NCI Concept IDs 63,924
Thesaurus Terms 159,291

’hasSynonym’ Relationships 168,932
’hasHyponym’ Relationships 72,486

Table 1: Dataset Statistics

5.2 Effectiveness and accuracy results
In what follows, we describe several link discovery scenarios in-

volving clinical trials. While the first scenario is described in more
detail (including its intermediate steps and corresponding linkage
specifications), for the other scenarios we only show the final re-
sults and only mention changes to precedingLinQL statements.

Case 1 (Linking patient visits to trial conditions) The objec-
tive here is to discover links to clinical trials that are related to the
conditions of certain patients. For this study, we consider 1,000
random patients from tablePV, where columnDIAGNOSIS stores the
condition associated with a patient’s visit. TheCT table stores the
trial condition in its columnCONDITION. The records matched by a
simple exact matching are obtained by theSQL query:

SELECT v.*, c.*
FROM PV v, CT c
WHERE v.DIAGNOSIS = c.CONDITION

The query returns only 33 matches, linking only 2 out of 1,000
patient visit records to matching clinical trials. This is due to the
string errors inDIAGNOSIS values. As a next step, we try an ap-
proximate string matching predicate with a low similarity threshold
using the following linkspec and query:

CREATE LINKSPEC weightedJaccard04
AS weightedJaccard (0.4, 2, 50).

SELECT v.*, c.*
FROM PV v, CT c
WHERE v.DIAGNOSIS = c.CONDITION

LINK v.DIAGNOSIS WITH c.CONDITION
USING weightedJaccard04

Since matching a condition to theright trial is imperative here,
we are rather strict (conservative) in the application of approxi-
mate matching. For example, links from “Alpa Thalassemia” (mis-
spelled record of “Alpha Thalassemia”) to “Alpha Thalassemia”,
“α-Thalassemia” and “Thalassemia” are considered correct and we
would like to find them. However, “Beta Thalassemia” is consid-
ered an incorrect link. The following accuracy results were ob-
tained by investigating 100 random queries using different thresh-
olds:

Threshold Number of Links Accuracy
0.70 22 91%
0.65 36 86%
0.60 63 84%
0.55 104 77%
0.50 182 66%
0.45 303 54%
0.40 579 40%



Therefore, by choosing a high threshold0.70, 22 links are re-
turned out of which20 (91%) are correct. However, by choos-
ing threshold0.4, 579 links are returned (more than5 links per
each patient visit), but only231 (40%) of them are correct. Given
these observations, a user can choose the appropriate threshold that
works best for the specific linkage needs. For example, we choose
threshold0.55 that returns on average almost one link per visit, and
has a reasonable accuracy. As a result we will have 1,102 links to
clinical trials from 335 (out of 1,000) distinct patient visits.

The next step is to use the semantic information in NCI to im-
prove the matching using theLinQL query below:

SELECT v.*, c.*
FROM PV v, CT c
WHERE v.DIAGNOSIS = c.CONDITION

LINK v.DIAGNOSIS WITH c.CONDITION
USING synonym

The semantic matching based only on synonyms results in 147
links to 104 distinct trials. From these, 69 links to 24 distinct trials
could not be found using exact or string matching. Repeating the
above query with semantic matching based on hyponyms of depth
2 from NCI, results in 68 additional links to 21 distinct trials. One
reason for the relatively low number of matches based on synonyms
and hyponyms is the string errors present in theDIAGNOSIS values
of thePV table. This calls for using string matching combined with
semantic matching. TheLinQL code to do this is:

CREATE LINKSPEC mixmatch
AS LINK source WITH target

USING synonym(ont,cid,term)
AND
LINK source WITH ont.term
USING weightedJaccard
AND
LINK ont.term WITH target
USING weightedJaccard;

SELECT v.*, c.*
FROM PV v, CT c
WHERE v.DIAGNOSIS = c.CONDITION

LINK v.DIAGNOSIS WITH c.CONDITION
USING mixmatch

Using combined string matching and semantic matching results
in 173 links to 120 distinct trials, 26 more links to 16 more dis-
tinct trials when compared with matching based on synonyms only.
Depending on the results of the above steps, the user can write a
single query for the linkage needs specific to the application. Here
we choose to combine exact matching, string matching, semantic
matching based on synonyms and hyponyms, and mixed semantic
matching allowing string errors. This can all be expressed using
the query below:

SELECT v.*, c.*
FROM PV v, CT c
WHERE v.DIAGNOSIS = c.CONDITION

LINK v.DIAGNOSIS WITH c.CONDITION
USING weightedJaccard
OR
LINK v.DIAGNOSIS WITH c.CONDITION
USING synonym
OR
LINK v.DIAGNOSIS WITH c.CONDITION
USING hyponym
OR
LINK v.DIAGNOSIS WITH c.CONDITION
USING mixmatch

The combined approach results in 1,255 links from 383 visit
records to the related clinical trials. Overall, we have:

Links # Entities #
1.Exact Match 33 2
2.String Match 1,102 335
3.Synonym Match 147 104
4.Mixed Match 173 120
5.Hyponym Match 68 21
Total (Combined) 1,255 383

These results can help a user better understand both her data and
the (combinations of) link methods that are suitable for her needs.

Case 2 (Linking prescriptions to trial interventions) Now con-
sider a user who wishes to link patients who were prescribed a drug
with all clinical trials that use that drug. To collect all these trials,
the user will need the results produced from a variety of algorithms.
A sample of such results is shown in the table below. These re-
sults use threshold0.6 for weightedJaccard string matching, and
depth 1 for hyponym matching. The table summarizes the results
obtained for matching 1,000 random drug prescriptions:

Method Links # Entities #
1.Exact Match 318 88
2.String Match 806 289
3.Synonym Match 4,225 355
4.Hyponym Match 2,410 44
Total (Combined) 6,630 500

Notice that some methods do find the same links (that is, the total
is less than the sum of the methods). However, the overlap is not
that big. For this application, if the goal is to find as many possible
matches as possible, all four of these methods add value.

Case 3 (Linking trial conditions to DBpedia diseases) and
Case 4 (Linking trial interventions to DBpedia drugs) In these
scenarios, we are seeking links from the clinical trials’ condition
and interventions fields to the DBpedia (or Wikipedia) disease and
drug categories, respectively. Unlike the previous cases, assume
here that the user only needs to link to a single DBpedia entry per
each condition and drug. This makes sense since in most cases
there should be a single record in DBpedia for a single disease
(condition) or drug intervention in the trials data. Therefore the
user uses theLINKLIMIT 1 option in theLinQL query to limit the
number of matches. Then, when an exact match is found for a
record, there is no need to look for approximate string or semantic
matches for that record. Considering the running times reported in
Section 5.4, this leads to a significant performance improvement.

The linkage specification query for matching conditions to DB-
pedia diseases is as follows. The query for trial interventions to
DBpedia drugs is similar.

SELECT c.*, d.*
FROM CT c, DBPD d
WHERE c.CONDITION = d.NAME

LINK c.CONDITION WITH d.NAME
USING weightedJaccard
OR
LINK c.CONDITION WITH d.NAME
USING synonym
OR
LINK c.CONDITION WITH d.NAME
USING hyponym
OR
LINK c.CONDITION WITH d.NAME
USING mixmatch
LINKLIMIT 1

Again we choose threshold0.6 for string matching based on in-
vestigation of the accuracy of a few random queries. The table
below summarizes the results for different steps of the matchings
from 1,000 condition and drug interventions:



Disease Drugs
1.Method Match Links# Links#
2.Exact Match 16 9
3.String Match 180 33
4.Synonym Match 12 21
5.Mixed Match 141 22
Total 248 62

Notice the obvious need for allowing mixed string and seman-
tic matching in these two cases. The trials source, NCI thesaurus
and DBpedia/Wikipedia names all use different conventions and
therefore there are cases where strings do not exactly match. For
example, “Adenocarcinoma of Esophagus” in trials matches with
“Carcinoma of Esophagus”, synonym of “Esophageal Cancer” in
the thesaurus which matches with “Esophageal_cancer” in DBpe-
dia.

Case 5 (Finding related trials) To show the flexibility of our
framework, we investigate its effectiveness in a rather different sce-
nario. In this case, the goal is linking trials that are related to each
other. Different attributes and measures can be used to identify tri-
als that are related. In this experiment, we use thepub attribute of
the trials and consider two trials related if the title and authors of
their associated publications are similar. Our trials database stores
publications associated with the trials in a single long text record
that includes the names of the authors, title of the paper, the confer-
ence or journal and the date of the publication. Therefore, in order
to find similarity we cannot use any type of semantic information
about the strings. Furthermore, we are not interested in typos and
different representations of the same string here. Instead the simi-
larity function should measure the amount of co-occurrence of (im-
portant) words in the two strings. The following weightedJaccard
linkspec performs matching based on word tokens:

CREATE LINKSPEC wordTokenJaccard
AS weightedJaccard (0.5, 0, 100)

Using the linkspec over 10,000 random trials results in 2,074
links, whereas exact matching results in only 11 matches.

5.3 Effectiveness of Weight Tables
In what follows, we briefly show the effectiveness of the func-

tionality enhancement we proposed based on manual definition of
a weight-adjustment table by the user. Assume that the user defines
the following simple weight table:

String Weight
‘Syndrome’ 0.4

‘The’ 0.1
‘Disorder’ 0.2
‘Disease’ 0.2

We repeat the experiment for Case 1 (linking to trial conditions
from a database of patient visits) with updated weight tables based
on the above input weight adjustment table. String matching with
the same settings, i.e., usingweightedJaccard similarity function
with threshold0.6 on 1,000 random base records, results in 121 ad-
ditional links out of which 91 are correct (accuracy 75%) and drops
63 of the links found with no weight adjustments out of which 15
were wrong matches. This means that overall, the matching has
resulted in 58 more links (5% increase) with roughly the same ac-
curacy as the case with no adjustments.

Note that we obtained these results by choosing the weight ad-
justment values in the above simple table based only on our do-
main knowledge, and we have not varied the values to obtain the
best results. What is more important is that we can use this method
and leverage weight values to improve the accuracy of the link dis-
covery, as a result of our SQL-based implementation method. The
implementation of the weighted-Jaccard similarity function and the

Figure 6: Preprocessing Time for the Datasets

above customization of weights using a UDF, rather than a native
method, could be quite complex and inefficient.

5.4 Performance Results
As mentioned earlier, our focus in this paper is on the functional-

ity of the framework and we do not address efficiency, although as
described in Section 3.2 several hashing and indexing techniques
can be applied to our framework to make it more efficient. How-
ever, we report running times of the above examples to show the
performance of the system without any of these enhancements. We
ran the experiments on a Pentium 4 3GHz HT CPU with 3GB of
RAM, running Windows XP SP2. To obtain statistical significance,
we report the average time from several runs of each experiment.

The table below shows the running time (in seconds) for 1,000
random queries for exact, synonym and hyponym matchings with
depth 1 and 2 for the queries presented in our case study. Notice
these queries involve approximate joins on relatively large tables.

Case 1 Case 2 Case 3 Case 4
Exact Match 0.031 0.062 0.031 0.031
Synonym Match 0.515 0.474 0.323 0.333
Hyponym Depth 1 2.432 2.547 2.317 2.328
Hyponym Depth 2 4.443 4.594 4.317 4.276

For the string matching performance, due to the nature of our
data sources it is reasonable to materialize token and weight table
views in a preprocessing step and index them for better efficiency.
The time required for this preprocessing of the table columns re-
lated to all the cases in our scenarios is shown in Figure 6, includ-
ing the time for tokenization, weight table generation and the asso-
ciated indexing times. As shown in this figure for all the cases the
preprocessing time is relatively low. Using the preprocessed tables
in our linkage cases, the following table shows the running time (in
seconds) per each query.

Case 1 Case 2 Case 3 Case 4
String Match 1.555 3.163 0.287 0.091
Mixed Match 60.189 63.142 59.322 30.425

6. RELATED WORK
The idea of Linked Data has recently attracted a lot of atten-

tion in the semantic web community. Linked Data is a method of
publishing data on the web based on principles that significantly
enhance the adaptability and usability of data, either by humans
or machines. The notable growth of linked data sources as a part
of the Linking Open Data Community project is in part a result of



technologies recently developed and adopted to simplify publishing
such data sources. A wide variety of data publishing methodologies
based on generation of RDF view over relational data are widely
used in these data sources. These methodologies are often based on
declarative specification of the mapping between relational tables
and RDF triples. These frameworks include, but are not limited to,
D2RQ and D2Rserver [7], Openlink Virtuoso and Triplify [2]. The
success of these tools motivates a similarly declarative framework
for link discovery such as ours so that not only the data sources
can be published according to the principles of publishing linked
data, but also they can be interlinked to other existing data sources,
which is another important principle of linked data.

Duplicate detection, also known as entity resolution or record
linkage has been the subject of extensive study in different com-
munities. A recent survey [10] contains an overview of various
techniques and algorithms used for duplicate record detection in
databases. Many AI and machine learning techniques have been
applied for entity resolution. The online entity resolution frame-
work of [4] presents techniques for query-time entity resolution
specifically designed for data that contains co-occurrence and re-
lational information such as bibliographic data. Another closely
related area is the work on declarative data quality and cleaning [5,
11, 13]. A distinctive feature of our framework comparing with
all the existing techniques is our focus on discovering links and
entity matching not necessarily for cleaning or duplicate detection
purposes. Our work complements and extends work on seman-
tic matching ([8, and others]) and semantic annotation and tagging
(see for example, Dill et al. [9]). We provide a framework for fast
prototyping and testing of semantic and syntactic matching which
could exploit semantic annotations, if available. A key advantage
of our approach is allowing string matching along with semantic
matching which is crucial in many real world matching scenar-
ios. Moreover, our specification language allows the definition of
new operators, which could be a mix of several semantic and string
matching operators.

7. CONCLUSION
In this paper, we presented a declarative extensible framework

for link discovery from relational data. We proposed a simple spec-
ification language,LinQL, along with the details of its implementa-
tion. We adopted and extended existing string matching and seman-
tic matching techniques, and proposed functionality enhancements
specifically designed for our framework. We showed the effective-
ness of our approach in several link discovery scenarios in a real
world health care application. Our focus has been on developing
efficient techniques that can handle large data sets, but also on us-
ability. We showed how a user can interactively experiment with
and customize different link methods to better understand what are
the most effective methods for her domain. We believe that our
framework can significantly enhance the process of publishing a
high-quality data source with links to other data sources on the web.
A user/data publisher can use our framework to easily find the ap-
propriate linkage algorithm for the specific application, as well as
the optimal value of the required parameters. Our framework com-
bined with an existing popular declarative approach for generating
linked data on the web such as [7], can lead to a quick and simple
way of publishing an online data source with high-quality links.
This could significantly enhance the value of the data in the next
generation of web.
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