
Supporting Ontology-based Keyword Search over Medical Databases

Anastasios Kementsietsidis, Ph.D. Lipyeow Lim, Ph.D. Min Wang, Ph.D.
IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA.
The proliferation of medical terms poses a number
of challenges in the sharing of medical information
among different stakeholders. Ontologies are com-
monly used to establish relationships between different
terms, yet their role in querying has not been investi-
gated in detail. In this paper, we study the problem of
supporting ontology-based keyword search queries on
a database of electronic medical records. We present
several approaches to support this type of queries,
study the advantages and limitations of each approach,
and summarize the lessons learned as best practices.

1. Introduction
The proliferation of medical terms is a major obstacle
in the sharing of medical information among different
shareholders (e.g., hospitals, clinicians, pharmaceuti-
cal companies etc.). Even different clinicians within
a hospital often use distinct terms to refer to the same
diagnosis, while symptoms are often recorded to a pa-
tient’s record in varying levels of granularity. For ex-
ample, one clinician might describe a patient diagnosis
using the term “Pineoblastoma”, while another might
use the (synonym) term “PNET of Pineal Gland”. In
the patient’s record a generic term like “Brain Neo-
plasm” might be recorded instead of the more specific
“Pineoblastoma” (where the latter term is said to be
a hyponym of the former). Coding systems such as
SNOMED or ICD9, and ontologies like the National
Cancer Institute (NCI) Thesaurus, encode terms and
their relationships, yet they do not prevent different
clinicians from using hyponyms, hypernyms, or syn-
onyms in an electronic medical record (EMR).
EMRs are usually stored for efficiency in relational

databases and one would expect that it is straight-
forward to bridge the gap between the term ontology
and the EMR database so as to use the former to re-
trieve records from the latter. The following exam-
ple illustrates that unfortunately this is not the case.
Consider an EMR database, like the one in Figure 1,
which stores hospital patient visits. For each visit, it
stores its identifier “vid”, the “date”, patient identifier
“patID”, and a diagnosis “diag” using terms from the
NCI Thesaurus. Assume that a clinician wants to re-
trieve all the patients with a diagnosis of brain tumor.
AMIA 2008 Symposium Pr
vID date patID diag
1 20080201 3243 Brain Neoplasm
2 20080202 4722 Stomatitis
3 20080202 2973 Brain Tumor
4 20080204 9437 Skin Hemangiosarcoma
5 20080205 2437 Pineoblastoma

Figure 1: The table Visit recording patient visits

To search for such records, the clinician must (a) ac-
cess the NCI thesaurus; (b) make a note of all the NCI
synonym terms of brain tumor (in this case, there are 7
synonyms); and (c) use these terms in a query to the re-
lational database to retrieve the relevant records (in this
case, the records with vid’s 1 and 3). Actually, this ap-
proach is familiar to clinicians since it is similar to the
one used in PubMed/MeSH to retrieve medical articles
(instead of patient records). However, the approach is
clearly inefficient since it requires a lot of manual ef-
fort. The situation is even worse if the clinician also
considers the hyponyms of brain tumor in order to re-
trieve patient records whose diagnosis refers to special
cases of brain tumor (e.g., terms like “Pineoblastoma”
or “Thalamic Neoplasm”). There are 233 such terms
in NCI. It is practically impossible for the clinician to
extract all this information manually from NCI in or-
der to search for the appropriate records. Some level
of automation is obviously required here.

Such automation would provide the clinician with a
simple interface similar to popular search engines like
Google. Then, the clinician would only perform the
following steps: (a) indicate a medical term QTerm;
and (b) specify whether, or not, the search should also
consider the hyponyms ofQTerm (synonyms ofQTerm
are considered, by default). In this paper, we show how
to support such an ontology-based keyword search
over a relational medical record database. Given the
input term QTerm, our system automatically performs
the following steps (i) it looks for QTerm in the ontol-
ogy and, depending on step (b) above, it also collects
the hyponyms of QTerm; and (ii) it uses the collected
terms to retrieve the medical records. In the paper, we
investigate several methods to provide the above func-
tionality and we study the advantages and limitations
of each method after extensive experimentation.
oceedings Page - 409

Method Ontology Representation Query Maintenance
RDF
Relational

Thesaurus(src,rel,tgt). Recursive SQL for DAG traversal Extract tuples from NCI Thesaurus
CSV file or XML file

Native
Relational

Hyponym(src,tgt), Synonym(src,tgt). Recursive SQL for DAG traversal Extract tuples from NCI Thesaurus
CSV file or XML file

Original
XML

ORG(vers,dat). The original NCI Thesaurus XML file
(Apelon schema) is stored in the dat column, in one row of the
ORG table.

Use the SQL/XML function XMLTable
to extract the hyponym links and use re-
cursive SQL to traverse those links.

Just insert the new NCI Thesaurus
XML file. No preprocessing re-
quired.

Hybrid
XML
Fragments

HYB(vers,dat). The dat column stores the concept XML
fragments from the NCI Apelon XML file, one concept frag-
ment per row.

Use the SQL/XML function XMLTable
to extract the hyponym links and use re-
cursive SQL to traverse those links.

Simple extraction of concept frag-
ments from NCI Apelon XML file.

Hybrid
XML tree

HYBTree(vers,dat), Synonym(src,tgt). The syn-
onyms has a flat structure and are stored in the Synonym rela-
tional table. The hierarchical hyponym relationships are mate-
rialized in a DAG and stored in a single XML file.

Use XPath for recursive traversals of sub-
trees and use recursive SQL to follow
sub-tree refeerences.

Extract hierarchical hyponym rela-
tionships, materialize into a DAG in
XML form. Extract synonyms into
a table.

Table 1: Summary of the different methods for storing an ontology in a database.

2. Methods
Our method is summarized as follows. The ontology
is first loaded into the database system possibly after
some preprocessing. When the user wants to use the
ontology to query the medical records, the only input
necessary is the medical term QTerm and an indication
of whether the hyponyms should also be considered
while retrieving medical records. A database query on
both the ontology and the medical records table is then
executed and the results returned to the user.
There are several ways to support this type of pro-

cessing depending on how the ontology is represented
and stored in the database. Since XML and the Rela-
tional Model are currently the most popular models of
representation, we consider both in this study. We as-
sume that the EMRs are stored in a relational database,
in a relation like the one in Figure 1. In practice, EMRs
are often stored as relational records for efficient pro-
cessing. Our method is equally applicable to EMRs
stored in an XML format such as those using the HL7
CDA or CCR information models [3]. Unlike EMRs,
ontologies are hierarchical in nature with the terms in
the hierarchy often forming a directed acyclic graph
(DAG). Therefore, ontologies can be represented us-
ing both XML and the relational model. We investi-
gate five different methods of representing the ontol-
ogy as summarized in Table 1. For ease of exposi-
tion, we use the NCI Thesaurus as our example ontol-
ogy. Of course, our techniques are generic and appli-
cable to any other ontology. Given term QTerm, for
each method we present the automatically generated
queries to retrieve the appropriate medical records. We
do not require that the reader fully understands how
these queries work. Instead, our aim is to illustrate how
complex these queries are, no matter which method is
considered, and thus prove the need for automation.
RDF Relational Method: In this method, a single

relation, called Thesaurus is used to encode the whole
ontology. Figure 2(a) shows some of the tuples in the
Thesaurus relation storing the RDF-like representation
of the NCI Thesaurus. Each triplet in the relation de-
termines a relationship rel between a subject src and
AMIA 2008 Symposium Pro
src rel tgt
Brain Neoplasm hasCode C9344
Brain Neoplasm hasHyponym Intraventricular Brain Neoplasm
Brain Neoplasm hasSynonym Brain Tumor
Brain Neoplasm hasHyponym Supratentorial Neoplasm
Pineoblastoma hasSynonym PNET of Pineal Gland
Pineoblastoma hasSynonym Pineal PNET

(a) The Thesaurus RDF-like relation
SELECT DISTINCT V.* FROM Thesaurus T, Visit V WHERE src IN
(SELECT src FROM ThesaurusWHERE tgt = ’QTerm’ AND rel = ’hasSynonym’)
AND T.rel = ’hasSynonym’ AND T.tgt = V.diag

(b) QueryQ1 for synonyms

WITH Traversed (src) AS (
(SELECT src FROM ThesaurusWHERE tgt = ’QTerm’ AND rel=’hasSynonym’)
UNION ALL
(SELECT CH.tgt FROM Traversed PR, Thesaurus CH
WHERE PR.src = CH.src AND CH.rel=’hasHyponym’))

SELECT DISTINCT V.* FROM Thesaurus T, Visit V WHERE src IN
(SELECT DISTINCT src FROM Traversed) AND T.rel = ’hasSynonym’
AND T.tgt = V.diag

(c) QueryQ2 for hyponyms

Figure 2: The Thesaurus RDF-like table and queries.
src tgt
Brain Neoplasm Intraventricular Brain Neoplasm
Brain Neoplasm Supratentorial Neoplasm

The Hyponym relation
src tgt
Pineoblastoma PNET of Pineal Gland
Pineoblastoma Pineal PNET

The Synonym relation

Figure 3: The Synonym and Hyponym relations

an object tgt. Of particular interest are the relation-
ships “hasSynonym” and “hasHyponym”. The former
is used to identify the synonyms of a terms. The latter
is used to identify the hyponym terms of a term. No-
tice that each tuple records in the tgt attribute only one
of the immediate hyponyms of the term stored in src.
Therefore, a recursive query is necessary to identify
and retrieve all the hyponyms, i.e., the hyponyms of
the hyponyms, and then their hyponyms, and so on and
so forth. Figure 2 shows queriesQ1 andQ2, where the
former query only retrieves patient records with a di-
agnosis that is synonymous to QTerm while the latter
query also (recursively) considers the hyponyms.
Native Relational Method: Unlike the previous

method where only a single relation is required, here
multiple relations are created to encode the ontology.
Intuitively, we generate a separate relation for each
type of relationship between the terms of the ontology.
ceedings Page - 410

...
<conceptDef>
<name>Pineoblastoma</name>
<code>C9344</code>
<id>9344</id>
<namespace>NCI</namespace>
<kind>Findings_and_Disorders_Kind</kind>
<definingConcepts>

<concept>Embryonal_Neoplasm_of_the_CNS</concept>
<concept>Malignant_Pineal_Region_Neoplasm</concept>
<concept>Pineal_Parenchymal_Cell_Neoplasm</concept>

</definingConcepts>
...
<properties>

<property>
<name>Preferred_Name</name> <value>Pineoblastoma</value>

</property>
<property>
<name>Synonym</name> <value>PNET of Pineal Gland</value>

</property>
<property>
<name>Synonym</name> <value>Pineal Gland PNET</value>

</property>
...

</properties>
</conceptDef>
...
<conceptDef>
<name>Malignant_Pineal_Region_Neoplasm</name>
<code>C3573</code>

...
</conceptDef>
...

SELECT DISTINCT V.* FROM Visit V WHERE V.diag IN
(SELECT DISTINCT syn FROM XMLTABLE (’db2-fn:xmlcolumn(”ORG.DAT”)
/terminology/conceptDef/properties[property/name/text()=”Synonym” and
property/value/text()=”QTerm ”]/property[name/text()=”Synonym”]/value’
COLUMNS syn CHAR(64) PATH’.’) AS Temp)

(a) QueryQ5 for synonyms

WITH Traversed (cls, src) AS (
(SELECT R.cls, R.syn FROM XMLTABLE (’db2-fn:xmlcolumn(”ORG.DAT”)
/terminology/conceptDef/properties[property/name/text()=”Synonym” and
property/value/text()=”QTerm ”]/property[name/text()=”Synonym”]/value’
COLUMNS cls CHAR(64) PATH’./parent::*/parent::*/parent::*/name’,

syn CHAR(64) PATH’.’) AS R)
UNION ALL
(SELECT CH.cls, CH.syn FROM Traversed PR,
XMLTABLE (’db2-fn:xmlcolumn(”ORG.DAT”)
/terminology/conceptDef/definingConcepts/concept[./text()=$parent]/
parent::*/parent::*/properties/property[name/text()=”Synonym”]/value’
PASSING PARENT.cls AS ”parent”
COLUMNS cls CHAR(64) PATH’./parent::*/parent::*/parent::*/name’,

syn CHAR(64) PATH’.’) AS CH))
SELECT DISTINCT V.* FROM Visit AS V
WHERE V.diag IN (SELECT src FROM Traversed)

(b) Query Q6 for hyponyms

Figure 4: Fragment of the original XML format for the NCI Thesaurus and corresponding queries.
Figure 3 shows the distinct relations used to represent
the synonym and hyponym relationships in the NCI
Thesaurus. The corresponding queries Q3 and Q4 are
quite similar to those for the RDF relational method
and we omit them for brevity.
Original XML Ontology Method: This method

assumes that a domain expert provides an XML rep-
resentation of the ontology. This is indeed the case
for the NCI Thesaurus (our example ontology). This
method requires the least effort since the only thing re-
quired is to download the ontology (for example, the
NCI Thesaurus), and insert it as is in a database. Fig-
ure 4 shows a fragment of the NCI Thesaurus XML
and Figure 4(b) shows corresponding queries Q5 and
Q6 for retrieving patient records with a diagnosis that
is a synonym or hyponym to QTerm respectively.
Hybrid XML Fragments Method: Here, we de-

compose the original XML ontology tree into a num-
ber of XML fragments (sub-trees). One fragment is
created for each term in the ontology. For exam-
ple, for the NCI Thesaurus XML in Figure 4, each
conceptDef element is extracted as a fragment and
stored in a separate tuple (there are approximately
64000 conceptDef elements and hence that many
tuples). The intuition is that in the majority of cases,
only a part of the tree needs to be accessed to exe-
cute a query and therefore it is not necessary to always
process the whole tree. By splitting the ontology tree,
only the fragment trees corresponding to terms that are
relevant to a query are accessed. Furthermore, by stor-
ing each fragment as a tuple in a relation we are taking
advantage of relational database technology (like in-
dexes) to reduce query processing times. The structure
of the corresponding queries, Q7 and Q8, are quite
AMIA 2008 Symposium Pro
similar to those of the original XML ontology method
and are hence omitted for brevity.
Hybrid XML Tree Method: Starting from the orig-

inal XML ontology tree, we create (i) a single XML
tree to encode the hyponym term relationship; and (ii)
a synonym relation, like the one in Figure 3(b), to
store the synonym term relationship. Intuitively, here
we choose for each relationship the most appropriate
model of representation. So, the hyponym relation-
ship which is inherently hierarchical is represented as
an XML tree, while the synonym relationship is rep-
resented as a relation of synonym term pairs. To re-
trieve patient records whose diagnosis is synonymous
to QTerm, the same query for the native relational
method is used. For hyponyms,Q9 in Figure 5 is used.

3. Results
We used IBM DB2 v9.1 [5], on a 4-CPU (3.2 GHz)
server with 4GB of memory, to store both the patient
records and the ontology (for all methods) since DB2
natively supports storing both relational and XML
data. We used the NCI Thesaurus for our experiments
along with one million synthetically generated patient
visit records. Before we present our main results, we
offer some useful NCI Thesaurus statistics. These
statistics will help us to both interpret the results of
the experiments and guide the design choices for this
and other ontologies. The NCI Thesaurus is 112MB
in size and contains approximately 64000 terms. Fig-
ure 6(a) shows the distribution of these terms per depth
of the hypernym/hyponym hierarchy (with depth 0 de-
noting the root). Notice that the majority of nodes
are between depths 4 and 9 and nodes with depths
smaller than, or equal to, 4 are expected to have a large
ceedings Page - 411

<root_node>
<Diseases_Disorders_and_Findings>

<Diseases_and_Disorders>
<Psychiatric_Disorder>
<Anxiety_Disorder>
<Post-Traumatic_Stress_Disorder>
</Post-Traumatic_Stress_Disorder>
<Neurosis>
<Combat_Neurosis> </Combat_Neurosis>

</Neurosis>
<Organic_Anxiety_Disorder> </Organic_Anxiety_Disorder>
<Separation_Anxiety_Disorder> </Separation_Anxiety_Disorder>

</Anxiety_Disorder>
...

</Diseases_Disorders_and_Findings>
...

</root_node>

(a) Fragment of the Hybrid XML Tree.

WITH Traversed (elem, attr) AS (
(SELECT X.elem, X.attr FROM Synonym S,
XMLTABLE (’db2-fn:xmlcolumn(”XR.DAT”)//.[fn:name(.)=$start]//.’
PASSING BY REF S.src AS ”start”
COLUMNS elem CHAR(64) PATH’fn:name(.)’,
attr CHAR(64) PATH’if (fn:exists(.[@cp])) then ./@cp else ”F”’) AS X)

WHERE S.tgt = QTerm
UNION ALL
(SELECT X.elem, X.attr FROM
(SELECT * FROM TRAVERSED T WHERE T.attr=’T’) AS T1,
XMLTABLE (’ db2-fn:xmlcolumn(”XR.DAT”)
//*[fn:name(.) = $n and @cp=”MR”]//.’
PASSING T1.elem AS ”n”
COLUMNS elem CHAR(64) PATH’fn:name(.)’,
attr CHAR(64) PATH’if (fn:exists(.[@cp])) then ./@cp else ”F”’) AS X))

SELECT DISTINCT V.* FROM Visit V WHERE V.diag IN
(SELECT DISTINCT S.tgt FROM Synonym S, Traversed T)
WHERE S.src = T.elem

(b) QueryQ9 for hyponyms
Figure 5: Hybrid XML Tree and query

number of hyponyms. Conversely, nodes with depths
larger than 9 are expected to have small numbers of
hyponyms (we return to this point later). Figure 6(b)
shows the distribution of terms with respect to their hy-
ponym fanout (we only consider here direct hyponyms
in the graph, not the recursive hyponyms). Approx-
imately 4500 terms have only one direct hyponym,
2500 terms have two direct hyponyms, etc. For clar-
ity, we stop reporting in the graph any fanouts larger
than 20. However, there is one term for almost ev-
ery value of fanout up to 150 (e.g., there exists a term
in the graph with 150 direct hyponyms). Interestingly
enough, there are also two special terms in the graph
that have 2630 and 3025 terms as direct synonyms.
These are the “Non Current Chemotherapy Regimen
or Association” and the “Retired Concepts” terms. Fi-
nally, in Figure 6(c) we show the number of synonyms
(fanout) per term. On average, each term has two syn-
onyms. Specifically, around 22000 terms have no syn-
onyms, while 18000 terms have 1 synonym and 11000
have two synonyms. Again for clarity, we do not re-
port fanout values larger than 15 although there exist
terms for almost each fanout value up to 78.
The experiments. For our first experiment, we used
QTerm = “Sebaceous Tumor”. We consider this to
be a representative term of the ontology since it has
four synonyms (close to average number in the ontol-
ogy), and it is at depth 8 (close to the middle of the
ontological tree) with 53 hyponyms. Using QTerm, we
AMIA 2008 Symposium Pr
executed all the queries, for all the methods, and in
Figure 6(d) we show their running times. From the
figure, it is clear that using the Original XML tree re-
sults in significant delays in query execution. Query
Q5 (synonym query) requires 2 minutes to execute,
whileQ6 (hyponym) requires almost 4 1/2 hours. One
the other hand, synonym queries for the other methods
take as little as 30 msecs. For the hyponym queries,
they require as little as 2 secs (for the relational only
methods) and at most 30 secs (for the hybrid tree
method). This vast difference in query execution be-
tween hours/minutes and secs/msecs clearly proves
our claim that the initial XML ontology is not designed
for efficient query processing and some form of post-
processing is necessary to convert it to a more query-
friendly form. The above also illustrate the value of
our solutions in this and more generic settings.
In our second experiment, we study the effect of the

number of hyponyms on query evaluation time. We
consider three terms, namely, “Non-Neoplastic Dis-
order”, “Colon Neoplasm” and “Plasmablastic Lym-
phoma”, which are in depths 3, 8 and 13, respectively.
Remember that the smaller the depth, the higher in the
tree the term is, and therefore the more hyponyms the
term is expected to have. Indeed, the three terms have
1901, 64 and 8 hyponyms, respectively. Figure 6(e)
shows that for both the relational only methods, the
evaluation time is proportional to the number of hy-
ponyms, which verifies our intuition. We do not show
the XML methods, since their running times are 2-3
orders of magnitude larger than the relational ones.
For our last experiment, we study the effect of the

number of synonyms on query evaluation time. We
consider three terms, namely, “Stomatitis”, “Skin An-
giosarcoma” and “Prostate Cancer Stage III”, which
have 1, 5 and 10 synonyms, respectively. Figure 6(f)
shows that evaluation times are also proportional to
the number of synonyms, for the RDF-like, Native
and Hybrid fragment methods. Concerning the Origi-
nal XML method, the situation is similar although the
evaluation time is around three orders of magnitude
bigger (the three methods in Figure 6(f) require frac-
tions of a second, while the evaluation times of the
Original XML method is between 1 and 1 1/2 minute).

4. Discussion
The previous sections present a system with a simple
(keyword-based) search engine-like query interface to
a clinician (often a computer non-expert), where a sim-
ple term is automatically expanded to also consider
its synonyms (and possibly, its hyponyms). Our in-
vestigation has shown that considerable tangible gains
are possible if we store and process an ontology in
oceedings Page - 412

 0

 2000

 4000

 6000

 8000

 10000

 12000

 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

’../graphs/depth’

(a) Term distribution per tree depth

 0

 1000

 2000

 3000

 4000

 5000

 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

’../graphs/fanout’

(b) Term distribution per fanout

 0

 5000

 10000

 15000

 20000

 25000

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

’../graphs/synonym’

(c) Term distribution per synonyms

Method - Scope Time (ms)
Q1 RDF Relational - Syn. 38.6
Q2 RDF Relational - Hyp. 1376.8
Q3 Native Relational - Syn. 32.9
Q4 Native Relational - Hyp. 1543
Q5 Original XML - Syn. 116,422.7
Q6 Original XML - Hyp. 15,778,948
Q7 Hybrid XML Frag. - Syn. 46.4
Q8 Hybrid XML Frag. - Hyp. 2577.7
Q9 Hybrid XML Tree - Hyp. 31,597.8

(d) Evaluation of representative QTerm

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 2100

3 8 13

R
et

rie
va

l T
im

e
(in

 m
se

cs
)

Term Depth

Q2
Q4

(e) Evaluation at different depths

 0

 20

 40

 60

 80

 100

 120

 140

1 5 10

R
et

rie
va

l T
im

e
(in

 m
se

cs
)

Number of synonyms

Q1
Q2
Q7

(f) Evaluation with varying synonyms

Figure 6: Ontology statistics
a way that is more appropriate for querying. These
gains however must be weighted with the associated
cost of maintaining the ontology up-to-date. Specifi-
cally, for each of the proposed methods, one must con-
sider what are the effects of updating the ontology tree.
One would expect that the method of using the Orig-
inal XML Ontology tree would require the least ef-
fort since the only thing required is to replace in the
database the previous version of the tree with the new
(updated) one. Surprisingly, given the size of the on-
tology tree, this simple operation can take in the or-
der of a few hours to complete during which time the
system becomes unavailable for querying. The crucial
observation here is that no matter how big, or small,
an update to the tree is, the whole tree needs to be
replaced. In the worst case, even correcting a sim-
ple typo in a term of the ontology requires to take the
whole system offline for a few hours. Obviously, this
is not a very satisfactory solution.
Unlike the previous method, the hybrid frag-

ment and relational-only methods allow faster load-
ing times. In these methods, the original tree is de-
composed to a number of tuples and smaller subtrees.
Therefore, one can isolate the parts of the tree that have
been updated and only replace those in each method.

5. Related work
There has been a lot of interest on developing systems
to support keyword search over a relational database.
In systems like BANKS [2], DBXplorer [1] and Dis-
cover [4], the user provides as input a set of keywords
and the system returns as answer a set of tuples trees
AMIA 2008 Symposium Pro
(joinable tuples from multiple relations). However, a
requirement in these systems is that all the input key-
words are present in each returned tuple tree. In our
work, the semantics is quite different since we return a
tuple if it mentions at least one of the keywords. An-
other key distinction between the works is that these
systems do not exploit any ontologies that are rele-
vant to the input keywords. In contrast, our work uses
such ontologies to automatically expand the initial set
of keywords (and retrieve more relevant results) with-
out requiring any additional user effort.

References
[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer:

A system for keyword-based search over relational
databases. In ICDE, pages 5–16, 2002.

[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in
databases using banks. In ICDE, pages 431–440, 2002.

[3] J. M. Ferranti, R. C. Musser, K. Kawamoto, and W. E.
Hammond. The clinical document architecture and the
continuity of care record: A critical analysis. JAMIA,
13(3):245–252, June 2006.

[4] V. Hristidis and Y. Papakonstantinou. Discover: key-
word search in relational databases. In VLDB, pages
670–681, 2002.

[5] IBM DB2 Universal Database pureXML. http://www-
306.ibm.com/software/data/db2/xml/.
ceedings Page - 413

